-
Notifications
You must be signed in to change notification settings - Fork 78
/
main_evaluate_json.py
137 lines (120 loc) · 7.01 KB
/
main_evaluate_json.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# -*- coding: utf-8 -*-
# written by Xiaohui Zhao
# 2018-01
import tensorflow as tf
import numpy as np
import argparse
import os, csv, timeit
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
from model_cutie_aspp import CUTIERes as CUTIEv1
from model_cutie2_aspp import CUTIE2 as CUTIEv2
from data_loader_json import DataLoader
from utils import *
parser = argparse.ArgumentParser(description='CUTIE parameters')
parser.add_argument('--use_cutie2', type=bool, default=False) # True to read image from doc_path
parser.add_argument('--is_table', type=bool, default=False) # True to read image from doc_path
parser.add_argument('--doc_path', type=str, default='data/SROIE') # modify this
parser.add_argument('--save_prefix', type=str, default='SROIE', help='prefix for load ckpt model') # modify this
parser.add_argument('--test_path', type=str, default='') # leave empty if no test data provided
parser.add_argument('--fill_bbox', type=bool, default=False) # augment data row/col in each batch
parser.add_argument('--e_ckpt_path', type=str, default='../graph/CUTIE/graph/') # modify this
parser.add_argument('--ckpt_file', type=str, default='CUTIE_atrousSPP_d20000c5(r80c80)_iter_29201.ckpt')
parser.add_argument('--positional_mapping_strategy', type=int, default=1)
parser.add_argument('--rows_target', type=int, default=80)
parser.add_argument('--cols_target', type=int, default=80)
parser.add_argument('--rows_ulimit', type=int, default=80)
parser.add_argument('--cols_ulimit', type=int, default=80)
parser.add_argument('--load_dict', type=bool, default=True, help='True to work based on an existing dict')
parser.add_argument('--load_dict_from_path', type=str, default='dict/SROIEnc') # 40000 or table or 20000TC
parser.add_argument('--tokenize', type=bool, default=True) # tokenize input text
parser.add_argument('--text_case', type=bool, default=False) # case sensitive
parser.add_argument('--dict_path', type=str, default='dict/---') # not used if load_dict is True
parser.add_argument('--restore_ckpt', type=bool, default=True)
parser.add_argument('--embedding_size', type=int, default=128)
parser.add_argument('--batch_size', type=int, default=1)
parser.add_argument('--c_threshold', type=float, default=0.5)
params = parser.parse_args()
if __name__ == '__main__':
# data
#data_loader = DataLoader(params, True, True) # True to use 25% training data
data_loader = DataLoader(params, update_dict=False, load_dictionary=True, data_split=0.75) # False to provide a path with only test data
num_words = max(20000, data_loader.num_words)
num_classes = data_loader.num_classes
# model
if params.use_cutie2:
network = CUTIEv2(num_words, num_classes, params)
else:
network = CUTIEv1(num_words, num_classes, params)
model_output = network.get_output('softmax')
# evaluation
ckpt_saver = tf.train.Saver()
config = tf.ConfigProto(allow_soft_placement=True)
with tf.Session(config=config) as sess:
sess.run(tf.global_variables_initializer())
try:
#ckpt_path = os.path.join(params.e_ckpt_path, params.save_prefix, params.ckpt_file)
ckpt_path = '/content/content/CUTIE/graph/INVOICE/CUTIE_atrousSPP_best.ckpt'
ckpt = tf.train.get_checkpoint_state(ckpt_path)
print('Restoring from {}...'.format(ckpt_path))
ckpt_saver.restore(sess, ckpt_path)
print('{} restored'.format(ckpt_path))
except:
raise Exception('Check your pretrained {:s}'.format(ckpt_path))
# calculate validation accuracy and display results
recalls, accs_strict, accs_soft = [], [], []
num_test = len(data_loader.validation_docs)
for i in range(num_test):
data = data_loader.fetch_validation_data()
print('{:d} samples left to be tested'.format(num_test-i))
# grid_table = data['grid_table']
# gt_classes = data['gt_classes']
feed_dict = {
network.data_grid: data['grid_table'],
}
if params.use_cutie2:
feed_dict = {
network.data_grid: data['grid_table'],
network.data_image: data['data_image'],
network.ps_1d_indices: data['ps_1d_indices']
}
fetches = [model_output]
print(data['file_name'][0])
print(data['grid_table'].shape, data['data_image'].shape, data['ps_1d_indices'].shape)
timer_start = timeit.default_timer()
[model_output_val] = sess.run(fetches=fetches, feed_dict=feed_dict)
timer_stop = timeit.default_timer()
print('\t >>time per step: %.2fs <<'%(timer_stop - timer_start))
if not params.is_table:
recall, acc_strict, acc_soft, res = cal_accuracy(data_loader, np.array(data['grid_table']),
np.array(data['gt_classes']), model_output_val,
np.array(data['label_mapids']), data['bbox_mapids'])
else:
recall, acc_strict, acc_soft, res = cal_accuracy_table(data_loader, np.array(data['grid_table']),
np.array(data['gt_classes']), model_output_val,
np.array(data['label_mapids']), data['bbox_mapids'])
# recall, acc_strict, acc_soft, res = cal_save_results(data_loader, np.array(data['grid_table']),
# np.array(data['gt_classes']), model_output_val,
# np.array(data['label_mapids']), data['bbox_mapids'],
# data['file_name'][0], params.save_prefix)
recalls += [recall]
accs_strict += [acc_strict]
accs_soft += [acc_soft]
if acc_strict != 1:
print(res.decode()) # show res for current batch
# visualize result
shape = data['shape']
file_name = data['file_name'][0] # use one single file_name
bboxes = data['bboxes'][file_name]
if not params.is_table:
vis_bbox(data_loader, params.doc_path, np.array(data['grid_table'])[0],
np.array(data['gt_classes'])[0], np.array(model_output_val)[0], file_name,
np.array(bboxes), shape)
else:
vis_table(data_loader, params.doc_path, np.array(data['grid_table'])[0],
np.array(data['gt_classes'])[0], np.array(model_output_val)[0], file_name,
np.array(bboxes), shape)
recall = sum(recalls) / len(recalls)
acc_strict = sum(accs_strict) / len(accs_strict)
acc_soft = sum(accs_soft) / len(accs_soft)
print('EVALUATION ACC (Recall/Acc): %.3f / %.3f (%.3f) \n'%(recall, acc_strict, acc_soft))