All useful sample codes of TensorRT models using ONNX
- to do later
- Performance Measurement
- Remove duplicate code
- refactoring
- Add a comment
- Device
- RTX4090
- Dependency
- cuda 12.2
- tensorrt 10.5.0
- torch 2.4.1
-
Generation TensorRT Model by using ONNX
1.1 TensorRT CPP API
1.2 TensorRT Python API
1.3 Polygraphy -
Dynamic shapes for TensorRT
2.1 Dynamic batch
2.2 Dynamic input size
-
Custom Plugin
3.1 Adding a pre-processing layer by cuda -
Modifying an ONNX graph by ONNX GraphSurgeon
4.1 Extracting a feature map of the last Conv for Grad-Cam
4.2 Generating a TensorRT model with a custom plugin and ONNX -
TensorRT Model Optimizer
5.1 Explict Quantization (PTQ)
5.2 Explict Quantization (QAT)
5.3 Explict Quantization (ONNX PTQ)
5.4 Implicit Quantization (TensorRT PTQ)
5.5 Sparsity (2:4 sparsity pattern)
5.6 Pruning
5.7 Distillation
5.8 NAS(Neural Architecture Search)
5.9 Combinations multi-method
- Super Resolution
6.1 Real-ESRGAN - Object Detection
7.1 yolo11 - Instance Segmentation
- Semantic Segmentation
- Depth Estimation
10.1 Depth Pro ( "It is under repair due to an accuracy issue.")