Skip to content

Latest commit

 

History

History

classification

Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions

Our classification code is developed on top of pytorch-image-models and deit.

For details see Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions.

If you use this code for a paper please cite:

PVTv1

@misc{wang2021pyramid,
      title={Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions}, 
      author={Wenhai Wang and Enze Xie and Xiang Li and Deng-Ping Fan and Kaitao Song and Ding Liang and Tong Lu and Ping Luo and Ling Shao},
      year={2021},
      eprint={2102.12122},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

PVTv2

@misc{wang2021pvtv2,
      title={PVTv2: Improved Baselines with Pyramid Vision Transformer}, 
      author={Wenhai Wang and Enze Xie and Xiang Li and Deng-Ping Fan and Kaitao Song and Ding Liang and Tong Lu and Ping Luo and Ling Shao},
      year={2021},
      eprint={2106.13797},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Todo List

  • PVT + ImageNet-22K pre-training.

Usage

First, clone the repository locally:

git clone https://github.com/whai362/PVT.git

Then, install PyTorch 1.6.0+ and torchvision 0.7.0+ and pytorch-image-models 0.3.2:

conda install -c pytorch pytorch torchvision
pip install timm==0.3.2

Data preparation

Download and extract ImageNet train and val images from http://image-net.org/. The directory structure is the standard layout for the torchvision datasets.ImageFolder, and the training and validation data is expected to be in the train/ folder and val folder respectively:

/path/to/imagenet/
  train/
    class1/
      img1.jpeg
    class2/
      img2.jpeg
  val/
    class1/
      img3.jpeg
    class/2
      img4.jpeg

Model Zoo

  • PVTv2 on ImageNet-1K
Method Size Acc@1 #Params (M) Config Download
PVT-V2-B0 224 70.5 3.7 config 14M [Google] [GitHub]
PVT-V2-B1 224 78.7 14.0 config 54M [Google] [GitHub]
PVT-V2-B2-Linear 224 82.1 22.6 config 86M [GitHub]
PVT-V2-B2 224 82.0 25.4 config 97M [Google] [GitHub]
PVT-V2-B3 224 83.1 45.2 config 173M [Google] [GitHub]
PVT-V2-B4 224 83.6 62.6 config 239M [Google] [GitHub]
PVT-V2-B5 224 83.8 82.0 config 313M [Google] [GitHub]
  • PVTv1 on ImageNet-1K
Method Size Acc@1 #Params (M) Config Download
PVT-Tiny 224 75.1 13.2 config 51M [Google] [GitHub]
PVT-Small 224 79.8 24.5 config 93M [Google] [GitHub]
PVT-Medium 224 81.2 44.2 config 168M [Google] [GitHub]
PVT-Large 224 81.7 61.4 config 234M [Google] [GitHub]

Evaluation

To evaluate a pre-trained PVT-Small on ImageNet val with a single GPU run:

sh dist_train.sh configs/pvt/pvt_small.py 1 --data-path /path/to/imagenet --resume /path/to/checkpoint_file --eval

This should give

* Acc@1 79.764 Acc@5 94.950 loss 0.885
Accuracy of the network on the 50000 test images: 79.8%

Training

To train PVT-Small on ImageNet on a single node with 8 gpus for 300 epochs run:

sh dist_train.sh configs/pvt/pvt_small.py 8 --data-path /path/to/imagenet

Calculating FLOPS & Params

python get_flops.py pvt_v2_b2

This should give

Input shape: (3, 224, 224)
Flops: 4.04 GFLOPs
Params: 25.36 M

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.