Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bug]: conda update wants to downgrade xcdat from 0.7.1 to 0.7.0 #677

Closed
jypeter opened this issue Jul 5, 2024 · 3 comments · Fixed by #711
Closed

[Bug]: conda update wants to downgrade xcdat from 0.7.1 to 0.7.0 #677

jypeter opened this issue Jul 5, 2024 · 3 comments · Fixed by #711
Labels
type: bug Inconsistencies or issues which will cause an issue or problem for users or implementors.

Comments

@jypeter
Copy link

jypeter commented Jul 5, 2024

What happened?

I have a brand new python environment on a Linux server where I installed xcdat and other stuff a few days ago

I thought I would check if there were some updates available today. There are, including a numpy update, but I also get

The following packages will be DOWNGRADED:

  xcdat                                  0.7.1-pyhd8ed1ab_0 --> 0.7.0-pyhd8ed1ab_0

Full output below. I have type "n" to cancel the operation

$ conda update -n bezaud_env --all
Retrieving notices: ...working... done
Channels:
 - conda-forge
 - defaults
Platform: linux-64
Collecting package metadata (repodata.json): done
Solving environment: done

## Package Plan ##

  environment location: /homedata/jypmce/miniconda3_2024-03/envs/bezaud_env


The following packages will be downloaded:

    package                    |            build
    ---------------------------|-----------------
    aws-c-auth-0.7.22          |       heee8711_7         104 KB  conda-forge
    aws-c-cal-0.7.0            |       h816f305_0          47 KB  conda-forge
    aws-c-http-0.8.2           |       had8cc17_4         190 KB  conda-forge
    aws-c-io-0.14.9            |       h37d6bf3_5         154 KB  conda-forge
    aws-c-s3-0.6.0             |       h1f67ec3_0         108 KB  conda-forge
    aws-crt-cpp-0.27.1         |       h93f15ff_1         337 KB  conda-forge
    aws-sdk-cpp-1.11.329       |       h70d5bd1_7         3.5 MB  conda-forge
    ipykernel-6.29.5           |     pyh3099207_0         116 KB  conda-forge
    ipython-8.26.0             |     pyh707e725_0         585 KB  conda-forge
    libarrow-16.1.0            |  h040edfd_12_cpu         7.9 MB  conda-forge
    libarrow-acero-16.1.0      |  he02047a_12_cpu         585 KB  conda-forge
    libarrow-dataset-16.1.0    |  he02047a_12_cpu         565 KB  conda-forge
    libarrow-substrait-16.1.0  |  hc9a23c6_12_cpu         536 KB  conda-forge
    libgoogle-cloud-2.26.0     |       h26d7fe4_0         1.2 MB  conda-forge
    libgoogle-cloud-storage-2.26.0|       ha262f82_0         746 KB  conda-forge
    libparquet-16.1.0          |  h9e5060d_12_cpu         1.1 MB  conda-forge
    mpich-4.2.2                |     h4a7f18d_100        25.1 MB  conda-forge
    numpy-2.0.0                |  py312h22e1c76_0         8.0 MB  conda-forge
    pillow-10.4.0              |  py312h287a98d_0        40.1 MB  conda-forge
    s2n-1.4.17                 |       he19d79f_0         342 KB  conda-forge
    snappy-1.2.1               |       ha2e4443_0          41 KB  conda-forge
    xcdat-0.7.0                |     pyhd8ed1ab_0          70 KB  conda-forge
    xesmf-0.8.6                |     pyhd8ed1ab_0          44 KB  conda-forge
    ------------------------------------------------------------
                                           Total:        91.4 MB

The following packages will be UPDATED:

  aws-c-auth                              0.7.22-hf36ad8f_6 --> 0.7.22-heee8711_7
  aws-c-cal                               0.6.15-h816f305_1 --> 0.7.0-h816f305_0
  aws-c-http                               0.8.2-h75ac8c9_3 --> 0.8.2-had8cc17_4
  aws-c-io                                0.14.9-hd3d3696_3 --> 0.14.9-h37d6bf3_5
  aws-c-s3                                0.5.10-h44b787d_4 --> 0.6.0-h1f67ec3_0
  aws-crt-cpp                            0.26.12-he940a02_1 --> 0.27.1-h93f15ff_1
  aws-sdk-cpp                           1.11.329-h0f5bab0_6 --> 1.11.329-h70d5bd1_7
  ca-certificates                       2024.6.2-hbcca054_0 --> 2024.7.4-hbcca054_0
  ipykernel                             6.29.4-pyh3099207_0 --> 6.29.5-pyh3099207_0
  ipython                               8.25.0-pyh707e725_0 --> 8.26.0-pyh707e725_0
  libarrow                           16.1.0-h4a673ee_10_cpu --> 16.1.0-h040edfd_12_cpu
  libarrow-acero                     16.1.0-hac33072_10_cpu --> 16.1.0-he02047a_12_cpu
  libarrow-dataset                   16.1.0-hac33072_10_cpu --> 16.1.0-he02047a_12_cpu
  libarrow-substrait                 16.1.0-h7e0c224_10_cpu --> 16.1.0-hc9a23c6_12_cpu
  libcurl                                  8.8.0-hca28451_0 --> 8.8.0-hca28451_1
  libgoogle-cloud                         2.25.0-h2736e30_0 --> 2.26.0-h26d7fe4_0
  libgoogle-cloud-s~                      2.25.0-h3d9a0c8_0 --> 2.26.0-ha262f82_0
  libparquet                         16.1.0-h6a7eafb_10_cpu --> 16.1.0-h9e5060d_12_cpu
  mpich                                  4.2.1-h63d650b_101 --> 4.2.2-h4a7f18d_100
  numpy                              1.26.4-py312heda63a1_0 --> 2.0.0-py312h22e1c76_0
  pillow                             10.3.0-py312h287a98d_1 --> 10.4.0-py312h287a98d_0
  s2n                                     1.4.16-he19d79f_0 --> 1.4.17-he19d79f_0
  snappy                                   1.2.0-hdb0a2a9_1 --> 1.2.1-ha2e4443_0
  xesmf                                  0.8.5-pyhd8ed1ab_0 --> 0.8.6-pyhd8ed1ab_0

The following packages will be DOWNGRADED:

  xcdat                                  0.7.1-pyhd8ed1ab_0 --> 0.7.0-pyhd8ed1ab_0


Proceed ([y]/n)?

What did you expect to happen? Are there are possible answers you came across?

I did not expect an xcdat downgrade!

Minimal Complete Verifiable Example (MVCE)

No response

Relevant log output

No response

Anything else we need to know?

No response

Environment

$ conda activate bezaud_env
(bezaud_env) jypmce@spiritx1:/homedata/jypmce/miniconda3_2024-03/pkgs/python-3.12.4-h194c7f8_0_cpython/bin$ python
Python 3.12.4 | packaged by conda-forge | (main, Jun 17 2024, 10:23:07) [GCC 12.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import xarray as xr
>>> xr.show_versions()

INSTALLED VERSIONS
------------------
commit: None
python: 3.12.4 | packaged by conda-forge | (main, Jun 17 2024, 10:23:07) [GCC 12.3.0]
python-bits: 64
OS: Linux
OS-release: 5.4.0-176-generic
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: ('en_US', 'UTF-8')
libhdf5: 1.14.3
libnetcdf: 4.9.2

xarray: 2024.6.0
pandas: 2.2.2
numpy: 1.26.4
scipy: 1.14.0
netCDF4: 1.7.1
pydap: None
h5netcdf: None
h5py: None
zarr: None
cftime: 1.6.4
nc_time_axis: None
iris: None
bottleneck: None
dask: 2024.6.2
distributed: 2024.6.2
matplotlib: 3.8.4
cartopy: 0.23.0
seaborn: None
numbagg: None
fsspec: 2024.6.1
cupy: None
pint: None
sparse: 0.15.4
flox: None
numpy_groupies: None
setuptools: 70.1.1
pip: 24.0
conda: None
pytest: None
mypy: None
IPython: 8.25.0
sphinx: None
>>>
@jypeter jypeter added the type: bug Inconsistencies or issues which will cause an issue or problem for users or implementors. label Jul 5, 2024
@tomvothecoder
Copy link
Collaborator

Related to #668, where xesmf=0.8.5 breaks with numpy>=2.0. We had to constrain numpy<2.0 in v0.7.1, hence the downgrade in your environment.

This issue is fixed in xESMF via pangeo-data/xESMF#373, but a new version has not been released yet. Once a new version is released with this fix, we can remove the numpy<2.0 constraint.

@jypeter
Copy link
Author

jypeter commented Jul 10, 2024

Thanks for the explanation, and thank libmamba for figuring out quickly a compatible set of package versions in complex environments!

Will conda update automatically trigger a numpy update once you remove the constraint? Provided no other package in the environment has a similar constraint?

@tomvothecoder
Copy link
Collaborator

Thanks for the explanation, and thank libmamba for figuring out quickly a compatible set of package versions in complex environments!

Will conda update automatically trigger a numpy update once you remove the constraint? Provided no other package in the environment has a similar constraint?

You're welcome @jypeter. Yes, conda update should trigger an update to numpy.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
type: bug Inconsistencies or issues which will cause an issue or problem for users or implementors.
Projects
Status: Done
Development

Successfully merging a pull request may close this issue.

2 participants