From dcfa4a23dd460e91091527a867b23edd796d354a Mon Sep 17 00:00:00 2001 From: Veronica Boyce Date: Wed, 29 Mar 2023 12:28:35 -0700 Subject: [PATCH] formatting fussing for journal --- Papers/Paper/apa7.csl | 1900 +++++++++++++++++++++++++++++++++ Papers/Paper/cgloss.sty | 204 ++++ Papers/Paper/glossa.cls | 633 +++++++++++ Papers/Paper/manuscript.Rmd | 139 +-- Papers/Paper/manuscript.pdf | Bin 1620714 -> 1623847 bytes Papers/Paper/r-references.bib | 2 - Papers/Paper/refs.bib | 41 +- 7 files changed, 2826 insertions(+), 93 deletions(-) create mode 100644 Papers/Paper/apa7.csl create mode 100644 Papers/Paper/cgloss.sty create mode 100644 Papers/Paper/glossa.cls diff --git a/Papers/Paper/apa7.csl b/Papers/Paper/apa7.csl new file mode 100644 index 0000000..09f4635 --- /dev/null +++ b/Papers/Paper/apa7.csl @@ -0,0 +1,1900 @@ + + diff --git a/Papers/Paper/cgloss.sty b/Papers/Paper/cgloss.sty new file mode 100644 index 0000000..d2cbfb8 --- /dev/null +++ b/Papers/Paper/cgloss.sty @@ -0,0 +1,204 @@ +% -*- LaTeX -*- + +% Modified version of cgloss4e.sty. Hacked and renamed cgloss.sty +% by Alexis Dimitriadis (alexis@babel.ling.upenn.edu) + +% Following borrows from Covington's style files inspired by Midnight by M. +% de Groot, adapted to be used with gb4e.sty: examples beginning with \ex can +% contain glosses directly. Default is +% Linguistic Inquiry style with all lines in \rm; to change a line (eg. to +% \it for a particular journal, change the appropriate line: e.g., +% \let\eachwordone=\rm in a copy of this file. Note that it will NOT work +% to put \it before the line as the words are parsed separately. + +% Use \singlegloss to force single-spaced glosses even in double-space +% environments. Works also in footnotes (^M as delimiter replaced by +% \\)---hpk +% + +% Changes by Alexis Dimitriadis +% +% Removed flushleft environment and initial vskip to make macros usable +% on the same line with earlier and/or later text, e.g., +% \item Q: \gll ... \\ +% ... \\ \hfill (Greek) +% \trans Q: `...' +% Note: Text following the gloss will appear on line one of the example; +% To get a line break, insert one manually with \\ or use \trans or \glt. +% (\gln does not end the line, since it was already the +% case in cgloss4e that a translation must be ended with a line break). +% +% Modified \glt to keep translation on the same page as the text. + +% BUGS: does not work very gracefully with double spacing (struts are not +% automatically inserted after the \vboxes used by the macros). +% In double space mode without \nosinglegloss, when a translation +% is not given, the next line of text is single-spaced from the glossed text. +% With \nosinglegloss, the translation is set too close to the bottom line. + + +%%% +%%% Sentences with word-by-word glosses +%%% + +% See covingtn.tex for full documentation. Some examples: +% +% Displayed sentence with gloss and translation: +% +% \gll Dit is een Nederlands voorbeeld.\\ +% This is a Dutch example.\\ +% \glt `This is an example in Dutch.' +% +% Same, using bracketing where words do not correspond one-to-one: +% +% \gll Dit is een voorbeeldje in het Nederlands.\\ +% This is a {little example} in {} Dutch.\\ +% \glt `This is a little example in Dutch.' +% +% If you want to align 3 lines rather than two, use \glll instead of \gll. +% +% Layout is critical between \gll (or \glll) and \glt (or \gln). +% +% Thanks to Marcel R. van der Goot for permission to reproduce code. +\let\@gsingle=1 +\def\singlegloss{\let\@gsingle=1} +\def\nosinglegloss{\let\@gsingle=0} +\@ifundefined{new@fontshape}% + {\def\@selfnt{\ifx\@currsize\normalsize\@normalsize\else\@currsize\fi}} + {\def\@selfnt{\selectfont}} + +\def\gll% % Introduces 2-line text-and-gloss. + {\bgroup %\begin{flushleft} + \ifx\@gsingle1% conditionally force single spacing (hpk/MC) + \def\baselinestretch{1}\@selfnt\fi +% \vskip\baselineskip\def\baselinestretch{1}% +% \@selfnt\vskip-\baselineskip\fi% + \bgroup + \twosent + } + +\def\glll% % Introduces 3-line text-and-gloss. + {\bgroup %\begin{flushleft} + \ifx\@gsingle1% conditionally force single spacing (hpk/MC) + \def\baselinestretch{1}\@selfnt\fi +% \vskip\baselineskip\def\baselinestretch{1}% +% \@selfnt\vskip-\baselineskip\fi% + \bgroup + \threesent + } + +% \def\glt{\vskip.0\baselineskip} + +% redefine \gltoffset to set off translation from ex and gloss +\@ifundefined{gltoffset}{\def\gltoffset{0pt}}{} + +\def\glt{\ifhmode\\*[\gltoffset]\else\nobreak\vskip\gltoffset\nobreak\fi} + + +% Introduces a translation +\let\trans\glt + +\def\gln{\relax} +\def\glend{} % obsolete + % Ends the gloss environment. + +% The following TeX code is adapted, with permission, from: +% gloss.tex: Macros for vertically aligning words in consecutive sentences. +% Version: 1.0 release: 26 November 1990 +% Copyright (c) 1991 Marcel R. van der Goot (marcel@cs.caltech.edu). +% Original Midnight/gloss.tex and Midnight/gloss.doc are available from +% csvax.cs.caltech.edu [131.215.131.131] in pub/tex +% and many other anonymous ftp archives. + +\newbox\lineone % boxes with words from first line +\newbox\linetwo +\newbox\linethree +\newbox\wordone % a word from the first line (hbox) +\newbox\wordtwo +\newbox\wordthree +\newbox\gline % the constructed double line (hbox) +\newskip\glossglue % extra glue between glossed pairs or triples +\glossglue = 0pt plus 2pt minus 1pt % allow stretch/shrink between words +%\glossglue = 5pt plus 2pt minus 1pt % allow stretch/shrink between words +\newif\ifnotdone + +\@ifundefined{eachwordone}{\let\eachwordone=\rm}{\relax} +\@ifundefined{eachwordtwo}{\let\eachwordtwo=\rm}{\relax} +\@ifundefined{eachwordthree}{\let\eachwordthree=\rm}{\relax} + +\def\lastword#1#2#3% #1 = \each, #2 = line box, #3 = word box + {\setbox#2=\vbox{\unvbox#2% + \global\setbox#3=\lastbox + }% + \ifvoid#3\global\setbox#3=\hbox{#1\strut{} }\fi + % extra space following \strut in case #1 needs a space + } + +\def\testdone + {\ifdim\ht\lineone=0pt + \ifdim\ht\linetwo=0pt \notdonefalse % tricky space after pt + \else\notdonetrue + \fi + \else\notdonetrue + \fi + } + +\gdef\getwords(#1,#2)#3 #4\\% #1=linebox, #2=\each, #3=1st word, #4=remainder + {\setbox#1=\vbox{\hbox{#2\strut#3 }% adds space + \unvbox#1% + }% + \def\more{#4}% + \ifx\more\empty\let\more=\donewords + \else\let\more=\getwords + \fi + \more(#1,#2)#4\\% + } + +\gdef\donewords(#1,#2)\\{}% + +\gdef\twosent#1\\ #2\\{% #1 = first line, #2 = second line + \getwords(\lineone,\eachwordone)#1 \\% + \getwords(\linetwo,\eachwordtwo)#2 \\% + \loop\lastword{\eachwordone}{\lineone}{\wordone}% + \lastword{\eachwordtwo}{\linetwo}{\wordtwo}% + \global\setbox\gline=\hbox{\unhbox\gline + \hskip\glossglue + \vtop{\box\wordone % vtop was vbox + \nointerlineskip + \box\wordtwo + }% + }% + \testdone + \ifnotdone + \repeat + \egroup % matches \bgroup in \gloss + \gl@stop} + +\gdef\threesent#1\\ #2\\ #3\\{% #1 = first line, #2 = second line, #3 = third + \getwords(\lineone,\eachwordone)#1 \\% + \getwords(\linetwo,\eachwordtwo)#2 \\% + \getwords(\linethree,\eachwordthree)#3 \\% + \loop\lastword{\eachwordone}{\lineone}{\wordone}% + \lastword{\eachwordtwo}{\linetwo}{\wordtwo}% + \lastword{\eachwordthree}{\linethree}{\wordthree}% + \global\setbox\gline=\hbox{\unhbox\gline + \hskip\glossglue + \vtop{\box\wordone % vtop was vbox + \nointerlineskip + \box\wordtwo + \nointerlineskip + \box\wordthree + }% + }% + \testdone + \ifnotdone + \repeat + \egroup % matches \bgroup in \gloss + \gl@stop} + +%\def\gl@stop{{\hskip -\glossglue}\unhbox\gline\end{flushleft}} + +% \leavevmode puts us back in horizontal mode, so that a \\ will work +\def\gl@stop{{\hskip -\glossglue}\unhbox\gline\leavevmode \egroup} + +\endinput diff --git a/Papers/Paper/glossa.cls b/Papers/Paper/glossa.cls new file mode 100644 index 0000000..a6fe123 --- /dev/null +++ b/Papers/Paper/glossa.cls @@ -0,0 +1,633 @@ +% Glossa stylefile, modified from the +% Semantics & Pragmatics style file. +% Kai von Fintel, Christopher Potts, and Chung-chieh Shan +% modifications for Glossa by Guido Vanden Wyngaerd +% v1 13 Nov 2015 +% v2 10 Jan 2016 +% v3 16 Apr 2016 +% v4 26 Jun 2016 +% v5 16 Aug 2016 +% v6 29 Sep 2016 +% v7 27 Jan 2018 patches by Adam Liter for section headings +% v8 16 May 2019 patches by GS for compatibility with xe/pdflatex +% v- 19 Jun 2020 by mitcho to better match Glossa typesetting +% v10 5 May 2021 changes to the stylesheet (no italics for subsections)) + +\NeedsTeXFormat{LaTeX2e}[1994/06/01] +\ProvidesClass{glossa}[2018/01/27 v.2.3 Class for Glossa] + +% OUTLINE OF THIS CLASS FILE +% option declarations +% required packages +% metadata +% page dimensions +% title +% running headers +% frontmatter +% sectioning +% footnotes +% backmatter +% other environments +% useful macros + +%===================================================================== +%======================== option declarations ======================== + +\newif\if@lucida\@lucidafalse +\newif\if@cm\@cmtrue +\newif\if@times\@timestrue +\newif\if@brill\@brillfalse +\newif\if@charis\@charisfalse +\newif\if@final\@finalfalse +\newif\if@biblatex\@biblatexfalse +\newif\if@linguex\@linguexfalse + +\DeclareOption*{\PassOptionsToClass{\CurrentOption}{article}} + +\newcommand{\@sizeoption@err}{\ClassError{sp} + {Cannot use size option \CurrentOption} + {Glossa style requires (and automatically loads) 11pt text}} + +\DeclareOption{10pt}{\@sizeoption@err} +\DeclareOption{12pt}{\@sizeoption@err} + +\DeclareOption{lucida}{\@lucidatrue \@timesfalse \@cmfalse \@brillfalse \@charisfalse} +\DeclareOption{times}{\@lucidafalse \@timestrue \@cmfalse \@brillfalse \@charisfalse} +\DeclareOption{cm}{\@lucidafalse \@timesfalse \@cmtrue \@brillfalse \@charisfalse} +\DeclareOption{brill}{\@lucidafalse \@timesfalse \@cmtrue \@brilltrue \@charisfalse} +\DeclareOption{charis}{\@lucidafalse \@timesfalse \@cmtrue \@brillfalse \@charistrue} +\DeclareOption{final}{\@finaltrue} +\DeclareOption{biblatex}{\@biblatextrue} +\DeclareOption{linguex}{\@linguextrue} + +\ExecuteOptions{times} % times is the default. +\ProcessOptions\relax +\LoadClass[11pt,twoside]{article} + +\if@lucida + \IfFileExists{lucimatx.sty}{% + \RequirePackage[romanfamily=bright-osf, scale=0.9, stdmathdigits=true]{lucimatx}% + \linespread{1.05}% + \DeclareMathDelimiter{\llbracket} + {\mathopen}{letters}{130}{largesymbols}{130} + \DeclareMathDelimiter{\rrbracket} + {\mathclose}{letters}{131}{largesymbols}{131} + \normalfont\DeclareTextCommand + \textbullet\encodingdefault{\UseTextSymbol{OMS}\textbullet} + \let\nLeftrightarrow\undefined + \DeclareMathSymbol{\nLeftrightarrow}{\mathrel}{arrows}{105} +}{\ClassWarning{glossa.cls}{Requested fonts not present}}% +\else\relax +\fi +% +\if@times + \RequirePackage[T1]{fontenc}% use T1 font encoding + \IfFileExists{mathptmx.sty}{\RequirePackage{mathptmx}}{} + \IfFileExists{stmaryrd.sty}% + {\RequirePackage{stmaryrd}}% + {\newcommand{\llbracket}{\ensuremath{\left [\!\left [}}% + \newcommand{\rrbracket}{\ensuremath{\right ]\!\right ]}}} + \RequirePackage{textcomp} + \RequirePackage{amssymb} + \else\relax +\fi +% +\if@cm +\IfFileExists{stmaryrd.sty}% + {\RequirePackage{stmaryrd}}% + {\newcommand{\llbracket}{\ensuremath{\left [\!\left [}}% + \newcommand{\rrbracket}{\ensuremath{\right ]\!\right ]}}} + \RequirePackage{amssymb} + \RequirePackage{textcomp} + \else\relax +\fi + +\if@brill +\IfFileExists{stmaryrd.sty}% + {\RequirePackage{stmaryrd}}% + {\newcommand{\llbracket}{\ensuremath{\left [\!\left [}}% + \newcommand{\rrbracket}{\ensuremath{\right ]\!\right ]}}} + \RequirePackage[no-math]{fontspec} + \setmainfont[RawFeature=+tnum]{Brill} %RawFeature ensures proper alignment of examples with linguex + \RequirePackage{amssymb} + \RequirePackage{textcomp} + \else\relax +\fi + +\if@charis +\IfFileExists{stmaryrd.sty}% + {\RequirePackage{stmaryrd}}% + {\newcommand{\llbracket}{\ensuremath{\left [\!\left [}}% + \newcommand{\rrbracket}{\ensuremath{\right ]\!\right ]}}} + \RequirePackage[bitstream-charter]{mathdesign} %math font close to Charis SIL + \RequirePackage[no-math]{fontspec} + \setmainfont{CharisSIL} + \RequirePackage{FiraSans} %sf font; download from https://www.fontsquirrel.com/fonts/fira-sans + \RequirePackage{amssymb} + \RequirePackage{textcomp} + \else\relax +\fi + +% Strong widow and orphan control + +\clubpenalty10000 +\widowpenalty10000 + +%===================================================================== +%========================= required packages ========================= +%%% xunicode is not compatible +%%% with pdflatex, and one should not use inputenc with xelatex +%%% LuaLaTeX is incompatible with xunicode, but can safely load tipa +\RequirePackage{iftex} +\ifXeTeX + \RequirePackage{xunicode} %IPA characters are displayed; the commands of the tipa package are understood +\else + \RequirePackage[safe]{tipa} +\fi + +\ifPDFTeX + \RequirePackage[utf8]{inputenc} +\else +\fi +%%% End modification + +\RequirePackage{xspace} +% microtype handles punctuation at the right margin. We want it for the final product, but it's okay if authors lack it. MODIFIED by Coretta 2022-05-23 comment out microtype to circumvent error during compilation +% \IfFileExists{microtype.sty}{% +% \RequirePackage[final,protrusion={true,compatibility}]{microtype} +% }{} +\RequirePackage{ifthen} +\RequirePackage[hyphens]{url} + +\if@biblatex + \RequirePackage[backend=biber, + bibstyle=biblatex-gl, + citestyle=gl-authoryear-comp, + maxcitenames=3, + maxbibnames=99]{biblatex} +\else + \RequirePackage{natbib} + \bibpunct[: ]{(}{)}{; }{a}{}{;~} + \newcommand{\BIBand}{\&} + \setlength{\bibsep}{0pt} + \setlength{\bibhang}{0.25in} + \bibliographystyle{glossa} + \newcommand{\posscitet}[1]{\citeauthor{#1}'s (\citeyear{#1})} + \newcommand{\posscitealt}[1]{\citeauthor{#1}'s \citeyear{#1}} + \newcommand{\possciteauthor}[1]{\citeauthor{#1}'s} + \newcommand{\pgposscitet}[2]{\citeauthor{#1}'s (\citeyear{#1}:~#2)} + \newcommand{\secposscitet}[2]{\citeauthor{#1}'s (\citeyear{#1}:~$\S$#2)} + \newcommand{\pgcitealt}[2]{\citealt{#1}:~#2} + \newcommand{\seccitealt}[2]{\citealt{#1}:~$\S$#2} + \newcommand{\pgcitep}[2]{(\citealt{#1}:~#2)} + \newcommand{\seccitep}[2]{(\citealt{#1}:~$\S$#2)} + \newcommand{\pgcitet}[2]{\citeauthor{#1} (\citeyear{#1}:~#2)} + \newcommand{\seccitet}[2]{\citeauthor{#1} (\citeyear{#1}:~$\S$#2)} +\fi + +\RequirePackage[usenames,dvipsnames]{xcolor} +\definecolor{splinkcolor}{rgb}{.0,.2,.4} +\RequirePackage[colorlinks,breaklinks, + linkcolor=splinkcolor, + urlcolor=splinkcolor, + citecolor=splinkcolor, + filecolor=splinkcolor, + plainpages=false, + pdfpagelabels, + bookmarks=false, + pdfstartview=FitH]{hyperref} +\newcommand{\doi}[1]{\url{https://doi.org/#1}} +\urlstyle{rm} +\RequirePackage[leqno,tbtags]{amsmath} +% If the author is using postscript (discouraged), then load the breakurl package, else don't load it. +\RequirePackage{ifpdf} +\ifpdf + \relax +\else +\relax + %\RequirePackage{breakurl} +\fi +\RequirePackage{graphicx} +\RequirePackage{float} +\RequirePackage[hang,FIGBOTCAP,loose]{subfigure} + +% additions to the S&P required packages for Glossa are listed below + +\RequirePackage[normalem]{ulem} +\RequirePackage{enumitem} +\RequirePackage[font=sf,labelfont=bf,labelsep=colon,justification=raggedright,singlelinecheck=off]{caption} +\RequirePackage{booktabs} + +%===================================================================== +%============================= metadata ============================== + +\def\@pdfauthor{\relax} +\newcommand{\pdfauthor}[1]{\gdef\@pdfauthor{#1}} +\def\@pdftitle{\relax} +\newcommand{\pdftitle}[1]{\gdef\@pdftitle{#1}} +\def\@pdfkeywords{\relax} +\newcommand{\pdfkeywords}[1]{\gdef\@pdfkeywords{#1}} + +\hypersetup{pdfauthor=\@pdfauthor, + pdftitle=\@pdftitle, + pdfkeywords=\@pdfkeywords} + +\def\@spvolume{\relax} +\newcommand{\spvolume}[1]{\gdef\@spvolume{#1}} + +\def\@sparticle{\relax} +\newcommand{\sparticle}[1]{\gdef\@sparticle{#1}} + +\def\@spyear{\relax} +\newcommand{\spyear}[1]{\gdef\@spyear{#1}} + +\def\@spdoi{10.5334/.\@spvolume.\@sparticle} +\def\@splastpage{\relax} +\newcommand{\splastpage}[1]{\gdef\@splastpage{#1}} + +%===================================================================== +%========================== page dimensions ========================== + +% Vertical. +\paperheight=297mm +\topmargin=-13mm % +\headheight=5mm % head: 30mm (margin + head + sep = 0.46cm); latex adds 1in) +\headsep=17.6mm % +\topskip=0.1in % included in the textheight +\textheight=237mm % (297mm - 60mm) +\footskip=0.46cm % foot: 30mm total (1.0in leftover) +\parskip=0pt + +% Horizontal. +\paperwidth=210mm +\textwidth=150mm % (210mm - 60mm) +\oddsidemargin=0.46cm % put at 3cm margins (3cm - 1in = 0.46cm) +\evensidemargin=0.46cm % put at 3cm margins (3cm - 1in = 0.46cm) +\raggedbottom % constant spacing in the text; cost is a ragged bottom +\parindent=0.1in +\leftmargini=0.5in +\@ifundefined{mathindent}{}{\mathindent=0.5in\relax}% + +% Tell dvips about our paper. +\special{papersize=210mm,297mm} + +%===================================================================== +%============================== title ================================ + +% Formats individual pairs inside \author. +\newcommand{\spauthor}[1]% +{\begin{minipage}[t]{16pc}\centering + #1% + \end{minipage}\hspace{.5pc plus1pc}% + \ignorespaces +} + +\renewcommand*{\title}[2][]{\gdef\@shorttitle{#1}\gdef\@title{#2}} +\renewcommand*{\author}[2][]{\gdef\@shortauthor{#1}\gdef\@author{#2}} + +% Adapted from JMLR. +\renewcommand{\maketitle}{% + \par + \begingroup + \renewcommand{\thefootnote}{\fnsymbol{footnote}} + \@maketitle\@thanks + \setcounter{footnote}{0} + \endgroup + \let\maketitle\relax \let\@maketitle\relax + \gdef\@thanks{} + \let\thanks\relax% +} + +% From salt.cls. +\newskip\onelineskip +\onelineskip=\baselineskip +\advance\onelineskip by0pt plus 4pt minus 2pt + +\def\@maketitle{% + \vbox{\hsize\textwidth% + \linewidth\hsize% + \centering + \vskip\onelineskip + \LARGE\@title\@@par + \normalsize + \def\institute{\textit}% + \newcommand{\AND}{\ignorespaces}% + \let\par\@empty + \@author + \lineskiplimit\onelineskip + \lineskip\onelineskip + \@@par + }% + \global\everypar{\everypar{}\vskip 3.5ex} +} + +%===================================================================== +%========================== running headers ========================== + +% Creative commons license text. The font is even smaller here than it is elsewhere in the headers so that we have a chance of fitting the whole license on the page. +\newcommand{\cctext}{{\footnotesize This is an open-access article distributed under the terms of a Creative Commons Attribution License + (\http{http://creativecommons.org/licenses/by/3.0/}).}} + +% This boolean switch lets the user control whether the logo is included even when the requisite image file is present. (If it is missing, then the class file accommodates that no matter how the switch is set.) +\newboolean{logo} +\setboolean{logo}{true} % Default true (include logo if it's present) +\newcommand{\splogo}{\setboolean{logo}{true}} +\newcommand{\nosplogo}{\setboolean{logo}{false}} + +% This sets the font size for the header and footer on all pages. +\newcommand{\headerfontsize}{\footnotesize} + +% Prints publication and copyright info on the first page +% Also loads info into metadata (superseded by new metadata commands) +\gdef\@articlenumber{}% +\newcommand{\firstpageheadings}[6]% +{ + \gdef\@articlenumber{#2} + \gdef\@spvolume{#1} + \gdef\@sparticle{#2} + \gdef\@splastpage{#3} + \gdef\@spyear{#4} + \def\ps@spfirstheadings{% + \let\@mkboth\@gobbletwo% + \renewcommand{\@oddhead}{% + \headerfontsize% + % If the switch is set to "include image", + \ifthenelse{\boolean{logo}}{% + \ifpdf + % If the pdf logo is present, + \IfFileExists{sp-logo.pdf}{% + % then insert the pdf version, + \begin{minipage}[c]{.25in} + \includegraphics[width=.25in]{sp-logo.pdf} + \end{minipage}% + }{}% else nothing; closes \IfFileExists + \else + % If the ps logo is present, + \IfFileExists{sp-logo.ps}{% + % then insert the postscript version, + \begin{minipage}[c]{.25in} + \includegraphics[width=.25in]{sp-logo.ps} + \end{minipage}% + }{}% else, nothing; closes \IfFileExists + \fi % close \ifpdf + }{}% closes \ifthenelse + \begin{minipage}[c]{5.25in} + \href{http://glossa.ubiquitypress.com/}{Glossa} Volume \@spvolume, Article \@sparticle: 1--\@splastpage, \@spyear\\ + \href{https://doi.org/10.5334/sp.