-
Notifications
You must be signed in to change notification settings - Fork 0
/
nowhere_convex.tex
214 lines (183 loc) · 10.1 KB
/
nowhere_convex.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
\documentclass[12pt]{article}
\usepackage[english]{babel}
\usepackage[utf8]{inputenc}
\usepackage{inputenc}
\usepackage[a4paper, left=2.0cm, right=2.0cm, top=2.0cm, bottom=2.0cm, headsep=0.0cm]{geometry}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{lscape}
\usepackage[ddmmyyyy,hhmmss]{datetime}
\renewcommand{\dateseparator}{.}
\usepackage{hyperref}
\newcommand{\R}{\mathbb{R}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\dd}{\,\mathrm{d}}
\newcommand{\dprime}{{\prime\prime}}
\renewcommand{\leq}{\leqslant}
\renewcommand{\geq}{\geqslant}
\newcommand{\mapto}{\longmapsto}
\newcommand{\convto}[2]{\xrightarrow[#2]{#1}}
\newcommand{\ContClass}{\mathcal{C}}
\newcommand{\define}[1]{\textit{#1}}
\newcommand{\paren}[1]{\! \left(#1 \right)}
\newcommand{\bracket}[1]{\! \left[#1 \right]}
\theoremstyle{plain}
\newtheorem{theorem}{Theorem}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{proposition}[theorem]{Proposition}
\theoremstyle{definition}
\newtheorem{definition}[theorem]{Definition}
\theoremstyle{remark}
\newtheorem{remark}[theorem]{Remark}
\newtheorem{example}[theorem]{Example}
\renewcommand{\GenericWarning}[2]{\GenericError{#1}{#2}{}{This warning has been turned into a fatal error.}}
\newcommand\blfootnote[1]{%
\bgroup{}
\renewcommand\thefootnote{\fnsymbol{footnote}}%
\renewcommand\thempfootnote{\fnsymbol{mpfootnote}}%
\footnotetext[0]{#1}%
\egroup{}
}
\begin{document}
\blfootnote{Repository with the most recent version of
\href{https://raw.githubusercontent.com/vil02/nowhere_convex/master/generated/nowhere_convex.pdf}{this document}:
\url{https://github.com/vil02/nowhere_convex}}
\noindent Piotr Idzik \hfill ver. \today\ \currenttime{}
\vspace*{1cm}
In this note we will construct (cf.\ formulas~\eqref{eq::definition_of_d_and_f}) an example of
a non-negative, strictly increasing, continuously differentiable function $d \colon \left[0, \infty \right) \to \left[0, \infty \right)$,
bounded from above by a convex function $f\colon\left[0, \infty \right) \to \left[0, \infty \right)$, $f\paren{0} = 0$,
such that the function $d$ is not convex on any interval $I \subseteq \left[0, \infty \right)$.
Such considerations are interesting from the point of view of~\cite[p. 167]{Levandosky1998}.
It is (implicitly) stated there, that if a decreasing function
$\widetilde{d} \geq 0$ is bounded from above by a convex function $\widetilde{f}$
vanishing at some point $b > 0$,
then the function $\widetilde{d}$ is convex on some interval arbitrary close to $b$.
After considering the mappings
\begin{equation*}
d\paren{x} = \widetilde{d}\paren{b-x}, \ f\paren{x} = \widetilde{f}\paren{b-x} \quad \paren{x \in \bracket{0, b}}, \\
\end{equation*}
one sees that instead of decreasing function $\widetilde{d}$, we can consider increasing function $d$.
We will use the following results
\begin{theorem}
There exists a continuous, bounded and nowhere differentiable function $w \colon \R \to \R$.
\end{theorem}
Example of such function can be found in~\cite[Example 8, p. 38]{gelbaum1964counterexamples}.
\begin{theorem} \label{thm::convex_monotone_der}
If the function $g$ is convex in an interval $\paren{a, b}$, then $g$ is continuous in $\paren{a, b}$.
Moreover, $g^\prime$ exists except at most in a countable set and is monotone increasing.
\end{theorem}
The proof of above Theorem can be found in~\cite[Theorem 7.40, p. 120]{wheeden1977measure}.
\begin{theorem} \label{thm::monotone_diff_ae}
Let $g \colon \paren{a, b} \to \R$ be monotone increasing.
