-
Notifications
You must be signed in to change notification settings - Fork 15
/
chat_demo.py
executable file
·102 lines (87 loc) · 3.71 KB
/
chat_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import argparse
import torch
import gradio as gr
import json
from datetime import datetime
from transformers import AutoModelForCausalLM, AutoTokenizer,GenerationConfig
tokenizer, model = None, None
css = """
.message.user{
border-color: #BFB0FA !important;
background: #EEEAFF !important;
}
.message.bot{
border-color: #CDCDCD !important;
background: #F8F8F8 !important;
}
"""
def init_model(args):
global tokenizer, model
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_path, truncation_side="left", padding_side="left")
model = AutoModelForCausalLM.from_pretrained(args.model_path, trust_remote_code=True, torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True, device_map='auto')
model.generation_config = GenerationConfig.from_pretrained(args.model_path)
model = model.eval()
def chat(message, history, request: gr.Request):
global tokenizer, model
history = history or []
history.append({"role": "user", "content": message})
# init
history.append({"role": "assistant", "content": ""})
utter_history = []
for i in range(0, len(history), 2):
utter_history.append([history[i]["content"], history[i+1]["content"]])
# chat with stream
for next_text in model.chat(tokenizer, history[:-1], stream=True):
utter_history[-1][1] += next_text
history[-1]["content"] += next_text
if torch.backends.mps.is_available():
torch.mps.empty_cache()
yield utter_history, history
# log
current_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
print(f'{current_time} request_ip:{request.client.host}\nquery: {message}\nhistory: {json.dumps(history, ensure_ascii=False)}\nanswer: {json.dumps(utter_history[-1][1], ensure_ascii=False)}')
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--port", type=int, default=36000,
help="server port")
parser.add_argument("--title", type=str, default="XVERSE-7B-Chat",
help="server title")
parser.add_argument("--model_path", type=str, default="./VERSE-7B-Chat",
help="model path")
parser.add_argument("--tokenizer_path", type=str, default="./XVERSE-7B-Chat",
help="Path to the tokenizer.")
args = parser.parse_args()
return args
if __name__ == "__main__":
args = get_args()
# 初始化模型
init_model(args)
# 构建demo应用
with gr.Blocks(css=css) as demo:
gr.Markdown("# <center>{}</center>".format(args.title))
chatbot = gr.Chatbot(label="Chat history", height=650)
state = gr.State([])
with gr.Row():
text_box = gr.Textbox(label="Message", show_label=False, placeholder="Enter message and press enter")
with gr.Row():
submit_btn = gr.Button(value="Send", variant="secondary")
reset_btn = gr.Button(value="Reset")
text_box.submit(fn=chat,
inputs=[text_box, state],
outputs=[chatbot, state],
api_name="chat")
submit_btn.click(fn=chat,
inputs=[text_box, state],
outputs=[chatbot, state])
# 用于清空text_box
def clear_textbox():
return gr.update(value="")
text_box.submit(fn=clear_textbox, inputs=None, outputs=[text_box])
submit_btn.click(fn=clear_textbox, inputs=None, outputs=[text_box])
# 用于清空页面和重置state
def reset():
return None, []
reset_btn.click(fn=reset, inputs=None, outputs=[chatbot, state])
demo.queue(concurrency_count=4)
demo.launch(server_name="0.0.0.0", server_port=args.port)