-
Notifications
You must be signed in to change notification settings - Fork 43
/
domino-and-tromino-tiling.py
144 lines (117 loc) · 3.94 KB
/
domino-and-tromino-tiling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
"""
790. Domino and Tromino Tiling
Medium
You have two types of tiles: a 2 x 1 domino shape and a tromino shape. You may rotate these shapes.
Given an integer n, return the number of ways to tile an 2 x n board. Since the answer may be very large, return it modulo 109 + 7.
In a tiling, every square must be covered by a tile. Two tilings are different if and only if there are two 4-directionally adjacent cells on the board such that exactly one of the tilings has both squares occupied by a tile.
Example 1:
Input: n = 3
Output: 5
Explanation: The five different ways are show above.
Example 2:
Input: n = 1
Output: 1
Constraints:
1 <= n <= 1000
"""
# V0
# IDEA : DP
class Solution(object):
def numTilings(self, N):
"""
:type N: int
:rtype: int
"""
MOD = 10**9 + 7
dp = [[0] * 3 for x in range(N + 10)]
dp[0] = [1, 0, 0]
dp[1] = [1, 1, 1]
for x in range(2, N + 1):
dp[x][0] = (dp[x - 1][0] + sum(dp[x - 2])) % MOD
dp[x][1] = (dp[x - 1][0] + dp[x - 1][2]) % MOD
dp[x][2] = (dp[x - 1][0] + dp[x - 1][1]) % MOD
return dp[N][0]
# V1
# IDEA : DP
# http://bookshadow.com/weblog/2018/02/25/leetcode-domino-and-tromino-tiling/
class Solution(object):
def numTilings(self, N):
"""
:type N: int
:rtype: int
"""
MOD = 10**9 + 7
dp = [[0] * 3 for x in range(N + 10)]
dp[0] = [1, 0, 0]
dp[1] = [1, 1, 1]
for x in range(2, N + 1):
dp[x][0] = (dp[x - 1][0] + sum(dp[x - 2])) % MOD
dp[x][1] = (dp[x - 1][0] + dp[x - 1][2]) % MOD
dp[x][2] = (dp[x - 1][0] + dp[x - 1][1]) % MOD
return dp[N][0]
# V1'
# https://www.jiuzhang.com/solution/domino-and-tromino-tiling/#tag-highlight-lang-python
class Solution:
"""
@param N: a integer
@return: return a integer
"""
def numTilings(self, N):
if N < 3:
return N
MOD = 1000000007
f = [[0, 0, 0] for i in range(N + 1)]
f[0][0] = f[1][0] = f[1][1] = f[1][2] = 1
for i in range(2, N + 1):
f[i][0] = (f[i - 1][0] + f[i - 2][0] + f[i - 2][1] + f[i - 2][2]) % MOD;
f[i][1] = (f[i - 1][0] + f[i - 1][2]) % MOD;
f[i][2] = (f[i - 1][0] + f[i - 1][1]) % MOD;
return f[N][0]
# V2
# Time: O(logn)
# Space: O(1)
import itertools
class Solution(object):
def numTilings(self, N):
"""
:type N: int
:rtype: int
"""
M = int(1e9+7)
def matrix_expo(A, K):
result = [[int(i==j) for j in range(len(A))] \
for i in range(len(A))]
while K:
if K % 2:
result = matrix_mult(result, A)
A = matrix_mult(A, A)
K /= 2
return result
def matrix_mult(A, B):
ZB = zip(*B)
return [[sum(a*b for a, b in itertools.izip(row, col)) % M \
for col in ZB] for row in A]
T = [[1, 0, 0, 1], # #(|) = #(|) + #(=)
[1, 0, 1, 0], # #(「) = #(|) + #(L)
[1, 1, 0, 0], # #(L) = #(|) + #(「)
[1, 1, 1, 0]] # #(=) = #(|) + #(「) + #(L)
return matrix_expo(T, N)[0][0] # T^N * [1, 0, 0, 0]
# Time: O(n)
# Space: O(1)
class Solution2(object):
def numTilings(self, N):
"""
:type N: int
:rtype: int
"""
# Prove:
# dp[n] = dp[n-1](|) + dp[n-2](=) + 2*(dp[n-3](「」) + ... + d[0](「 = ... = 」))
# = dp[n-1] + dp[n-2] + dp[n-3] + dp[n-3] + 2*(dp[n-4] + ... + d[0])
# = dp[n-1] + dp[n-3] + (dp[n-2] + dp[n-3] + 2*(dp[n-4] + ... + d[0])
# = dp[n-1] + dp[n-3] + dp[n-1]
# = 2*dp[n-1] + dp[n-3]
M = int(1e9+7)
dp = [1, 1, 2]
for i in range(3, N+1):
dp[i%3] = (2*dp[(i-1)%3]%M + dp[(i-3)%3])%M
return dp[N%3]