Then the function $g$ has a measurable, non-negative derivative $g^\prime$ almost everywhere in $\paren{a, b}$.
\end{theorem}
For the proof of the above we refer to~\cite[Theorem 7.21, page 111]{wheeden1977measure}.
Consider $\alpha \geq 0$ and let $w \colon \R \to \bracket{0, 1}$ be a continuous, nowhere differentiable function.
Define the functions $d, f \colon \left[0, \infty\right) \to \R$ as follows
\begin{align} \label{eq::definition_of_d_and_f}
\begin{split}
d\paren{x} & = \int_0^x s^\alpha w\paren{s} \dd s \quad \paren{x \geq 0}, \\
f\paren{x} & = \int_0^x s^\alpha \dd s = \frac{x^{\alpha+1}}{\alpha+1} \quad \paren{x \geq 0}.
\end{split}
\end{align}
\begin{remark} \label{remark::properties_of_f}
The function $f$ is convex and $f\paren{0} = f^\prime\paren{0} = 0$.
\end{remark}
%\begin{proof}
% First consider the case $\alpha > 0$.
% Note
% \begin{equation*}
% f^\prime\paren{x} = x^\alpha, \, f^\dprime\paren{x} = \frac{1}{\alpha} x^{\alpha-1} \quad \paren{x\geq 0}.
% \end{equation*}
% Since $\alpha>0$, $f^\dprime\paren{x} > 0$ $\paren{x > 0}$ and $f^\dprime\paren{0} = 0$, $f$ is convex.
%
% If $\alpha = 0$,then $f\paren{x} = x$ $\paren{x \geq 0}$.
%\end{proof}
\begin{remark} \label{remark::estimate}
The following inequality holds true
\begin{equation*}
0 \leq d\paren{x} \leq f\paren{x} \quad \paren{x \geq 0}.
\end{equation*}
\end{remark}
\begin{proof}
Observe that
\begin{equation*}
0 \leq d^\prime\paren{s} = s^\alpha w\paren{s} \leq s^\alpha = f^\prime\paren{s} \quad \paren{s > 0}.
\end{equation*}
Integrating above inequality over the set $\bracket{0, x}$ gives the claim.
\end{proof}
\begin{proposition} \label{prop::d_is_C1}
The function $d$ is continuously differentiable and if $\alpha>1$ then $d^\dprime\paren{0} = 0$ (\footnote{here we consider $d^\dprime\paren{0}$ as the limit $\lim_{h \to 0^+} \frac{d^\prime\paren{h} - d^\prime\paren{0}}{h}$.}).
\end{proposition}
\begin{proof}
Observe that $d^\prime\paren{x} = x^\alpha w\paren{x}$ $\paren{x \in \left[0, \infty\right)}$.
Moreover, we have
\begin{equation*}
\frac{d^\prime\paren{h} - d^\prime\paren{0}}{h} = \frac{h^\alpha w\paren{\alpha}}{h} \convto{}{h \to 0^+} 0,
\end{equation*}
for all $\alpha > 1$.
\end{proof}
\begin{proposition} \label{prop::d_prime_is_not_differentiable}
The function $d^\prime$ is not differentiable for $x>0$.
\end{proposition}
\begin{proof}
Suppose the contrary and consider the quotient
\begin{align} \label{eq::prop::d_prime_is_not_differentiable_quotient}
\begin{split}
\frac{d^\prime\paren{x+h} - d^\prime\paren{x}}{h} & = \frac{\paren{x+h}^\alpha w\paren{x+h} - x^\alpha w\paren{x}}{h} \\
& = \frac{\paren{x+h}^\alpha w\paren{x+h} - \paren{x+h}^\alpha w\paren{x} + \paren{x+h}^\alpha w\paren{x} - x^\alpha w\paren{x}}{h} \\
& = \paren{x+h}^\alpha \frac{w\paren{x+h} - w\paren{x}}{h} + w\paren{x} \frac{\paren{x+h}^\alpha - x^\alpha}{h}
\end{split}
\end{align}
By our assumption the quotient of the left hand side of~\eqref{eq::prop::d_prime_is_not_differentiable_quotient} converges to $d^\dprime\paren{x}$ as $h \to 0$.
