-
Notifications
You must be signed in to change notification settings - Fork 43
/
android-unlock-patterns.py
255 lines (215 loc) · 7.28 KB
/
android-unlock-patterns.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# Given an Android 3x3 key lock screen and two integers m and n, where 1 ≤ m ≤ n ≤ 9, count the total number of unlock patterns of the Android lock screen, which consist of minimum of m keys and maximum n keys.
#
# Rules for a valid pattern:
#
# Each pattern must connect at least m keys and at most n keys.
# All the keys must be distinct.
# If the line connecting two consecutive keys in the pattern passes through any other keys, the other keys must have previously selected in the pattern. No jumps through non selected key is allowed.
# The order of keys used matters.
#
#
# \
#
# Explanation:
#
# | 1 | 2 | 3 |
# | 4 | 5 | 6 |
# | 7 | 8 | 9 |
#
# Invalid move: 4 - 1 - 3 - 6
# Line 1 - 3 passes through key 2 which had not been selected in the pattern.
#
# Invalid move: 4 - 1 - 9 - 2
# Line 1 - 9 passes through key 5 which had not been selected in the pattern.
#
# Valid move: 2 - 4 - 1 - 3 - 6
# Line 1 - 3 is valid because it passes through key 2, which had been selected in the pattern
#
# Valid move: 6 - 5 - 4 - 1 - 9 - 2
# Line 1 - 9 is valid because it passes through key 5, which had been selected in the pattern.
#
# Example:
# Given m = 1, n = 1, return 9.
# V0
# V1
# https://blog.csdn.net/qq508618087/article/details/51758481
# IDEA : DP
# C++
# class Solution {
# public:
# int DFS(int m, int n, int len, int num)
# {
# int cnt = 0;
# if(len >= m) cnt++;
# if(++len > n) return cnt;
# visited[num] = true;
# for(int i = 1; i<= 9; i++)
# if(!visited[i] && visited[hash[num][i]])
# cnt += DFS(m, n, len, i);
# visited[num] = false;
# return cnt;
# }
#
# int numberOfPatterns(int m, int n) {
# if(m < 1 || n < 1) return 0;
# visited.resize(10, false);
# visited[0] = true;
# hash.resize(10, vector<int>(10, 0));
# hash[1][3] = hash[3][1] = 2;
# hash[1][7] = hash[7][1] = 4;
# hash[3][9] = hash[9][3] = 6;
# hash[7][9] = hash[9][7] = 8;
# hash[2][8] = hash[8][2] = hash[4][6] = hash[6][4] = 5;
# hash[1][9] = hash[9][1] = hash[3][7] = hash[7][3] = 5;
# return DFS(m, n, 1, 1)*4 + DFS(m, n, 1, 2)*4 + DFS(m, n, 1, 5);
# }
# private:
# vector<bool> visited;
# vector<vector<int>> hash;
# };
# V2
# Time: O(9^2 * 2^9)
# Space: O(9 * 2^9)
# DP solution.
class Solution(object):
def numberOfPatterns(self, m, n):
"""
:type m: int
:type n: int
:rtype: int
"""
def merge(used, i):
return used | (1 << i)
def number_of_keys(i):
number = 0
while i > 0:
i &= i - 1
number += 1
return number
def contain(used, i):
return bool(used & (1 << i))
def convert(i, j):
return 3 * i + j
# dp[i][j]: i is the set of the numbers in binary representation,
# dp[i][j] is the number of ways ending with the number j.
dp = [[0] * 9 for _ in range(1 << 9)]
for i in range(9):
dp[merge(0, i)][i] = 1
res = 0
for used in range(len(dp)):
number = number_of_keys(used)
if number > n:
continue
for i in range(9):
if not contain(used, i):
continue
if m <= number <= n:
res += dp[used][i]
x1, y1 = divmod(i, 3)
for j in range(9):
if contain(used, j):
continue
x2, y2 = divmod(j, 3)
if ((x1 == x2 and abs(y1 - y2) == 2) or
(y1 == y2 and abs(x1 - x2) == 2) or
(abs(x1 - x2) == 2 and abs(y1 - y2) == 2)) and \
not contain(used,
convert((x1 + x2) // 2, (y1 + y2) // 2)):
continue
dp[merge(used, j)][j] += dp[used][i]
return res
# Time: O(9^2 * 2^9)
# Space: O(9 * 2^9)
# DP solution.
class Solution2(object):
def numberOfPatterns(self, m, n):
"""
:type m: int
:type n: int
:rtype: int
"""
def merge(used, i):
return used | (1 << i)
def number_of_keys(i):
number = 0
while i > 0:
i &= i - 1
number += 1
return number
def exclude(used, i):
return used & ~(1 << i)
def contain(used, i):
return bool(used & (1 << i))
def convert(i, j):
return 3 * i + j
# dp[i][j]: i is the set of the numbers in binary representation,
# d[i][j] is the number of ways ending with the number j.
dp = [[0] * 9 for _ in range(1 << 9)]
for i in range(9):
dp[merge(0, i)][i] = 1
res = 0
for used in range(len(dp)):
number = number_of_keys(used)
if number > n:
continue
for i in range(9):
if not contain(used, i):
continue
x1, y1 = divmod(i, 3)
for j in range(9):
if i == j or not contain(used, j):
continue
x2, y2 = divmod(j, 3)
if ((x1 == x2 and abs(y1 - y2) == 2) or
(y1 == y2 and abs(x1 - x2) == 2) or
(abs(x1 - x2) == 2 and abs(y1 - y2) == 2)) and \
not contain(used,
convert((x1 + x2) // 2, (y1 + y2) // 2)):
continue
dp[used][i] += dp[exclude(used, i)][j]
if m <= number <= n:
res += dp[used][i]
return res
# Time: O(9!)
# Space: O(9)
# Backtracking solution. (TLE)
class Solution_TLE(object):
def numberOfPatterns(self, m, n):
"""
:type m: int
:type n: int
:rtype: int
"""
def merge(used, i):
return used | (1 << i)
def contain(used, i):
return bool(used & (1 << i))
def convert(i, j):
return 3 * i + j
def numberOfPatternsHelper(m, n, level, used, i):
number = 0
if level > n:
return number
if m <= level <= n:
number += 1
x1, y1 = divmod(i, 3)
for j in range(9):
if contain(used, j):
continue
x2, y2 = divmod(j, 3)
if ((x1 == x2 and abs(y1 - y2) == 2) or
(y1 == y2 and abs(x1 - x2) == 2) or
(abs(x1 - x2) == 2 and abs(y1 - y2) == 2)) and \
not contain(used,
convert((x1 + x2) // 2, (y1 + y2) // 2)):
continue
number += numberOfPatternsHelper(m, n, level + 1, merge(used, j), j)
return number
number = 0
# 1, 3, 7, 9
number += 4 * numberOfPatternsHelper(m, n, 1, merge(0, 0), 0)
# 2, 4, 6, 8
number += 4 * numberOfPatternsHelper(m, n, 1, merge(0, 1), 1)
# 5
number += numberOfPatternsHelper(m, n, 1, merge(0, 4), 4)
return number