-
Notifications
You must be signed in to change notification settings - Fork 15
/
text_generation_demo.py
executable file
·82 lines (62 loc) · 3.39 KB
/
text_generation_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import argparse
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer, model = None, None
def init_model(args):
global tokenizer, model
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_path, truncation_side="left", padding_side="left")
model = AutoModelForCausalLM.from_pretrained(args.model_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='auto')
model = model.eval()
def batch_call(texts, skip_special_tokens=True, **kwargs):
tokenized = tokenizer(texts, padding=True, return_tensors="pt")
inputs = {key: value.cuda() for key, value in tokenized.items() if key != 'token_type_ids'}
generate_ids = model.generate(**inputs, **kwargs)
output =[]
for tok, gen in zip(tokenized.input_ids, generate_ids):
generated = tokenizer.decode(gen[len(tok):], skip_special_tokens=skip_special_tokens)
output.append(generated)
return output
def text_generation(texts, max_new_tokens, temperature, top_k, top_p):
output = batch_call(texts, max_new_tokens=max_new_tokens, do_sample=True, top_k=top_k, top_p=top_p, temperature=temperature, eos_token_id=tokenizer.eos_token_id)
return output[0]
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--port", type=int, default=20014,
help="server port")
parser.add_argument("--model_path", type=str, default="./model",
help="Path to the model. Specifies the file path to the pre-trained model to be used for text generation.")
parser.add_argument("--tokenizer_path", type=str, default="./model",
help="Path to the tokenizer.")
args = parser.parse_args()
return args
if __name__ == "__main__":
args = get_args()
# initialize model and tokenizer
init_model(args)
with gr.Blocks() as demo:
gr.Markdown(
"# <center>{}</center>".format("XVERSE-7B Text Generation"))
with gr.Row():
with gr.Column():
inputs = gr.inputs.Textbox(
lines=5, label="Input Text") # input
with gr.Column():
max_new_tokens = gr.Slider(maximum=512, value=100, minimum=1, step=1,
label="max_new_tokens", interactive=True) # max_new_tokens
temperature = gr.Slider(maximum=1.0, value=1.0, minimum=0.0, step=0.05,
label='temperature', interactive=True) # temperature
top_k = gr.Slider(maximum=50, value=50, minimum=0, step=1,
label='Top K', interactive=True) # top_k
top_p = gr.Slider(maximum=1, value=0.92, minimum=0,
step=0.02, label='Top P', interactive=True) # top_p
with gr.Row():
outputs = gr.inputs.Textbox(lines=2, label="Output Text")
with gr.Row():
submit_btn = gr.Button(value="生成", variant="secondary")
reset_btn = gr.ClearButton(components=[inputs, outputs], value="清除", variant="secondary")
submit_btn.click(fn=text_generation,
inputs=[inputs, max_new_tokens,
temperature, top_k, top_p],
outputs=outputs)
demo.launch(server_name="0.0.0.0", server_port=args.port)