\@spvolume.\@sparticle}{https://doi.org/10.5334/.\@spvolume.\@sparticle} + \end{minipage}% + }% + \renewcommand{\@oddfoot}{% + \begin{minipage}[c]{1\textwidth}% + \footnotesize\copyright \@spyear\ \@shortauthor\\ + \cctext + \end{minipage}% + }% + \renewcommand{\@evenhead}{}% + \renewcommand{\@evenfoot}{}% + }% + \thispagestyle{spfirstheadings}% +}% + +\newcommand{\firstpagefinalheadings}% +{ + \def\ps@spfirstheadings{% + \let\@mkboth\@gobbletwo% + \renewcommand{\@oddhead}{% + \headerfontsize% + % If the switch is set to "include image", + \ifthenelse{\boolean{logo}}{% + \ifpdf + % If the pdf logo is present, + \IfFileExists{sp-logo.pdf}{% + % then insert the pdf version, + \begin{minipage}[c]{.25in} + \includegraphics[width=.25in]{sp-logo} + \end{minipage}% + }{}% else nothing; closes \IfFileExists + \else + % If the ps logo is present, + \IfFileExists{sp-logo.ps}{% + % then insert the postscript version, + \begin{minipage}[c]{.25in} + \includegraphics[width=.25in]{sp-logo} + \end{minipage}% + }{}% else, nothing; closes \IfFileExists + \fi % close \ifpdf + }{}% closes \ifthenelse + \begin{minipage}[c]{5.25in} + \href{http://http://glossa.ubiquitypress.com/}{Glossa} Volume \@spvolume, Article \@sparticle: 1--\@splastpage, \@spyear\\ + \href{https://doi.org/\@spdoi}{https://doi.org/\@spdoi} + \end{minipage}% + \gdef\@articlenumber{\@sparticle} + }% + \renewcommand{\@oddfoot}{% + \begin{minipage}[c]{1\textwidth}% + \footnotesize\copyright \@spyear\ \@shortauthor\\ + \cctext + \end{minipage}% + }% + \renewcommand{\@evenhead}{}% + \renewcommand{\@evenfoot}{}% + }% + \thispagestyle{spfirstheadings}% +}% + + +% Prints abbreviated article information on non-initial pages. +\def\ps@spheadings{% + \let\@mkboth\@gobbletwo% + \def\@oddhead{{\headerfontsize\sffamily \@shorttitle}\hfill{\headerfontsize\sffamily\ifx\@empty\@articlenumber\else\@articlenumber:\fi\thepage}}% short title, inner + \def\@oddfoot{%\hfill{\headerfontsize\ifx\@empty\@articlenumber\else\@articlenumber:\fi%\thepage}\hfill + }% centered pg no + \def\@evenhead{{\headerfontsize\sffamily\ifx\@empty\@articlenumber\else\@articlenumber:\fi\thepage} \hfill {\headerfontsize\sffamily\@shortauthor}}% author names, inner + \def\@evenfoot{%\hfill{\headerfontsize\ifx\@empty\@articlenumber\else\@articlenumber:\fi\thepage}\hfill + }% centered pg no +} +\pagestyle{spheadings} + +%===================================================================== +%=========================== final typeset =========================== + + +\if@final +\RequirePackage{sp-hyperxmp} +\splogo +\AtBeginDocument{\firstpagefinalheadings} +\else +\nosplogo +\AtBeginDocument{\thispagestyle{plain}} +\fi + + +%===================================================================== +%=========================== frontmatter ============================= + +% The spacing specs (arg 2 of \list) are the same for the mshistory, abstract, and keywords environments, except that the abstract is indented somewhat. + +% Single parameter determines the left and right margin size. +\newcommand{\frontmatterspacing}[1]{% + \small + \topsep 10\p@ \@plus4\p@ \@minus6\p@ % from size12.clo + \advance\topsep by3.5ex plus -1ex minus -.2ex + \setlength{\listparindent}{0em} + \setlength{\itemindent}{0em} + \setlength{\leftmargin}{#1} + \setlength{\rightmargin}{\leftmargin} + \setlength{\parskip}{0em} +} + +\newenvironment{mshistory}% +{\list{}{\frontmatterspacing{0em}}% +\item\relax}% +{\endlist} + +\renewenvironment{abstract}% +{\list{}{\frontmatterspacing{0.25in}}% +\item\relax\textbf{\abstractname} }% +{\endlist} + +\newenvironment{keywords}% +{\list{}{\frontmatterspacing{0em}}% +\item\relax\textbf{Keywords:}}% +{\endlist} + +%===================================================================== +%============================ sectioning ============================= + +\setcounter{secnumdepth}{5} +\setcounter{tocdepth}{5} + +\renewcommand{\thesection}{\arabic{section}.} +\renewcommand{\thesubsection}{\arabic{section}.\arabic{subsection}} +\renewcommand{\thesubsubsection}{\arabic{section}.\arabic{subsection}.\arabic{subsubsection}} + +\renewcommand{\section}{\@startsection{section}{1}{0pt}% + {-3.5ex plus -1ex minus -.2ex}% + {1.8ex plus.2ex}% + {\noindent\normalfont\Large\sffamily\bfseries}} + +\renewcommand{\subsection}{\@startsection{subsection}{2}{0pt}% + {-3.5ex plus -1ex minus -.2ex}% + {1.8ex plus.2ex}% + {\noindent\normalfont\large\sffamily\bfseries}} + +\renewcommand{\subsubsection}{\@startsection{subsubsection}{3}{0pt}% + {-3.5ex plus -1ex minus -.2ex}% + {1.8ex plus.2ex}% + {\noindent\normalfont\normalsize\sffamily\bfseries}} + +\renewcommand{\paragraph}{\@startsection{paragraph}{4}{\z@}% + {-3.5ex plus -1ex minus -.2ex}% + {1.8ex plus.2ex}% + {\noindent\normalsize\sffamily\bfseries}} + +\renewcommand{\subparagraph}{\@startsection{subparagraph}{5}{\z@}% + {-3.5ex plus -1ex minus -.2ex}% + {1.8ex plus.2ex}% + {\noindent\normalsize\sffamily\it}} + +% General formatting --- for punctuating section headings. +\renewcommand{\@seccntformat}[1]{\@nameuse{the#1}\hspace{1em}} + +%===================================================================== +%============================ footnotes ============================== + +\renewcommand{\@makefntext}[1]{% + \parindent=0.25in + \noindent \hbox to \z@{\hss{\textsuperscript{\@thefnmark}} \hfil}#1} + +%===================================================================== +%============================ backmatter ============================= + +% Environment for formatting all the addresses. +\newenvironment{addresses}% +{\@@par + \let\par\@empty + \addvspace{3.25ex}% + \noindent%\textbf{Author addresses} + \small + % Individual author addresses. + \newenvironment{address}% + {% For email addresses inside the address environment. + %\newcommand{\email}{\texttt}% + \begin{minipage}[t]{19pc}\raggedright} + {\end{minipage}\hspace{.15pc plus1pc}}% + \ignorespaces +}% +{\lineskiplimit 1pc + \lineskip 1pc + \@@par} + +%===================================================================== +%======================== other environments ========================= + +% enumerate labeling that won't conflict with standard ex. numbers. +\renewcommand{\theenumi}{\roman{enumi}} +\renewcommand{\labelenumi}{\theenumi.