forked from fsn1995/Drought-Analysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SPEI vs NDVI MODIS Growth Season.js
230 lines (196 loc) · 8.81 KB
/
SPEI vs NDVI MODIS Growth Season.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
////////////////////////////////////////////////////////////////////////////
// This script uses MODIS 1km NDVI product and it is spatially //
// correlate with SPEI calculated from NOAH Global Land Assimulation //
// System data. It will display and export the correlation map of SPEI vs //
// three months sum of NDVI anomalies. //
// Note: SPEIxMonth in selected month vs NDVI three month anomalies //
//------------------------------------------------------------------------//
// For fast global study //
// Contact: Shunan Feng (冯树楠): [email protected] //
////////////////////////////////////////////////////////////////////////////
//------------------------------------------------------------------------//
// Preparation //
//------------------------------------------------------------------------//
// study time range
var year_start = 2001; // MODIS NDVI 2000-02-18T00:00:00 - Present
var year_end = 2018;
var month_start = 1;
var month_end = 12;
// define the growth season (selected month of spei) here
var speim = 4;// month of spei
var date_start = ee.Date.fromYMD(year_start, 1, 1);
var date_end = ee.Date.fromYMD(year_end, 12, 31);
var years = ee.List.sequence(year_start, year_end);// time range of years
var months = ee.List.sequence(month_start, month_end);// time range of months
// change the month lag here, e.g. no lag is 0,-1 is one month lag,-2 is 2 month lag
var lagflag = -1;
// The default setting will correlate correlate 2 month time scale of SPEI(SPEI2m)
// in April with one month lag of three month (May to July) sum of NDVI anomalies.
//------------------------------------------------------------------------//
// Datainput //
//------------------------------------------------------------------------//
// load MODIS NDVI 2000-02-18T00:00:00 - Present
var ndvi = ee.ImageCollection('MODIS/006/MOD13A2')
.filterDate(date_start, date_end)
.select('NDVI');
var spei1m = ee.ImageCollection("users/fsn1995/spei1m_noah");
var spei2m = ee.ImageCollection("users/fsn1995/spei2m_noah");
var spei3m = ee.ImageCollection("users/fsn1995/spei3m_noah");
var spei4m = ee.ImageCollection("users/fsn1995/spei4m_noah");
var spei5m = ee.ImageCollection("users/fsn1995/spei5m_noah");
var spei6m = ee.ImageCollection("users/fsn1995/spei6m_noah");
var spei7m = ee.ImageCollection("users/fsn1995/spei7m_noah");
var spei8m = ee.ImageCollection("users/fsn1995/spei8m_noah");
var spei9m = ee.ImageCollection("users/fsn1995/spei9m_noah");
var spei10m = ee.ImageCollection("users/fsn1995/spei10m_noah");
var spei11m = ee.ImageCollection("users/fsn1995/spei11m_noah");
var spei12m = ee.ImageCollection("users/fsn1995/spei12m_noah");
// select the time scale of spei here
var spei = spei3m;
// load land cover data
var lucc = ee.Image('USGS/NLCD/NLCD2011').select('landcover');
// monthly average NDVI
// sytstem time is set as 1st of each month
var NDVI_monthlyave = ee.ImageCollection.fromImages(
years.map(function (y) {
return months.map(function(m) {
var vi = ndvi.select('NDVI')
.filter(ee.Filter.calendarRange(y, y, 'year'))
.filter(ee.Filter.calendarRange(m, m, 'month'))
.mean()
.rename('NDVIm');
return vi.set('year', y)
.set('month', m)
.set('system:time_start', ee.Date.fromYMD(y, m, 1));
});
}).flatten()
);
// 20yr monthly average NDVI
var NDVI_30yrave = ee.ImageCollection.fromImages(
months.map(function (m) {
var vi = ndvi.select('NDVI')
.filter(ee.Filter.calendarRange(m, m, 'month'))
.mean()
.rename('NDVIy');
return vi.set('month', m);
}).flatten()
);
// print(NDVI_30yrave);
// NDVI anomaly = monthly average NDVI - 30yr monthly average NDVI
// NDVI monthly anomaly
var monthfilter = ee.Filter.equals({
leftField: 'month',
rightField: 'month',
});
var monthlink = ee.Join.saveFirst({
matchKey: 'match',
});
