-
Notifications
You must be signed in to change notification settings - Fork 43
/
top-k-frequent-words.py
211 lines (186 loc) · 6.36 KB
/
top-k-frequent-words.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
"""
692. Top K Frequent Words
Medium
Given an array of strings words and an integer k, return the k most frequent strings.
Return the answer sorted by the frequency from highest to lowest. Sort the words with the same frequency by their lexicographical order.
Example 1:
Input: words = ["i","love","leetcode","i","love","coding"], k = 2
Output: ["i","love"]
Explanation: "i" and "love" are the two most frequent words.
Note that "i" comes before "love" due to a lower alphabetical order.
Example 2:
Input: words = ["the","day","is","sunny","the","the","the","sunny","is","is"], k = 4
Output: ["the","is","sunny","day"]
Explanation: "the", "is", "sunny" and "day" are the four most frequent words, with the number of occurrence being 4, 3, 2 and 1 respectively.
Constraints:
1 <= words.length <= 500
1 <= words[i] <= 10
words[i] consists of lowercase English letters.
k is in the range [1, The number of unique words[i]]
Follow-up: Could you solve it in O(n log(k)) time and O(n) extra space?
"""
# V0 : TODO : bouble check
from collections import Counter
class Solution(object):
def topKFrequent(self, words, k):
counter = Counter(words)
candidates = list(counter.keys())
candidates.sort(key=lambda w: (-counter[w], w))
return candidates[:k]
# V1
# https://blog.csdn.net/fuxuemingzhu/article/details/79559691
# import collections
# class Solution(object):
# def topKFrequent(self, words, k):
# """
# :type words: List[str]
# :type k: int
# :rtype: List[str]
# """
# count = collections.Counter(words)
# def compare(x, y):
# def cmp(x,y):
# if x < y:
# return -1
# elif x == y:
# return 0
# elif x > y:
# return 1
# if x[1] == y[1]:
# return cmp(x[0], y[0])
# else:
# return -cmp(x[1], y[1])
# return [x[0] for x in sorted(count.items(), cmp = compare)[:k]]
# V1'
# https://blog.csdn.net/fuxuemingzhu/article/details/79559691
# IDEA : HEAP
# TOP K PROBLEMS IN PYTHON -> HEAP
# IDEA : heapq data module in python : array -> stack
# heapq.heapify(heap) : transform array to stack into linear time
# heapq.heappop(heap) : perform stack pop operation (pop top element)
# heappush(heap,5) : perform stack push operation (add new element at top )
import heapq
class Solution(object):
def topKFrequent(self, words, k):
"""
:type words: List[str]
:type k: int
:rtype: List[str]
"""
count = collections.Counter(words)
heap = [(-freq, word) for word, freq in count.items()]
heapq.heapify(heap)
return [heapq.heappop(heap)[1] for _ in range(k)]
# V2
# Time: O(n + klogk) on average
# Space: O(n)
import collections
import heapq
from random import randint
class Solution(object):
def topKFrequent(self, words, k):
"""
:type words: List[str]
:type k: int
:rtype: List[str]
"""
counts = collections.Counter(words)
p = []
for key, val in counts.items():
p.append((-val, key))
self.kthElement(p, k)
result = []
sorted_p = sorted(p[:k])
for i in range(k):
result.append(sorted_p[i][1])
return result
def kthElement(self, nums, k): # O(n) on average
def PartitionAroundPivot(left, right, pivot_idx, nums):
pivot_value = nums[pivot_idx]
new_pivot_idx = left
nums[pivot_idx], nums[right] = nums[right], nums[pivot_idx]
for i in range(left, right):
if nums[i] < pivot_value:
nums[i], nums[new_pivot_idx] = nums[new_pivot_idx], nums[i]
new_pivot_idx += 1
nums[right], nums[new_pivot_idx] = nums[new_pivot_idx], nums[right]
return new_pivot_idx
left, right = 0, len(nums) - 1
while left <= right:
pivot_idx = randint(left, right)
new_pivot_idx = PartitionAroundPivot(left, right, pivot_idx, nums)
if new_pivot_idx == k - 1:
return
elif new_pivot_idx > k - 1:
right = new_pivot_idx - 1
else: # new_pivot_idx < k - 1.
left = new_pivot_idx + 1
# V3
# Time: O(nlogk)
# Space: O(n)
# Heap Solution
class Solution2(object):
def topKFrequent(self, words, k):
"""
:type words: List[str]
:type k: int
:rtype: List[str]
"""
class MinHeapObj(object):
def __init__(self,val):
self.val = val
def __lt__(self,other):
return self.val[1] > other.val[1] if self.val[0] == other.val[0] else \
self.val < other.val
def __eq__(self,other):
return self.val == other.val
def __str__(self):
return str(self.val)
counts = collections.Counter(words)
min_heap = []
for word, count in counts.items():
heapq.heappush(min_heap, MinHeapObj((count, word)))
if len(min_heap) == k+1:
heapq.heappop(min_heap)
result = []
while min_heap:
result.append(heapq.heappop(min_heap).val[1])
return result[::-1]
# V4
# Time: O(n + klogk) ~ O(n + nlogn)
# Space: O(n)
# Bucket Sort Solution
class Solution3(object):
def topKFrequent(self, words, k):
"""
:type words: List[str]
:type k: int
:rtype: List[str]
"""
counts = collections.Counter(words)
buckets = [[] for _ in range(len(words)+1)]
for word, count in counts.items():
buckets[count].append(word)
pairs = []
for i in reversed(range(len(words))):
for word in buckets[i]:
pairs.append((-i, word))
if len(pairs) >= k:
break
pairs.sort()
return [pair[1] for pair in pairs[:k]]
# V5
# time: O(nlogn)
# space: O(n)
from collections import Counter
class Solution4(object):
def topKFrequent(self, words, k):
"""
:type words: List[str]
:type k: int
:rtype: List[str]
"""
counter = Counter(words)
candidates = list(counter.keys())
candidates.sort(key=lambda w: (-counter[w], w))
return candidates[:k]