} +\renewcommand{\theenumii}{\alph{enumii}} +\renewcommand{\labelenumii}{\theenumii.} + +% list spacing ought to satisfy \itemsep + \parsep < \topsep + \parskip +\def\@listi{\leftmargin\leftmargini + \parsep 4\p@ \@plus2\p@ \@minus\p@ + \topsep 10\p@ \@plus4\p@ \@minus\p@ + \itemsep4\p@ \@plus2\p@ \@minus\p@} +\let\@listI\@listi +\@listi + +% typeset figures with lines above and below and the caption title and caption texts in boxes next to each other, top aligned. these definitions extend those of float.sty. +% +% sp caption style +%\newcommand\floatc@sp[2]{% +% \parbox[t]{0.15\textwidth}{{\@fs@cfont#1}}% +% \parbox[t]{0.85\textwidth}{#2}}% + +% sp float style; uses the sp caption style +%\newcommand\fs@sp{ +% \def\@fs@cfont{\bfseries}\let\@fs@capt\floatc@sp +% \def\@fs@pre{\hrule\kern5pt}% +% \def\@fs@post{\kern5pt\hrule\relax}% +% \def\@fs@mid{\kern10pt} +% \let\@fs@iftopcapt\iffalse} + +% users can override these commands using float.sty's functionality +%\floatstyle{sp} +%\restylefloat{figure} +%\restylefloat{table} + +%===================================================================== +%=========================== useful macros =========================== + +\newcommand{\spj}{\emph{S\&P}\xspace} + +\def\co{\colon\thinspace} + +\DeclareRobustCommand\dash{% + \unskip\nobreak\thinspace\textemdash\thinspace\ignorespaces} +\pdfstringdefDisableCommands{\renewcommand{\dash}{ - }} + +% based on \url defined in hyperref.sty +\DeclareRobustCommand*{\http}{\hyper@normalise\http@} +\def\http@#1{\hyper@linkurl{\Hurl{#1}}{http://#1}} + +\newcommand{\email}[1]{\href{mailto:#1}{#1}} + +\providecommand{\sv}[1]{\ensuremath{\llbracket #1 \rrbracket}} + +%===================================================================== +%=========================== linguex settings ======================== + +\if@linguex + \RequirePackage{linguex}% + \renewcommand{\firstrefdash}{}% + \AtBeginDocument{\settowidth{\Exlabelwidth}{(110)}} +\else +\relax +\fi + +\RequirePackage{cgloss} %for adding the language name and source of the example on the first line of glossed examples (requires \gll before the foreign language example and \glt before the translation) + +%================================ miscellaneous ====================== +%===================================================================== + +\setlist{nolistsep} %reduce space between items in lists diff --git a/Papers/Paper/manuscript.Rmd b/Papers/Paper/manuscript.Rmd index d602c02..5b6e56d 100644 --- a/Papers/Paper/manuscript.Rmd +++ b/Papers/Paper/manuscript.Rmd @@ -22,7 +22,7 @@ header-includes: - \setcounter{bottomnumber}{3} - \setcounter{totalnumber}{4} -classoption: [times, biblatex] +classoption: [times] # # Possible classoptions: # - [times] for Times font (default if no option is chosen) @@ -50,7 +50,6 @@ classoption: [times, biblatex] # (for US cities in the format "Santa Cruz, CA") # bibliography: ["r-references.bib","refs.bib"] -biblio-style: "apalike" link-citations: true # The bibliography style is set automatically by glossa.cls when using # either natbib or biblatex. @@ -59,15 +58,15 @@ link-citations: true abstract: | Behavioral measures of word-by-word reading time provide experimental evidence to test theories of language processing. A-maze is a recent method for measuring incremental sentence processing that can localize slowdowns related to syntactic ambiguities in individual sentences. We adapted A-maze for use on longer passages and tested it on the Natural Stories corpus. Participants were able to comprehend these longer text passages that they read via the Maze task. Moreover, the Maze task yielded useable reaction time data with word predictability effects that were linearly related to surprisal, the same pattern found with other incremental methods. Crucially, Maze reaction times show a tight relationship with properties of the current word, with little spillover of effects from previous words. This superior localization is an advantage of Maze compared with other methods. Overall, we expanded the scope of experimental materials, and thus theoretical questions, that can be studied with the Maze task. # Specify keywords here: -keywords: A-Maze, self-paced reading, incremental processing, surprisal, naturalistic text +keywords: A-maze, self-paced reading, incremental processing, surprisal, naturalistic text # To add the word count, uncomment the following option and replace the number # with the document word count. wordcount: 9594 +csl : "apa7.csl" output: - bookdown::pdf_book: - base_format: rticles::glossa_article - number_sections: yes -# papaja::apa6_pdf + bookdown::pdf_book: + base_format: rticles::glossapx_article + #papaja::apa6_pdf --- ```{r setup, include = FALSE} @@ -95,17 +94,17 @@ options(knitr.table.format = "pdf") # Introduction -Two chief results of human language processing research are that comprehension is highly incremental and that comprehension difficulty is differential and localized. Incrementality in comprehension means that our minds do not wait for large stretches of linguistic input to accrue; rather, we eagerly analyze each moment of input and rapidly integrate it into context [@marslen-wilson:1975]. Differential and localized processing difficulty means that different inputs in context present different processing demands during comprehension [@levy:2008]. Due to incrementality these differential processing demands are, by and large, met relatively quickly by the mind once they are presented, and they can be measured in both brain [@kutas-hillyard:1980; @osterhout-holcomb:1992jml] and behavioral [@raynerEyeMovementsReading1998; @mitchell:2004online-methods] responses. These measurements often have low signal-to-noise ratio, and many methods require bringing participants into the lab and often require cumbersome equipment. However, they can provide considerable insight into how language processing unfolds in real time. Developing more sensitive methods that can easily be used with remote participants is thus of considerable interest. +Two chief results of human language processing research are that comprehension is highly incremental and that comprehension difficulty is differential and localized. Incrementality in comprehension means that our minds do not wait for large stretches of linguistic input to accrue; rather, we eagerly analyze each moment of input and rapidly