-
Notifications
You must be signed in to change notification settings - Fork 43
/
implement-trie-prefix-tree.py
424 lines (350 loc) · 11.1 KB
/
implement-trie-prefix-tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
"""
208. Implement Trie (Prefix Tree)
Medium
5115
77
Add to List
Share
A trie (pronounced as "try") or prefix tree is a tree data structure used to efficiently store and retrieve keys in a dataset of strings. There are various applications of this data structure, such as autocomplete and spellchecker.
Implement the Trie class:
Trie() Initializes the trie object.
void insert(String word) Inserts the string word into the trie.
boolean search(String word) Returns true if the string word is in the trie (i.e., was inserted before), and false otherwise.
boolean startsWith(String prefix) Returns true if there is a previously inserted string word that has the prefix prefix, and false otherwise.
Example 1:
Input
["Trie", "insert", "search", "search", "startsWith", "insert", "search"]
[[], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]]
Output
[null, null, true, false, true, null, true]
Explanation
Trie trie = new Trie();
trie.insert("apple");
trie.search("apple"); // return True
trie.search("app"); // return False
trie.startsWith("app"); // return True
trie.insert("app");
trie.search("app"); // return True
Constraints:
1 <= word.length, prefix.length <= 2000
word and prefix consist only of lowercase English letters.
At most 3 * 104 calls in total will be made to insert, search, and startsWith.
"""
# V0
# IDEA : trie concept : dict + tree
# https://blog.csdn.net/fuxuemingzhu/article/details/79388432
# deine node
from collections import defaultdict
### NOTE : need to define our Node
class Node():
def __init__(self):
"""
NOTE : we use defaultdict(Node) as our the trie data structure
-> use defaultdict
- key : every character from word
- value : Node (Node type)
and link children with paraent Node via defaultdict
"""
self.children = defaultdict(Node)
self.isword = False
# implement basic methods
class Trie():
def __init__(self):
self.root = Node()
def insert(self, word):
### NOTE : we always start from below
cur = self.root
for w in word:
cur = cur.children[w]
cur.isword = True
def search(self, word):
### NOTE : we always start from below
cur = self.root
for w in word:
cur = cur.children.get(w)
if not cur:
return False
### NOTE : need to check if isword
return cur.isword
def startsWith(self, prefix):
### NOTE : we always start from below
cur = self.root
for p in prefix:
cur = cur.children.get(p)
if not cur:
return False
return True
# V0'
# IDEA : trie concept : dict + tree
# https://blog.csdn.net/fuxuemingzhu/article/details/79388432
### NOTE : we need implement Node class
from collections import defaultdict
class Node(object):
def __init__(self):
### NOTE : we use defaultdict as dict
# TODO : make a default py dict version
self.children = defaultdict(Node)
self.isword = False
class Trie(object):
def __init__(self):
"""
Initialize your data structure here.
"""
### NOTE : we use the Node class we implement above
self.root = Node()
def insert(self, word):
current = self.root
for w in word:
current = current.children[w]
### NOTE : if insert OP completed, mark isword attr as true
current.isword = True
def search(self, word):
current = self.root
for w in word:
current = current.children.get(w)
if current == None:
return False
### NOTE : we need to check if isword atts is true (check if word terminated here as well)
return current.isword
def startsWith(self, prefix):
current = self.root
for w in prefix:
current = current.children.get(w)
if current == None:
return False
### NOTE : we don't need to check isword here, since it is "startsWith"
return True
# V0''
# IDEA : USE dict AS data structure (# TrieNode: is dict, or hashmap)
class Trie(object):
def __init__(self):
self.root = {} # TrieNode: is dict, or hashmap
def insert(self, word):
p = self.root
for c in word:
if c not in p:
p[c] = {}
### NOTE THIS
p = p[c]
### NOTE HERE
p['#'] = True # ‘#’ is a key indicating word bounday
def search(self, word):
node = self.find(word)
return node is not None and '#' in node # NOTE
def startsWith(self, prefix):
return self.find(prefix) is not None # NOTE
### NOTE : remember to implement this help fuunc
def find(self, prefix):
p = self.root
for c in prefix:
if c not in p:
return None
# for validating if "search to the end" (check '#' in the node or not)
p = p[c]
return p
# V1
# IDEA : USE dict AS data structure (# TrieNode: is dict, or hashmap)
# https://leetcode.com/problems/implement-trie-prefix-tree/discuss/633007/25-lines-python-use-50-less-code-than-c%2B%2B-should-I-change-to-python
class Trie(object):
def __init__(self):
self.root = {} # TrieNode: is dict, or hashmap
def insert(self, word):
p = self.root
for c in word:
if c not in p:
p[c] = {}
p = p[c]
### NOTE HERE
p['#'] = True # ‘#’ is a key indicating word bounday
def search(self, word):
node = self.find(word)
return node is not None and '#' in node # NOTE
def startsWith(self, prefix):
return self.find(prefix) is not None # NOTE
def find(self, prefix):
p = self.root
for c in prefix:
if c not in p:
return None
p = p[c]
return p
# V1
# https://blog.csdn.net/fuxuemingzhu/article/details/79388432
class Node(object):
def __init__(self):
self.children = collections.defaultdict(Node)
self.isword = False
class Trie(object):
def __init__(self):
"""
Initialize your data structure here.
