-
Notifications
You must be signed in to change notification settings - Fork 43
/
heap_sort.py
111 lines (83 loc) · 2.6 KB
/
heap_sort.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
#---------------------------------------------------------------
# HEAP SORT
#---------------------------------------------------------------
# https://rust-algo.club/sorting/heapsort/index.html
"""
Time complexity
Best : O(N Log N)
Avg : O(N Log N)
Worst : O(N Log N)
Space complexity
Worst : O(1) auxiliary
"""
"""
2 Steps
Step 1) Heapify (either max heap, or min heap)
Step 2) Sorting
- keep finding biggest /smallest, and swap with last element
- Heapify new heap (last element is excluded from new heap)
- repeat above sub steps
"""
# V0
# V1 (gpt)
def heapify(arr, n, i):
largest = i # Initialize largest as root
l = 2 * i + 1 # left = 2*i + 1
r = 2 * i + 2 # right = 2*i + 2
# See if left child of root exists and is greater than root
if l < n and arr[i] < arr[l]:
largest = l
# See if right child of root exists and is greater than root
if r < n and arr[largest] < arr[r]:
largest = r
# Change root, if needed
if largest != i:
arr[i], arr[largest] = arr[largest], arr[i] # swap
# Heapify the root.
heapify(arr, n, largest)
def heap_sort(arr):
n = len(arr)
# Build a maxheap.
for i in range(n, -1, -1):
heapify(arr, n, i)
# One by one extract elements
for i in range(n-1, 0, -1):
arr[i], arr[0] = arr[0], arr[i] # swap
heapify(arr, i, 0)
# Usage example
# arr = [12, 11, 13, 5, 6, 7]
# heap_sort(arr)
# print("Sorted array is", arr)
# V2
def heapify(unsorted, index, heap_size):
largest = index
left_index = 2 * index + 1
right_index = 2 * index + 2
if left_index < heap_size and unsorted[left_index] > unsorted[largest]:
largest = left_index
if right_index < heap_size and unsorted[right_index] > unsorted[largest]:
largest = right_index
if largest != index:
unsorted[largest], unsorted[index] = unsorted[index], unsorted[largest]
heapify(unsorted, largest, heap_size)
def heap_sort(unsorted):
'''
Pure implementation of the heap sort algorithm in Python
:param collection: some mutable ordered collection with heterogeneous
comparable items inside
:return: the same collection ordered by ascending
Examples:
>>> heap_sort([0, 5, 3, 2, 2])
[0, 2, 2, 3, 5]
>>> heap_sort([])
[]
>>> heap_sort([-2, -5, -45])
[-45, -5, -2]
'''
n = len(unsorted)
for i in range(n // 2 - 1, -1, -1):
heapify(unsorted, i, n)
for i in range(n - 1, 0, -1):
unsorted[0], unsorted[i] = unsorted[i], unsorted[0]
heapify(unsorted, 0, i)
return unsorted