integrate it into context [@marslen-wilson:1975]. Differential and localized processing difficulty means that different inputs in context present different processing demands during comprehension [@levy:2008]. Due to incrementality, these differential processing demands are, by and large, met relatively quickly by the mind once they are presented, and they can be measured in both brain [@kutas-hillyard:1980; @osterhout-holcomb:1992jml] and behavioral [@raynerEyeMovementsReading1998; @mitchell:2004online-methods] responses. These measurements often have low signal-to-noise ratio, and many methods require bringing participants into the lab and often require cumbersome equipment. However, they can provide considerable insight into how language processing unfolds in real time. Developing more sensitive methods that can easily be used with remote participants is thus of considerable interest. -Word-by-word reading or response times are among the most widely used behavioral measurements in language comprehension and give relatively direct insight into processing difficulty. The Maze task [@freedman85; @forsterMazeTaskMeasuring2009], which involves collecting participants' response times in a repeated two-alternative forced-choice between a word that fits the preceding linguistic context and a distractor that doesn't, has recently been proposed as a high-sensitivity method that can easily be used remotely. @boyceMazeMadeEasy2020 introduced several implementational innovations that made it easier for researchers to use Maze, and showed that for several controlled syntactic processing contrasts [@witzelComparisonsOnlineReading2012a] Maze offers better statistical power than self-paced reading, the other word-by-word response time method easy to use remotely. Maze has since had rapid uptake in the language processing community [@chacon2021limits; @ungerer2021using; @orth2022processing;@van-lieburg-etal:2022-using-the-maze-task;@levinson:2022-beyond-surprising]. +Word-by-word reading or response times are among the most widely used behavioral measurements in language comprehension and give relatively direct insight into processing difficulty. The Maze task [@freedman85; @forsterMazeTaskMeasuring2009], which involves collecting participants' response times in a repeated two-alternative forced-choice between a word that fits the preceding linguistic context and a distractor that doesn't, has recently been proposed as a high-sensitivity method that can easily be used remotely. @boyceMazeMadeEasy2020 introduced several implementational innovations that made it easier for researchers to use Maze, and showed that for several controlled syntactic processing contrasts [@witzelComparisonsOnlineReading2012a]. Maze offers better statistical power than self-paced reading, the other word-by-word response time method easy to use remotely. Maze has since had rapid uptake in the language processing community [@chacon2021limits; @ungerer2021using; @orth2022processing;@van-lieburg-etal:2022-using-the-maze-task;@levinson:2022-beyond-surprising]. There is increasing interest in collecting data during comprehension of more naturalistic materials such as stories and news articles [@demberg-keller:2008; @lukeLimitsLexicalPrediction2016; @futrellNaturalStoriesCorpus2020], which offer potentially improved ecological validity and larger scale data in comparison with repeated presentation of isolated sentences out of context. These more naturalistic materials require maintaining and integrating discourse dependencies and other types of information over longer stretches of time and linguistic material. Previous work leaves unclear whether the Maze task would be feasible for this purpose: the increased task demands might interfere with the demands presented by these more naturalistic materials, and vice versa. In this paper we report a new modification of the Maze task and show that it makes reading of extended, naturalistic texts feasible. We also analyze the resulting reaction time profiles and show that they provide strong signal regarding the probabilistic relationship between a word and the context in which it appears, and that the systematic linear relationship between word surprisal and response time observed in other reading paradigms [@smithEffectWordPredictability2013] also arises in the Maze task. -In the remainder of the Introduction, we lay out the role of RT-based methods in theory testing, describe a few common methods, and review some key influences on reading time. We then proceed to present our modified "error-correction Maze" paradigm, our experiment, and the results of our analyses of the resulting data. +In the remainder of the introduction, we lay out the role of RT-based methods in theory testing, describe a few common methods, and review some key influences on reading time. We then proceed to present our modified "error-correction Maze" paradigm, our experiment, and the results of our analyses of the resulting data. ## Why measure RTs? -A major feature of human language processing is that not all sentences or utterances are equally easy to successfully comprehend. Sometimes this is mostly or entirely due to the linguistic structure of the sentence: for example, *The rat that the cat that the dog chased killed ate the cheese* is more difficult than *The rat that was killed by the cat that was chased by the dog ate the cheese* even though the meaning of the two sentences is (near-)identical. Sometimes the source of difficulty can be a mismatch between expectations set up by the context and the word choice in an utterance: for example, the question *Is the cup red?* may be confusing in a context containing more than one cup. Psycholinguistic theories may differ in their ability to predict what is easy and what is hard. One of the most powerful methods for studying these differential difficulty effects is let the comprehender control the pace of presentation of the linguistic material, and to measure what she takes time on. For this purpose, taking measurements from experimental participants during reading, a widespread, highly practiced skill in diverse populations around the world, is of unparalleled value. +A major feature of human language processing is that not all sentences or utterances are equally easy to successfully comprehend. Sometimes this is mostly or entirely due to the linguistic structure of the sentence: for example, *The rat that the cat that the dog chased killed ate the cheese* is more difficult than *The rat that was killed by the cat that was chased by the dog ate the cheese* even though the meaning of the two sentences is (near-)identical. Sometimes the source of difficulty can be a mismatch between expectations set up by the context and the word choice in an utterance: for example, the question *Is the cup red?