Skip to content

Latest commit

 

History

History
163 lines (123 loc) · 6.25 KB

README.md

File metadata and controls

163 lines (123 loc) · 6.25 KB

KolmogorovArnold.jl

Build Status

Julia implementation of FourierKAN

Julia implementation of ChebyKAN

Julia implementation of the Kolmogorov-Arnold network for the Lux.jl framework. This implementation is based on efficient-kan and 'FastKAN' which resolve the performance issues with the original implementation. Key implementation details here are:

  • We fix our grid to be in [-1, 1] and normalize the the input to lie in that interval with tanh or NNlib.tanh_fast.
  • We use radial basis functions in place of the spline basis as the former is very efficient to evaluate.
using Random, KolmogorovArnold
rng = Random.default_rng()

in_dim, out_dim, grid_len = 4, 4, 8
layer = KDense(in_dim, out_dim, grid_len)
p, st = Lux.setup(rng, layer)

x = rand32(rng, in_dim, 10)
y = layer(x, p, st)

We compare the performance of different implementation of KAN with an MLP that has the same number of parameters (see examples/eg1.jl).

using Lux, KolmogorovArnold
using LuxCUDA

CUDA.allowscalar(false)
device = Lux.gpu_device()

rng = Random.default_rng()
Random.seed!(rng, 0)

x  = rand32(rng, 1, 1000) |> device
x₀ = rand32(rng, 1000, 1) |> device
# define MLP, KANs

mlp = Chain(
    Dense(1, 128, tanh),
    Dense(128, 128, tanh),
    Dense(128, 1),
) # 16_897 parameters plus 0 states.

basis_func = rbf # rbf, rswaf, iqf (radial basis funcs, reflection switch activation funcs, inverse quadratic funcs)
normalizer = softsign # sigmoid(_fast), tanh(_fast), softsign

kan1 = Chain(
    KDense( 1, 40, 10; use_base_act = true, basis_func, normalizer),
    KDense(40, 40, 10; use_base_act = true, basis_func, normalizer),
    KDense(40,  1, 10; use_base_act = true, basis_func, normalizer),
) # 18_490 parameters plus 30 states.

kan2 = Chain(
    KDense( 1, 40, 10; use_base_act = false, basis_func, normalizer),
    KDense(40, 40, 10; use_base_act = false, basis_func, normalizer),
    KDense(40,  1, 10; use_base_act = false, basis_func, normalizer),
) # 16_800 parameters plus 30 states.

kan3 = Chain(
    CDense( 1, 40, G),
    CDense(40, 40, G),
    CDense(40,  1, G),
) # 18_561 parameters plus 0 states.

kan4 = Chain(
    FDense( 1, 30, G),
    FDense(30, 30, G),
    FDense(30,  1, G),
) # 19_261 parameters plus 0 states.

# set up experiment
pM, stM = Lux.setup(rng, mlp)
pK1, stK1 = Lux.setup(rng, kan1)
pK2, stK2 = Lux.setup(rng, kan2)
pK3, stK3 = Lux.setup(rng, kan3)
pK4, stK4 = Lux.setup(rng, kan4)


pM  = ComponentArray(pM) |> device
pK1 = ComponentArray(pK1) |> device
pK2 = ComponentArray(pK2) |> device
pK3 = ComponentArray(pK3) |> device
pK4 = ComponentArray(pK4) |> device

stM, stK1, stK2, stK3, stK4 = device(stM), device(stK1), device(stK2), device(stK4), device(stK4)

# Forward pass

@btime CUDA.@sync $mlp($x, $pM, $stM)     # 31.611 μs (248 allocations: 5.45 KiB)
@btime CUDA.@sync $kan1($x, $pK1, $stK1)  # 125.790 μs (1034 allocations: 21.97 KiB)
@btime CUDA.@sync $kan2($x, $pK2, $stK2)  # 87.585 μs (1335 allocations: 13.95 KiB)
@btime CUDA.@sync $kan3($x', $pK3, $stK3) # 210.785 μs (1335 allocations: 31.03 KiB)
@btime CUDA.@sync $kan4($x', $pK4, $stK4) # 2.392 ms (1642 allocations: 34.56 KiB)


# Backward pass

f_mlp(p)  = mlp(x, p, stM)[1] |> sum
f_kan1(p) = kan1(x, p, stK1)[1] |> sum
f_kan2(p) = kan2(x, p, stK2)[1] |> sum
f_kan3(p) = kan3(x₀, p, stK3)[1] |> sum
f_kan4(p) = kan4(x₀, p, stK4)[1] |> sum


@btime CUDA.@sync Zygote.gradient($f_mlp, $pM)   # 268.074 μs (1971 allocations: 57.03 KiB)
@btime CUDA.@sync Zygote.gradient($f_kan1, $pK1) # 831.888 μs (5015 allocations: 123.25 KiB)
@btime CUDA.@sync Zygote.gradient($f_kan2, $pK2) # 658.578 μs (3314 allocations: 87.16 KiB)
@btime CUDA.@sync Zygote.gradient($f_kan3, $pK3) # 1.647 ms (7138 allocations: 180.45 KiB)
@btime CUDA.@sync Zygote.gradient($f_kan4, $pK4) # 7.028 ms (8745 allocations: 199.42 KiB)

The performance of KAN with radial basis functions improves significantly with use_base_act = false. Although KANs are currently significantly slower than an MLPs with the same number of parameters, the promise with this architecture is that a small KAN can potentially do the work of a much bigger MLP. More experiments need to be done to assess the validity of this claim.

This package will be actively developed for the time-being. Once a stable version is figured out, we can consider opening a PR on Lux.jl. Feel fre to open issues or create PRs in the meantime with features, comparisons, or performance improvements.

Custom gradients

Writing custom gradients for the activation function has led to substantial speedup in the backward pass (see examples/eg2.jl).

N, G = 5000, 10

x = LinRange(-1, 1, N) |> Array |> device
z = LinRange(-1, 1, G) |> Array |> device
d = 2 / (G-1)

f_rbf(z)   = rbf(  x, z', d) |> sum
f_rswaf(z) = rswaf(x, z', d) |> sum
f_iqf(z)   = iqf(  x, z', d) |> sum

# forward pass
@btime CUDA.@sync $f_rbf($z)   # 55.566 μs (294 allocations: 7.78 KiB)
@btime CUDA.@sync $f_rswaf($z) # 57.112 μs (294 allocations: 7.78 KiB)
@btime CUDA.@sync $f_iqf($z)   # 55.368 μs (294 allocations: 7.78 KiB)

# backward pass
@btime CUDA.@sync Zygote.gradient($f_rbf  , $z) # 188.456 μs (1045 allocations: 27.62 KiB)
@btime CUDA.@sync Zygote.gradient($f_rswaf, $z) # 212.419 μs (1071 allocations: 28.30 KiB)
@btime CUDA.@sync Zygote.gradient($f_iqf  , $z) # 201.568 μs (1045 allocations: 27.62 KiB)

# without custom gradients
# RBF  : 250.313 μs (1393 allocations: 35.95 KiB)
# RSWAF: 282.864 μs (1389 allocations: 36.62 KiB)
# IQF  : 333.843 μs (1628 allocations: 42.70 KiB)

TODO

  • Grid update with linear least sq solve
  • devise good initialization schemes. RBF coefficients and base activation weights are currently initialized with WeightInitializers.glorot_uniform.
  • figure out what are good optimization strategies (choice of optimizer, learning rate decay, etc)