"""
self.root = Node()
def insert(self, word):
"""
Inserts a word into the trie.
:type word: str
:rtype: void
"""
current = self.root
for w in word:
current = current.children[w]
current.isword = True
def search(self, word):
"""
Returns if the word is in the trie.
:type word: str
:rtype: bool
"""
current = self.root
for w in word:
current = current.children.get(w)
if current == None:
return False
return current.isword
def startsWith(self, prefix):
"""
Returns if there is any word in the trie that starts with the given prefix.
:type prefix: str
:rtype: bool
"""
current = self.root
for w in prefix:
current = current.children.get(w)
if current == None:
return False
return True
# Your Trie object will be instantiated and called as such:
# obj = Trie()
# obj.insert(word)
# param_2 = obj.search(word)
# param_3 = obj.startsWith(prefix)
# V1'
# https://www.jiuzhang.com/solution/implement-trie-prefix-tree/#tag-highlight-lang-python
class TrieNode:
def __init__(self):
self.children = {}
self.is_word = False
class Trie:
def __init__(self):
self.root = TrieNode()
"""
@param: word: a word
@return: nothing
"""
def insert(self, word):
node = self.root
for c in word:
if c not in node.children:
node.children[c] = TrieNode()
node = node.children[c]
node.is_word = True
"""
return the node in the trie if exists
"""
def find(self, word):
node = self.root
for c in word:
node = node.children.get(c)
if node is None:
return None
return node
"""
@param: word: A string
@return: if the word is in the trie.
"""
def search(self, word):
node = self.find(word)
return node is not None and node.is_word
"""
@param: prefix: A string
@return: if there is any word in the trie that starts with the given prefix.
"""
def startsWith(self, prefix):
return self.find(prefix) is not None
# V1''
# https://www.jiuzhang.com/solution/implement-trie-prefix-tree/#tag-highlight-lang-python
class TrieNode:
def __init__(self):
self.children = {}
self.is_word = False
class Trie:
def __init__(self):
self.root = TrieNode()
"""
@param: word: a word
@return: nothing
"""
def insert(self, word):
node = self.root
for c in word:
if c not in node.children:
node.children[c] = TrieNode()
node = node.children[c]
node.is_word = True
"""
return the node in the trie if exists
"""
def find(self, word):
node = self.root
for c in word:
node = node.children.get(c)
if node is None:
return None
return node
"""
@param: word: A string
@return: if the word is in the trie.
"""
def search(self, word):
node = self.find(word)
return node is not None and node.is_word
"""
@param: prefix: A string
@return: if there is any word in the trie that starts with the given prefix.
"""
def startsWith(self, prefix):
return self.find(prefix) is not None
# V2
# Time: O(n), per operation
# Space: O(1)
class TrieNode(object):
# Initialize your data structure here.
def __init__(self):
self.is_string = False
self.leaves = {}
class Trie(object):
def __init__(self):
self.root = TrieNode()
# @param {string} word
# @return {void}
# Inserts a word into the trie.
def insert(self, word):
cur = self.root
for c in word:
if not c in cur.leaves:
cur.leaves[c] = TrieNode()
cur = cur.leaves[c]
cur.is_string = True
# @param {string} word
# @return {boolean}
# Returns if the word is in the trie.
def search(self, word):
node = self.childSearch(word)
if node:
return node.is_string
return False
# @param {string} prefix
# @return {boolean}
# Returns if there is any word in the trie
# that starts with the given prefix.
def startsWith(self, prefix):
return self.childSearch(prefix) is not None
def childSearch(self, word):
cur = self.root
for c in word:
if c in cur.leaves:
cur = cur.leaves[c]
else:
return None
return cur