-
Notifications
You must be signed in to change notification settings - Fork 43
/
largest-perimeter-triangle.py
60 lines (45 loc) · 1.35 KB
/
largest-perimeter-triangle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
"""
976. Largest Perimeter Triangle
Easy
Given an integer array nums, return the largest perimeter of a triangle with a non-zero area, formed from three of these lengths. If it is impossible to form any triangle of a non-zero area, return 0.
Example 1:
Input: nums = [2,1,2]
Output: 5
Explanation: You can form a triangle with three side lengths: 1, 2, and 2.
Example 2:
Input: nums = [1,2,1,10]
Output: 0
Explanation:
You cannot use the side lengths 1, 1, and 2 to form a triangle.
You cannot use the side lengths 1, 1, and 10 to form a triangle.
You cannot use the side lengths 1, 2, and 10 to form a triangle.
As we cannot use any three side lengths to form a triangle of non-zero area, we return 0.
Constraints:
3 <= nums.length <= 104
1 <= nums[i] <= 106
"""
# V0
# V1
class Solution(object):
def largestPerimeter(self, A):
A.sort()
for i in list(reversed(list(range(len(A)-2)))):
if ( A[i] + A[i+1] > A[i+2] and
A[i+2] + A[i+1] > A[i] and
A[i] + A[i+2] > A[i+1] ):
return A[i] + A[i+1] + A[i+2]
return 0
# V2
# Time: O(nlogn)
# Space: O(1)
class Solution(object):
def largestPerimeter(self, A):
"""
:type A: List[int]
:rtype: int
"""
A.sort()
for i in reversed(range(len(A) - 2)):
if A[i] + A[i+1] > A[i+2]:
return A[i] + A[i+1] + A[i+2]
return 0