-
Notifications
You must be signed in to change notification settings - Fork 43
/
binary-search-tree-iterator.py
400 lines (329 loc) · 10.1 KB
/
binary-search-tree-iterator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
"""
173. Binary Search Tree Iterator
Medium
Implement the BSTIterator class that represents an iterator over the in-order traversal of a binary search tree (BST):
BSTIterator(TreeNode root) Initializes an object of the BSTIterator class. The root of the BST is given as part of the constructor. The pointer should be initialized to a non-existent number smaller than any element in the BST.
boolean hasNext() Returns true if there exists a number in the traversal to the right of the pointer, otherwise returns false.
int next() Moves the pointer to the right, then returns the number at the pointer.
Notice that by initializing the pointer to a non-existent smallest number, the first call to next() will return the smallest element in the BST.
You may assume that next() calls will always be valid. That is, there will be at least a next number in the in-order traversal when next() is called.
Example 1:
Input
["BSTIterator", "next", "next", "hasNext", "next", "hasNext", "next", "hasNext", "next", "hasNext"]
[[[7, 3, 15, null, null, 9, 20]], [], [], [], [], [], [], [], [], []]
Output
[null, 3, 7, true, 9, true, 15, true, 20, false]
Explanation
BSTIterator bSTIterator = new BSTIterator([7, 3, 15, null, null, 9, 20]);
bSTIterator.next(); // return 3
bSTIterator.next(); // return 7
bSTIterator.hasNext(); // return True
bSTIterator.next(); // return 9
bSTIterator.hasNext(); // return True
bSTIterator.next(); // return 15
bSTIterator.hasNext(); // return True
bSTIterator.next(); // return 20
bSTIterator.hasNext(); // return False
Constraints:
The number of nodes in the tree is in the range [1, 105].
0 <= Node.val <= 106
At most 105 calls will be made to hasNext, and next.
"""
# V0
# IDEA : STACK + tree
class BSTIterator(object):
def __init__(self, root):
"""
:type root: TreeNode
"""
self.stack = []
self.inOrder(root)
def inOrder(self, root):
if not root:
return
"""
NOTE !!! how we do inorder traversal here
irOrder : left -> root -> right
"""
self.inOrder(root.left)
self.stack.append(root.val)
self.inOrder(root.right)
def hasNext(self):
"""
:rtype: bool
"""
return len(self.stack) > 0
def next(self):
"""
:rtype: int
"""
return self.stack.pop(0) # NOTE here
# V0'
# IDEA : STACK + tree
class BSTIterator(object):
def __init__(self, root):
"""
:type root: TreeNode
"""
self.stack = []
self.inOrder(root)
def inOrder(self, root):
if not root:
return
"""
NOTE !!! how we do inorder traversal here
-> since we pop last element from stack,
-> here we do "inverse" inOrder
"""
self.inOrder(root.right)
self.stack.append(root.val)
self.inOrder(root.left)
def hasNext(self):
"""
:rtype: bool
"""
return len(self.stack) > 0
def next(self):
"""
:rtype: int
"""
return self.stack.pop(-1) # NOTE here
# V1
# https://blog.csdn.net/fuxuemingzhu/article/details/79436947
# Definition for a binary tree node
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class BSTIterator(object):
def __init__(self, root):
"""
:type root: TreeNode
"""
self.stack = []
self.inOrder(root)
def inOrder(self, root):
if not root:
return
self.inOrder(root.right)
self.stack.append(root.val)
self.inOrder(root.left)
def hasNext(self):
"""
:rtype: bool
"""
return len(self.stack) > 0
def next(self):
"""
:rtype: int
"""
return self.stack.pop()
# V1'
# IDEA : Flattening the BST
# https://leetcode.com/problems/binary-search-tree-iterator/solution/
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class BSTIterator:
def __init__(self, root: TreeNode):
# Array containing all the nodes in the sorted order
self.nodes_sorted = []
# Pointer to the next smallest element in the BST
self.index = -1
# Call to flatten the input binary search tree
self._inorder(root)
def _inorder(self, root):
if not root:
return
self._inorder(root.left)
self.nodes_sorted.append(root.val)
self._inorder(root.right)
def next(self) -> int:
"""
@return the next smallest number
"""
self.index += 1
return self.nodes_sorted[self.index]
def hasNext(self) -> bool:
"""
@return whether we have a next smallest number
"""
return self.index + 1 < len(self.nodes_sorted)
# V1''
# IDEA : Controlled Recursion
# https://leetcode.com/problems/binary-search-tree-iterator/solution/
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class BSTIterator:
def __init__(self, root: TreeNode):
# Stack for the recursion simulation
self.stack = []
# Remember that the algorithm starts with a call to the helper function
# with the root node as the input
self._leftmost_inorder(root)
def _leftmost_inorder(self, root):
