-
Notifications
You must be signed in to change notification settings - Fork 43
/
invert-binary-tree.py
250 lines (208 loc) · 5.77 KB
/
invert-binary-tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
"""
Given the root of a binary tree, invert the tree, and return its root.
Example 1:
Input: root = [4,2,7,1,3,6,9]
Output: [4,7,2,9,6,3,1]
Example 2:
Input: root = [2,1,3]
Output: [2,3,1]
Example 3:
Input: root = []
Output: []
Constraints:
The number of nodes in the tree is in the range [0, 100].
-100 <= Node.val <= 100
Invert a binary tree.
4
/ \
2 7
/ \ / \
1 3 6 9
to
4
/ \
7 2
/ \ / \
9 6 3 1
"""
# V0
# IDEA : DFS
# -> below code shows a good example that tree is a type of "linked list"
# -> we don't really modify tree's "value", but we modify the pointer
# -> e.g. make root.left point to root.right, make root.right point to root.left
class Solution(object):
def invertTree(self, root):
def dfs(root):
if not root:
return root
### NOTE THIS
if root:
# NOTE : have to do root.left, root.right ON THE SAME TIME
root.left, root.right = dfs(root.right), dfs(root.left)
dfs(root)
return root
# V0'
# IDEA BFS
class Solution(object):
def invertTree(self, root):
if root == None:
return root
queue = [root]
while queue:
# queue = queue[::-1] <-- this one is NOT working
for i in range(len(queue)):
tmp = queue.pop()
### NOTE here !!!!!!
# -> we do invert op via below
tmp.left, tmp.right = tmp.right, tmp.left
if tmp.left:
queue.append(tmp.left)
if tmp.right:
queue.append(tmp.right)
return root
# V0
# IDEA : DFS
class Solution(object):
def invertTree(self, root):
if root is None:
return root
if root is not None:
# NOTE : have to do root.left, root.right ON THE SAME TIME
root.left, root.right = self.invertTree(root.right), \
self.invertTree(root.left)
return root
# V1
# https://blog.csdn.net/coder_orz/article/details/51383933
# DFS (Recursion)
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution(object):
def invertTree(self, root):
"""
:type root: TreeNode
:rtype: TreeNode
"""
if root == None:
return root
tmp = root.left
root.left = self.invertTree(root.right)
root.right = self.invertTree(tmp)
return root
# V1'
# https://blog.csdn.net/coder_orz/article/details/51383933
# Stack
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution(object):
def invertTree(self, root):
"""
:type root: TreeNode
:rtype: TreeNode
"""
if root == None:
return root
stack = [root]
while len(stack) != 0:
node = stack.pop()
node.left, node.right = node.right, node.left
if node.left:
stack.append(node.left)
if node.right:
stack.append(node.right)
return root
# V1''
# https://blog.csdn.net/coder_orz/article/details/51383933
# BFS
class Solution(object):
def invertTree(self, root):
"""
:type root: TreeNode
:rtype: TreeNode
"""
if root == None:
return root
q = [root]
while len(q) != 0:
q[0].left, q[0].right = q[0].right, q[0].left
if q[0].left:
q.append(q[0].left)
if q[0].right:
q.append(q[0].right)
del q[0]
return root
# V2
# Time: O(n)
# Space: O(h)
# BFS solution.
import collections
class Queue(object):
def __init__(self):
self.data = collections.deque()
def push(self, x):
self.data.append(x)
def peek(self):
return self.data[0]
def pop(self):
return self.data.popleft()
def size(self):
return len(self.data)
def empty(self):
return len(self.data) == 0
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution(object):
# @param {TreeNode} root
# @return {TreeNode}
def invertTree(self, root):
if root is not None:
nodes = Queue()
nodes.push(root)
while not nodes.empty():
node = nodes.pop()
node.left, node.right = node.right, node.left
if node.left is not None:
nodes.push(node.left)
if node.right is not None:
nodes.push(node.right)
return root
# Time: O(n)
# Space: O(h)
# Stack solution.
class Solution2(object):
# @param {TreeNode} root
# @return {TreeNode}
def invertTree(self, root):
if root is not None:
nodes = []
nodes.append(root)
while nodes:
node = nodes.pop()
node.left, node.right = node.right, node.left
if node.left is not None:
nodes.append(node.left)
if node.right is not None:
nodes.append(node.right)
return root
# Time: O(n)
# Space: O(h)
# DFS, Recursive solution.
class Solution3(object):
# @param {TreeNode} root
# @return {TreeNode}
def invertTree(self, root):
if root is not None:
root.left, root.right = self.invertTree(root.right), \
self.invertTree(root.left)
return root