* may be confusing in a context containing more than one cup. Psycholinguistic theories may differ in their ability to predict what is easy and what is hard. One of the most powerful methods for studying these differential difficulty effects is to let the comprehender control the pace of presentation of the linguistic material, and to measure what she takes time on. For this purpose, taking measurements from experimental participants during reading, a widespread, highly practiced skill in diverse populations around the world, is of unparalleled value. To a first approximation, everyday reading (when the reader's goal is to understand a text's overall content) is *progressive*: we read documents, paragraphs, and sentences from beginning to end. The reader encounters each word with the benefit of the preceding linguistic context. Incrementality in reading involves successively processing each word encountered and integrating it into the context. For a skilled reader experienced with the type of text being read, most words are easy enough that the subjective experience of reading the text is of smooth, continuously unfolding understanding as we construct a mental model of what is being described. But occasionally a word may be sufficiently surprising or otherwise difficult to reconcile with the context that it disrupts comprehension to the level of conscious awareness: in the sentence *I take my coffee with cream and chamomile*, for example, the last word is likely to do so. Behaviorally, this disruption typically manifests as a slowdown or longer *reading time* (RT) on the word itself, on the immediately following words, or in other forms such as regressive eye movements back to earlier parts of the text to check the context. @@ -115,22 +114,22 @@ For instance, competing theories about why certain types of object-extracted rel Some of these theories rely on being able to attribute processing slowdowns to a particular word. Determining that object relatives are overall slower that subject relatives is easy. Even an imprecise RT measure will determine that the same set of words in a different order took longer to read at a sentence level. However, many language processing theories make specific (and contrasting) predictions about which words in a sentence are harder to process. To adjudicate among these theories, we want methods that are *well-localized*, so it is easy to determine which word is responsible for an observed RT slow-down. Ideally, a longer RT on a word would be an indication of that word's increased difficulty, and not the lingering signal of a prior word's increased difficulty. When the signal isn't localized, advanced analysis techniques may be required to disentangle the slow-downs [@shainDeconvolutionalTimeSeries2018]. -## Eye-tracking and Self-paced reading +## Eye-tracking and self-paced reading The two most commonly used behavioral methods for studying incremental language processing during reading are tracking eye movements and self-paced reading. While both of these have proven powerful and highly flexible, they both have important limitations as well. In eye-tracking, participants read a text on a screen naturally, while their saccadic eye movements are recorded on a computer-connected camera that is calibrated so that the researcher can reconstruct with high precision where the participant's gaze falls on the screen at all times [@raynerEyeMovementsReading1998]. These eye movements can be used to reconstruct various position-specific reading time measures such as *gaze duration* (the total amount of time the eyes spend on a word the first time it is fixated before saccading to a later word) and *total viewing time* (the total amount of time that the word is fixated). If the eyes skipped the word the first time it was approached to the left, the trial is generally excluded. Eye tracking data collected with state-of-the-art high-precision recording equipment offers relatively good signal-to-noise ratio, but the difficulty presented by a word can still *spill over* into reading measures on subsequent words, a dynamic that can make it hard to isolate the source of an effect of potential theoretical interest [@raynerEffectsFrequencyPredictability2004; @levy-etal:2009pnas; @frazierMakingCorrectingErrors1982]. Short words such as articles and pronouns are often not fixated directly which makes it harder to study the processing of these words with eye-tracking. Additionally, the equipment is expensive and data collection is laborious and must occur in-lab. -Self-paced reading (SPR; @mitchell:1984) is a somewhat less natural paradigm in which the participant manually controls the visual presentation of the text by pressing a button. In its generally preferred variant, moving-window self-paced reading, words are revealed one at a time or one group at a time: every press of the button masks the currently presented word (group) and simultaneously reveals the next. The time spent between button presses is the unique RT measure for that word (group). Self-paced reading requires no special equipment and can be delivered remotely, but the measurements are noisier and even more prone to spillover [@macdonaldInteractionLexicalSyntactic1993; @koornneefUseVerbbasedImplicit2006; @smithEffectWordPredictability2013]. +Self-paced reading (SPR) is a somewhat less natural paradigm in which the participant manually controls the visual presentation of the text by pressing a button [@mitchell:1984]. In its generally preferred variant, moving-window self-paced reading, words are revealed one at a time or one group at a time: every press of the button masks the currently presented word (group) and simultaneously reveals the next. The time spent between button presses is the unique RT measure for that word (group). Self-paced reading requires no special equipment and can be delivered remotely, but the measurements are noisier and even more prone to spillover [@macdonaldInteractionLexicalSyntactic1993; @koornneefUseVerbbasedImplicit2006; @smithEffectWordPredictability2013]. ## Maze -The Maze task is an alternative method that is designed to increase localization at the expense of naturalness [@freedman85; @forsterMazeTaskMeasuring2009]. In the Maze task, participants must repeatedly choose between two simultaneously presented options: a correct word that