-
Notifications
You must be signed in to change notification settings - Fork 174
/
dextr.py
98 lines (89 loc) · 4.33 KB
/
dextr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import os
import torch
from collections import OrderedDict
from PIL import Image
import numpy as np
from matplotlib import pyplot as plt
import sys
from torch.nn.functional import upsample
this_dir = os.path.dirname(__file__)
sys.path.insert(0, 'dextr')
import networks.deeplab_resnet as resnet
from dataloaders import helpers as helpers
class Dextr(object):
def __init__(self, model_path='',
gpu_id=0, flip_test=True):
if model_path == '':
model_path = os.path.join(
'cache', 'dextr_pascal-sbd.pth')
self.pad = 50
self.thres = 0.8
self.device = torch.device(
"cuda:"+str(gpu_id) if torch.cuda.is_available() else "cpu")
self.flip_test = flip_test
# Create the network and load the weights
self.net = resnet.resnet101(1, nInputChannels=4, classifier='psp')
print("Initializing weights from: {}".format(model_path))
state_dict_checkpoint = torch.load(
model_path, map_location=lambda storage, loc: storage)
# Remove the prefix .module from the model when it is trained using DataParallel
if 'module.' in list(state_dict_checkpoint.keys())[0]:
new_state_dict = OrderedDict()
for k, v in state_dict_checkpoint.items():
name = k[7:] # remove `module.` from multi-gpu training
new_state_dict[name] = v
else:
new_state_dict = state_dict_checkpoint
self.net.load_state_dict(new_state_dict)
self.net.eval()
self.net.to(self.device)
def segment(self, image, extreme_points_ori):
# Crop image to the bounding box from the extreme points and resize
bbox = helpers.get_bbox(image, points=extreme_points_ori, pad=self.pad, zero_pad=True)
crop_image = helpers.crop_from_bbox(image, bbox, zero_pad=True)
resize_image = helpers.fixed_resize(crop_image, (512, 512)).astype(np.float32)
# Generate extreme point heat map normalized to image values
extreme_points = extreme_points_ori - [np.min(extreme_points_ori[:, 0]), np.min(extreme_points_ori[:, 1])] + [self.pad,
self.pad]
extreme_points = (512 * extreme_points * [1 / crop_image.shape[1], 1 / crop_image.shape[0]]).astype(np.int)
extreme_heatmap = helpers.make_gt(resize_image, extreme_points, sigma=10)
extreme_heatmap = helpers.cstm_normalize(extreme_heatmap, 255)
# Concatenate inputs and convert to tensor
input_dextr = np.concatenate((resize_image, extreme_heatmap[:, :, np.newaxis]), axis=2)
inputs = input_dextr.transpose((2, 0, 1))[np.newaxis, ...]
# import pdb; pdb.set_trace()
if self.flip_test:
inputs = np.concatenate([inputs, inputs[:, :, :, ::-1]], axis=0)
inputs = torch.from_numpy(inputs)
# Run a forward pass
inputs = inputs.to(self.device)
outputs = self.net.forward(inputs)
outputs = upsample(outputs, size=(512, 512), mode='bilinear', align_corners=True)
outputs = outputs.to(torch.device('cpu'))
outputs = outputs.data.numpy()
if self.flip_test:
outputs = (outputs[:1] + outputs[1:, :, :, ::-1]) / 2
pred = np.transpose(outputs[0, ...], (1, 2, 0))
pred = 1 / (1 + np.exp(-pred))
pred = np.squeeze(pred)
result = helpers.crop2fullmask(pred, bbox, im_size=image.shape[:2], zero_pad=True, relax=self.pad) > self.thres
return result
if __name__ == '__main__':
dextr = Dextr()
# Read image and click the points
# image = np.array(Image.open('ims/dog-cat.jpg'))
image = np.array(Image.open(sys.argv[1]))
plt.ion()
plt.axis('off')
plt.imshow(image)
plt.title('Click the four extreme points of the objects\nHit enter when done (do not close the window)')
results = []
with torch.no_grad():
while 1:
extreme_points_ori = np.array(plt.ginput(4, timeout=0)).astype(np.int)
result = dextr.segment(image, extreme_points_ori)
# import pdb; pdb.set_trace()
results.append(result)
# Plot the results
plt.imshow(helpers.overlay_masks(image / 255, results))
plt.plot(extreme_points_ori[:, 0], extreme_points_ori[:, 1], 'gx')