# For a given node, add all the elements in the leftmost branch of the tree
# under it to the stack.
while root:
self.stack.append(root)
root = root.left
def next(self) -> int:
"""
@return the next smallest number
"""
# Node at the top of the stack is the next smallest element
topmost_node = self.stack.pop()
# Need to maintain the invariant. If the node has a right child, call the
# helper function for the right child
if topmost_node.right:
self._leftmost_inorder(topmost_node.right)
return topmost_node.val
def hasNext(self) -> bool:
"""
@return whether we have a next smallest number
"""
return len(self.stack) > 0
# V1'''
# https://blog.csdn.net/fuxuemingzhu/article/details/79436947
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class BSTIterator(object):
def __init__(self, root):
"""
:type root: TreeNode
"""
self.stack = []
self.push_left(root)
def next(self):
"""
@return the next smallest number
:rtype: int
"""
node = self.stack.pop()
self.push_left(node.right)
return node.val
def hasNext(self):
"""
@return whether we have a next smallest number
:rtype: bool
"""
return self.stack
def push_left(self, root):
while root:
self.stack.append(root)
root = root.left
# V1'''''
# https://www.jiuzhang.com/solution/binary-search-tree-iterator/#tag-highlight-lang-python
class BSTIterator:
"""
@param: root: The root of binary tree.
"""
def __init__(self, root):
dummy = TreeNode(0)
dummy.right = root
self.stack = [dummy]
self.next()
"""
@return: True if there has next node, or false
"""
def hasNext(self):
return bool(self.stack)
"""
@return: return next node
"""
def next(self):
node = self.stack.pop()
next_node = node
if node.right:
node = node.right
while node:
self.stack.append(node)
node = node.left
return next_node
# V1''
# https://www.jiuzhang.com/solution/binary-search-tree-iterator/#tag-highlight-lang-python
class BSTIterator:
"""
@param: root: The root of binary tree.
"""
def __init__(self, root):
self.stack = []
while root != None:
self.stack.append(root)
root = root.left
"""
@return: True if there has next node, or false
"""
def hasNext(self):
return len(self.stack) > 0
"""
@return: return next node
"""
def next(self):
node = self.stack[-1]
if node.right is not None:
n = node.right
while n != None:
self.stack.append(n)
n = n.left
else:
n = self.stack.pop()
while self.stack and self.stack[-1].right == n:
n = self.stack.pop()
return node
# V1'''
# https://www.jiuzhang.com/solution/binary-search-tree-iterator/#tag-highlight-lang-python
class BSTIterator:
#@param root: The root of binary tree.
def __init__(self, root):
self.stack = []
self.curt = root
#@return: True if there has next node, or false
def hasNext(self):
return self.curt is not None or len(self.stack) > 0
#@return: return next node
def next(self):
while self.curt is not None:
self.stack.append(self.curt)
self.curt = self.curt.left
self.curt = self.stack.pop()
nxt = self.curt
self.curt = self.curt.right
return nxt
# V2
# Time: O(1)
# Space: O(h), h is height of binary tree
class TreeNode(object):
def __init__(self, x):
self.val = x
self.left = None
self.right = None
class BSTIterator(object):
# @param root, a binary search tree's root node
def __init__(self, root):
self.stack = []
self.cur = root
# @return a boolean, whether we have a next smallest number
def hasNext(self):
return self.stack or self.cur
# @return an integer, the next smallest number
def next(self):
while self.cur:
self.stack.append(self.cur)
self.cur = self.cur.left
self.cur = self.stack.pop()
node = self.cur
self.cur = self.cur.right
return node.val