-
Notifications
You must be signed in to change notification settings - Fork 43
/
array-partition-i.py
70 lines (64 loc) · 1.81 KB
/
array-partition-i.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# Time: O(r), r is the range size of the integers
# Space: O(r)
# Given an array of 2n integers, your task is to group these integers into n pairs of integer,
# say (a1, b1), (a2, b2), ..., (an, bn) which makes sum of min(ai, bi) for all i from 1 to n as large as possible.
#
# Example 1:
# Input: [1,4,3,2]
#
# Output: 4
# Explanation: n is 2, and the maximum sum of pairs is 4.
# Note:
# n is a positive integer, which is in the range of [1, 10000].
# All the integers in the array will be in the range of [-10000, 10000].
# V0
# V1
# http://bookshadow.com/weblog/2017/04/23/leetcode-array-partition-i/
class Solution(object):
def arrayPairSum(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
return sum(sorted(nums)[::2])
# V2
# Time: O(r), r is the range size of the integers
# Space: O(r)
class Solution(object):
def arrayPairSum(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
LEFT, RIGHT = -10000, 10000
lookup = [0] * (RIGHT-LEFT+1)
for num in nums:
lookup[num-LEFT] += 1
r, result = 0, 0
for i in xrange(LEFT, RIGHT+1):
result += (lookup[i-LEFT] + 1 - r) / 2 * i
r = (lookup[i-LEFT] + r) % 2
return result
# Time: O(nlogn)
# Space: O(1)
class Solution2(object):
def arrayPairSum(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
nums.sort()
result = 0
for i in range(0, len(nums), 2):
result += nums[i]
return result
# Time: O(nlogn)
# Space: O(n)
class Solution3(object):
def arrayPairSum(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
nums = sorted(nums)
return sum([nums[i] for i in range(0, len(nums), 2)])