By the continuity of the function $w$ and and differentiability of the function $\paren{0, \infty} \ni s \mapto s^\alpha \in \paren{0, \infty}$, we get that the limit $\lim_{h \to 0} \frac{w\paren{x+h}-w\paren{x}}{h}$ exists.
Therefore the function $w$ is differentiable at point $x$.
Contradiction.
\end{proof}
\begin{proposition} \label{prop::d_is_increasing}
The function $d$ is strictly increasing.
\end{proposition}
\begin{proof}
Clearly $d^\prime\paren{x} =x^\alpha w\paren{x} \geq 0$ $\paren{x \geq 0}$, therefore
\begin{equation*} %\label{eq::d_is_weakly_increasing}
d\paren{a} - d\paren{b} = \int^a_b d^\prime\paren{s} \dd s \geq 0 \quad \paren{a \geq b \geq 0}.
\end{equation*}
Suppose that there exist some points $a > b \geq 0$, such that
\begin{equation*}
0 = d\paren{a} - d\paren{b} = \int^a_b d^\prime\paren{s} \dd s.
\end{equation*}
Since $d^\prime \geq 0$, we have that $d^\prime\paren{s} = 0$ for almost all $s \in \left[a, b\right]$.
By the continuity of the function $d^\prime$, we have that $d^\prime\paren{s} = 0$ $\paren{s \in \left[a, b\right]}$.
Hence, the function $d^\prime$ is differentiable on the interval $\paren{a, b}$, which gives a contradiction (cf.\ Proposition~\ref{prop::d_prime_is_not_differentiable}).
\end{proof}
\begin{proposition} \label{d_is_non_convex_on_any_interval}
The function $d$ is not convex on any of the intervals $I \subseteq \left[0, \infty \right)$.
\end{proposition}
\begin{proof}
Suppose that there exists an interval $I \subseteq \left[0, \infty \right)$ such that the function $d_{|I}$ is convex.
Theorem~\ref{thm::convex_monotone_der} implies that the function $d^\prime$ is monotone increasing.
Therefore, by Theorem~\ref{thm::convex_monotone_der} the function $d^\prime$ is differentiable almost everywhere (with respect to Leagues measure) on $I$.
This gives the contradiction together with Proposition~\ref{prop::d_prime_is_not_differentiable}.
\end{proof}
\begin{remark}
Let the functions $d$ and $f$ be as above (cf.\ formula~\eqref{eq::definition_of_d_and_f}) and let $b>0$.
Consider functions $\widetilde{d}, \widetilde{f} \colon \bracket{0, b} \to \left[0, \infty \right)$ defined as follows:
\begin{align*}
\widetilde{d}\paren{x} = d\paren{b-x} \quad \paren{x \in \bracket{0, b}}, \\
\widetilde{f}\paren{x} = f\paren{b-x} \quad \paren{x \in \bracket{0, b}}.
\end{align*}
Then
\begin{itemize}
\item $0 \leq \widetilde{d}\paren{x} \leq \widetilde{f}\paren{x}$ for all $x \in \bracket{0, b}$ (cf.\ Remark~\ref{remark::estimate}),
\item the function $\widetilde{f}$ is convex on the interval $\bracket{0, b}$ and $\widetilde{f}\paren{0} = \widetilde{f}^\prime\paren{b} = 0$ (cf.\ Remark~\ref{remark::properties_of_f}),
\item the function $\widetilde{d}$ is of the class $\ContClass^1$ on $\bracket{0, b}$ (cf.\ Proposition~\ref{prop::d_is_C1}),
\item the function $\widetilde{d}$ is strictly decreasing on the interval $\bracket{0, b}$ (cf.\ Proposition~\ref{prop::d_is_increasing}),
\item the function $\widetilde{d}$ is not convex on any interval $I \subseteq \bracket{0, b}$ (cf.\ Proposition~\ref{d_is_non_convex_on_any_interval}).
\end{itemize}
\end{remark}
\bibliography{bib_data}{}
\bibliographystyle{plain}
\end{document}