var NDVI_monthlink = ee.ImageCollection(monthlink.apply(NDVI_monthlyave,NDVI_30yrave,monthfilter))
.map(function(image) {
return image.addBands(image.get('match'));
});
var addNDVI_anomaly = function(image) {
var anomaly = image.expression(
'b1-b2',
{
b1: image.select('NDVIm'),
b2: image.select('NDVIy'),
}
).rename('NDVI_anomaly');
return image.addBands(anomaly);
};
var NDVI_anomaly = NDVI_monthlink.map(addNDVI_anomaly);
//------------------------------------------------------------------------//
// Lag //
//------------------------------------------------------------------------//
// lag is achieved by shifting the date of the data
var addLagm = function(image) {
var lagm = ee.Date(image.get('system:time_start')).advance(lagflag,'month');
return image.set({'lagm': lagm});
};
// below is to compute ndvi three month anomaly
var addLag0m = function(image) {
var lagm = ee.Date(image.get('system:time_start')).advance(0,'month');
return image.set({'lagm': lagm});
};
var addLag1m = function(image) {
var lagm = ee.Date(image.get('system:time_start')).advance(-1,'month');
return image.set({'lagm': lagm});
};
var addLag2m = function(image) {
var lagm = ee.Date(image.get('system:time_start')).advance(-2,'month');
return image.set({'lagm': lagm});
};
// compute three month sum ndvi anomaly
var NDVI0 = NDVI_anomaly.select('NDVI_anomaly').map(addLag0m);
var NDVI1 = NDVI_anomaly.select('NDVI_anomaly').map(addLag1m);
var NDVI2 = NDVI_anomaly.select('NDVI_anomaly').map(addLag2m);
var lagFilter = ee.Filter.equals({
leftField: 'lagm',
rightField: 'lagm',
});
var lagLink = ee.Join.saveFirst({
matchKey: 'match',
});
var NDVI_threeMonthAnomaly = ee.ImageCollection(lagLink.apply(NDVI0.select('NDVI_anomaly'),
NDVI1.select('NDVI_anomaly'),lagFilter))
.map(function(image) {
return image.addBands(image.get('match'));
});
var NDVI_threeMonthAnomaly = ee.ImageCollection(lagLink.apply(NDVI_threeMonthAnomaly,
NDVI2.select('NDVI_anomaly'),lagFilter))
.map(function(image) {
return image.addBands(image.get('match'));
});
var NDVI_anomaly_sum = NDVI_threeMonthAnomaly.map(function(image) {
return image.addBands(
image.expression('a1 + b1 + c1', {
a1: image.select('NDVI_anomaly'),
b1: image.select('NDVI_anomaly_1'),
c1: image.select('NDVI_anomaly_2'),
}).rename('NDVI_anomalySum'));
});
var NDVI_anomSumMLag = NDVI_anomaly_sum.select('NDVI_anomalySum')
.map(addLagm)
.filterMetadata('month','equals', speim);
//------------------------------------------------------------------//
// This part compares NDVI anomalies with spei2m computed from NOAH //
// Global land assimulation system //
//------------------------------------------------------------------//
var speiSet = spei.map(function(image) {
return image.set('date', image.date());
});
var timescaleFilter = ee.Filter.equals({
leftField: 'lagm',
rightField: 'date',
});
// print(speiSet,'speiSet');
var NDVI3mLag_spei = ee.ImageCollection(lagLink.apply(NDVI_anomSumMLag.select('NDVI_anomalySum'),
speiSet.select('b1'),timescaleFilter))
.map(function(image) {
return image.addBands(image.get('match'));
});
var corrmap = NDVI3mLag_spei.reduce(ee.Reducer.pearsonsCorrelation());
// //.addBands(lucc.select('landcover').rename('lucc'));
// // var corrmap = NDVI_spei.reduce(ee.Reducer.spearmansCorrelation()).clip(roi);
// // .addBands(lucc.select('landcover').rename('lucc'));
var corrParams = {min: -1, max: 1, palette: ['red','white', 'green']};
Map.addLayer(corrmap.select('correlation'), corrParams, 'Correlation Map');
Export.image.toDrive({
image: corrmap,
folder: 'growth',
description: 'Correlation map of spei with ndvi anomalies',
scale: 10000,
// region: roi // If not specified, the region defaults to the viewport at the time of invocation
});
// var options = {
// // lineWidth: 1,
// // pointSize: 2,
// hAxis: {title: 'R and P value'},
// vAxis: {title: 'Correlation Coefficient'},
// title: 'Correlation map average'
// };
// var chart = ui.Chart.image.byClass(
// corrmap, 'lucc', roi, ee.Reducer.mean(), 100000, lucc.get('landcover_class_names')
// ).setOptions(options);
// print(chart);