Our implementation is based on MIC.csv.
Download dataset(MIC.csv) and put it in the data/mic folder.
. RUN/rot_run.sh
By default, the model will be saved in the rot_generation/output folder.
Change the value of --input
and --annotator_load_checkpoint
in the RUN/rot_align_run.sh file.
The --input
is the path of the RoT generation model checkpoint folder, and the --annotator_load_checkpoint
is
the path of the annotator checkpoint folder.
. RUN/rot_align_run.sh
By default, the model will be saved in the align_rot_generation/output folder.
. RUN/decode_all.sh "{foler_name}/output/{folder_prefix}*" "./data/mic/MIC.csv" "Q [answ] A [rot] ~ rot" {gpu_id} {seed}
{folder_name}
can be either align_rot_generation or rot_generation.
python -m rot_generation.metrics --input "{folder_name}/output/*" --output "all_results.csv"
{folder_name}
can be either align_rot_generation or rot_generation.