forked from declare-lab/multimodal-deep-learning
-
Notifications
You must be signed in to change notification settings - Fork 1
/
train_mosi.py
246 lines (208 loc) · 10.7 KB
/
train_mosi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
from __future__ import print_function
from model import LMF
from utils import total, load_mosi
from torch.utils.data import DataLoader, Dataset
from torch.autograd import Variable
from sklearn.metrics import accuracy_score, precision_recall_fscore_support, f1_score
import os
import argparse
import torch
import random
import torch.nn as nn
import torch.optim as optim
import numpy as np
import csv
def display(mae, corr, multi_acc, bi_acc, f1):
print("MAE on test set is {}".format(mae))
print("Correlation w.r.t human evaluation on test set is {}".format(corr))
print("Multiclass accuracy on test set is {}".format(multi_acc))
print("Binary accuracy on test set is {}".format(bi_acc))
print("F1-score on test set is {}".format(f1))
def main(options):
DTYPE = torch.FloatTensor
# parse the input args
run_id = options['run_id']
epochs = options['epochs']
data_path = options['data_path']
model_path = options['model_path']
output_path = options['output_path']
signiture = options['signiture']
patience = options['patience']
output_dim = options['output_dim']
print("Training initializing... Setup ID is: {}".format(run_id))
# prepare the paths for storing models and outputs
model_path = os.path.join(
model_path, "model_{}_{}.pt".format(signiture, run_id))
output_path = os.path.join(
output_path, "results_{}_{}.csv".format(signiture, run_id))
print("Temp location for models: {}".format(model_path))
print("Grid search results are in: {}".format(output_path))
os.makedirs(os.path.dirname(output_path), exist_ok=True)
os.makedirs(os.path.dirname(model_path), exist_ok=True)
train_set, valid_set, test_set, input_dims = load_mosi(data_path)
params = dict()
params['audio_hidden'] = [4, 8, 16]
params['video_hidden'] = [4, 8, 16]
params['text_hidden'] = [64, 128, 256]
params['audio_dropout'] = [0, 0.1, 0.15, 0.2, 0.3, 0.5]
params['video_dropout'] = [0, 0.1, 0.15, 0.2, 0.3, 0.5]
params['text_dropout'] = [0, 0.1, 0.15, 0.2, 0.3, 0.5]
params['factor_learning_rate'] = [0.0003, 0.0005, 0.001, 0.003]
params['learning_rate'] = [0.0003, 0.0005, 0.001, 0.003]
params['rank'] = [1, 4, 8, 16]
params['batch_size'] = [4, 8, 16, 32, 64, 128]
params['weight_decay'] = [0, 0.001, 0.002, 0.01]
total_settings = total(params)
print("There are {} different hyper-parameter settings in total.".format(total_settings))
seen_settings = set()
with open(output_path, 'w+') as out:
writer = csv.writer(out)
writer.writerow(["audio_hidden", "video_hidden", 'text_hidden', 'audio_dropout', 'video_dropout', 'text_dropout',
'factor_learning_rate', 'learning_rate', 'rank', 'batch_size', 'weight_decay',
'Best Validation MAE', 'Test MAE', 'Test Corr', 'Test multiclass accuracy', 'Test binary accuracy', 'Test f1_score'])
for i in range(total_settings):
ahid = random.choice(params['audio_hidden'])
vhid = random.choice(params['video_hidden'])
thid = random.choice(params['text_hidden'])
thid_2 = thid // 2
adr = random.choice(params['audio_dropout'])
vdr = random.choice(params['video_dropout'])
tdr = random.choice(params['text_dropout'])
factor_lr = random.choice(params['factor_learning_rate'])
lr = random.choice(params['learning_rate'])
r = random.choice(params['rank'])
batch_sz = random.choice(params['batch_size'])
decay = random.choice(params['weight_decay'])
# reject the setting if it has been tried
current_setting = (ahid, vhid, thid, adr, vdr, tdr, factor_lr, lr, r, batch_sz, decay)
if current_setting in seen_settings:
continue
else:
seen_settings.add(current_setting)
model = LMF(input_dims, (ahid, vhid, thid), thid_2, (adr, vdr, tdr, 0.5), output_dim, r)
if options['cuda']:
model = model.cuda()
DTYPE = torch.cuda.FloatTensor
print("Model initialized")
criterion = nn.L1Loss(size_average=False)
factors = list(model.parameters())[:3]
other = list(model.parameters())[3:]
optimizer = optim.Adam([{"params": factors, "lr": factor_lr}, {"params": other, "lr": lr}], weight_decay=decay)
# setup training
complete = True
min_valid_loss = float('Inf')
train_iterator = DataLoader(train_set, batch_size=batch_sz, num_workers=4, shuffle=True)
valid_iterator = DataLoader(valid_set, batch_size=len(valid_set), num_workers=4, shuffle=True)
test_iterator = DataLoader(test_set, batch_size=len(test_set), num_workers=4, shuffle=True)
curr_patience = patience
for e in range(epochs):
model.train()
model.zero_grad()
avg_train_loss = 0.0
for batch in train_iterator:
model.zero_grad()
x = batch[:-1]
x_a = Variable(x[0].float().type(DTYPE), requires_grad=False).squeeze()
x_v = Variable(x[1].float().type(DTYPE), requires_grad=False).squeeze()
x_t = Variable(x[2].float().type(DTYPE), requires_grad=False)
y = Variable(batch[-1].view(-1, output_dim).float().type(DTYPE), requires_grad=False)
output = model(x_a, x_v, x_t)
loss = criterion(output, y)
loss.backward()
avg_loss = loss.data[0]
avg_train_loss += avg_loss / len(train_set)
optimizer.step()
print("Epoch {} complete! Average Training loss: {}".format(e, avg_train_loss))
# Terminate the training process if run into NaN
if np.isnan(avg_train_loss):
print("Training got into NaN values...\n\n")
complete = False
break
model.eval()
for batch in valid_iterator:
x = batch[:-1]
x_a = Variable(x[0].float().type(DTYPE), requires_grad=False).squeeze()
x_v = Variable(x[1].float().type(DTYPE), requires_grad=False).squeeze()
x_t = Variable(x[2].float().type(DTYPE), requires_grad=False)
y = Variable(batch[-1].view(-1, output_dim).float().type(DTYPE), requires_grad=False)
output = model(x_a, x_v, x_t)
valid_loss = criterion(output, y)
avg_valid_loss = valid_loss.data[0]
y = y.cpu().data.numpy().reshape(-1, output_dim)
if np.isnan(avg_valid_loss):
print("Training got into NaN values...\n\n")
complete = False
break
avg_valid_loss = avg_valid_loss / len(valid_set)
print("Validation loss is: {}".format(avg_valid_loss))
if (avg_valid_loss < min_valid_loss):
curr_patience = patience
min_valid_loss = avg_valid_loss
torch.save(model, model_path)
print("Found new best model, saving to disk...")
else:
curr_patience -= 1
if curr_patience <= 0:
break
print("\n\n")
model.eval()
for batch in test_iterator:
x = batch[:-1]
x_a = Variable(x[0].float().type(DTYPE), requires_grad=False).squeeze()
x_v = Variable(x[1].float().type(DTYPE), requires_grad=False).squeeze()
x_t = Variable(x[2].float().type(DTYPE), requires_grad=False)
y = Variable(batch[-1].view(-1, output_dim).float().type(DTYPE), requires_grad=False)
output_test = model(x_a, x_v, x_t)
loss_test = criterion(output_test, y)
avg_test_loss = loss_test.data[0] / len(test_set)
output_test = output_test.cpu().data.numpy().reshape(-1, output_dim)
y = y.cpu().data.numpy().reshape(-1, output_dim)
# these are the needed metrics
output_test = output_test.reshape((len(output_test),))
y = y.reshape((len(y),))
mae = np.mean(np.absolute(output_test-y))
if complete:
best_model = torch.load(model_path)
best_model.eval()
for batch in test_iterator:
x = batch[:-1]
x_a = Variable(x[0].float().type(DTYPE), requires_grad=False).squeeze()
x_v = Variable(x[1].float().type(DTYPE), requires_grad=False).squeeze()
x_t = Variable(x[2].float().type(DTYPE), requires_grad=False)
y = Variable(batch[-1].view(-1, output_dim).float().type(DTYPE), requires_grad=False)
output_test = best_model(x_a, x_v, x_t)
loss_test = criterion(output_test, y)
output_test = output_test.cpu().data.numpy().reshape(-1, output_dim)
y = y.cpu().data.numpy().reshape(-1, output_dim)
# these are the needed metrics
output_test = output_test.reshape((len(output_test),))
y = y.reshape((len(y),))
mae = np.mean(np.absolute(output_test-y))
corr = round(np.corrcoef(output_test,y)[0][1],5)
multi_acc = round(sum(np.round(output_test)==np.round(y))/float(len(y)),5)
true_label = (y >= 0)
predicted_label = (output_test >= 0)
bi_acc = accuracy_score(true_label, predicted_label)
f1 = f1_score(true_label, predicted_label, average='weighted')
display(mae, corr, multi_acc, bi_acc, f1)
with open(output_path, 'a+') as out:
writer = csv.writer(out)
writer.writerow([ahid, vhid, thid, adr, vdr, tdr, factor_lr, lr, r, batch_sz, decay,
min_valid_loss.cpu().data.numpy(), mae, corr, multi_acc, bi_acc, f1])
if __name__ == "__main__":
OPTIONS = argparse.ArgumentParser()
OPTIONS.add_argument('--run_id', dest='run_id', type=int, default=1)
OPTIONS.add_argument('--epochs', dest='epochs', type=int, default=500)
OPTIONS.add_argument('--patience', dest='patience', type=int, default=20)
OPTIONS.add_argument('--output_dim', dest='output_dim', type=int, default=1)
OPTIONS.add_argument('--signiture', dest='signiture', type=str, default='mosi')
OPTIONS.add_argument('--cuda', dest='cuda', type=bool, default=False)
OPTIONS.add_argument('--data_path', dest='data_path',
type=str, default='./data/')
OPTIONS.add_argument('--model_path', dest='model_path',
type=str, default='models')
OPTIONS.add_argument('--output_path', dest='output_path',
type=str, default='results')
OPTIONS.add_argument('--max_len', dest='max_len', type=int, default=20)
PARAMS = vars(OPTIONS.parse_args())
main(PARAMS)