continues the sentence, and a distractor string which does not. Participants must choose the correct word, and their time to selection is treated as the reaction time, or RT. (We deliberately overload the abbreviation "RT" and use it for Maze reaction times as well as reading times from eye tracking and SPR, because the desirable properties of reading times turn out to hold for Maze reaction times as well.) @forsterMazeTaskMeasuring2009 introduced two versions of the Maze task: lexical "L"-maze where the distractors are non-word strings, and grammatical "G"-maze where the distractors are real words that don't fit with the context of the sentence. In theory, participants must fully integrate each word into the sentence in order to confidently select it, which may require mentally reparsing previous material in order to allow the integration and selection of a disambiguating word. @forsterMazeTaskMeasuring2009 call this need for full integration "forced incremental processing" to distinguish from other incremental processing methods where words can be passively read before later committing to a parse. This idea of strong localization is supported by studies finding strongly localized effects for G-maze [@witzelComparisonsOnlineReading2012a; @boyceMazeMadeEasy2020]. +The Maze task is an alternative method that is designed to increase localization at the expense of naturalness [@freedman85; @forsterMazeTaskMeasuring2009]. In the Maze task, participants must repeatedly choose between two simultaneously presented options: a correct word that continues the sentence, and a distractor string which does not. Participants must choose the correct word, and their time to selection is treated as the reaction time, or RT. (We deliberately overload the abbreviation "RT" and use it for Maze reaction times as well as reading times from eye tracking and SPR, because the desirable properties of reading times turn out to hold for Maze reaction times as well.) @forsterMazeTaskMeasuring2009 introduced two versions of the Maze task: lexical "L"-maze where the distractors are non-word strings, and grammatical "G"-maze where the distractors are real words that don't fit with the context of the sentence. In theory, participants must fully integrate each word into the sentence in order to confidently select it, which may require mentally reparsing previous material in order to allow the integration and selection of a disambiguating word. @forsterMazeTaskMeasuring2009 call this need for full integration "forced incremental sentence processing" in their title (p. 163) to distinguish from other incremental processing methods where words can be passively read before later committing to a parse. This idea of strong localization is supported by studies finding strongly localized effects for G-maze [@witzelComparisonsOnlineReading2012a; @boyceMazeMadeEasy2020]. The Maze task has less face-validity than eye-tracking or even SPR; repeated forced-choice selections does not seem very similar to normal reading. Despite this, @forsterMazeTaskMeasuring2009 report that "At a phenomenological level, participants typically report that they feel as if they are reading the sentence relatively naturally and that the correct alternative seems to “leap out” at them, so that they do not have to inspect the incorrect -alternative very carefully, if at all." This suggests that the Maze task may rely on the same language processing facilities tapped into by other reading methods. Thus, using Maze may not be the best paradigm for studying the process of normal reading, but may be perfectly good or even superior for getting at underlying language processing. +alternative very carefully, if at all." (p. 164). This suggests that the Maze task may rely on the same language processing facilities tapped into by other reading methods. Thus, using Maze may not be the best paradigm for studying the process of normal reading, but may be perfectly good or even superior for getting at underlying language processing. However, G-maze materials are effort-intensive to construct because of the need to select infelicitous words as distractors for each spot of each sentence. This burdensome preparation may explain why the Maze task was not widely adopted. @boyceMazeMadeEasy2020 demonstrated a way to automatically generate Maze distractors by using language models from Natural Language Processing to find words that are high surprisal in the context of the target sentence, and thus likely to be judged infelicitous by human readers. @boyceMazeMadeEasy2020 call Maze with automatically generated distractors A-maze. In a comparison, A-maze distractors had similar results to the hand-generated G-maze distractors from @witzelComparisonsOnlineReading2012a and A-maze outperformed L-maze and an SPR control in detecting and localizing expected slowdown effects. @sloggettAmazeAnyOther2020 also found that A-maze and G-maze distractors yielded similar results on a disambiguation paradigm. @@ -141,9 +140,9 @@ Another recent variant of the Maze task is interpolated I-maze, which uses a mix Localized measures can be used to attribute processing difficulty to individual words; however, to determine if a method is localized requires knowing how hard the words were to process. One approach is to look at properties of words that are known to influence reading times across methods such as eye-tracking and SPR. Longer words and lower frequency words tend to take longer to process [@klieglLengthFrequencyPredictability2004], as do less predictable words [@raynerEffectsFrequencyPredictability2004]. -A word can be unpredictable for a variety of reasons: it could be low frequency, semantically unexpected, the start of a low-frequency syntactic construction, or a word that disambiguates prior words to a less common parse. Many targeted effects of interest can thus be potentially accommodated theoretically as specific features that influence word predictability. ^[Of course, not all effects can necessarily be reduced to word predictability effects, and effects that *cannot* be reduced to word predictability may be of particular theoretical interest. Candidates include, for example, memory-based effects [@lewis-etal:2006; @levy-fedorenko-gibson:2013jml], noisy-channel error identification [@levy-etal:2009pnas], and the magnitude of processing difficulty in garden-path resolution [@van-schijndel-linzen-2021:single-stage-models; @wilcoxTargetedAssessmentIncremental2021].] Thus incremental processing methods that are sensitive to predictability are useful for testing linguistic theories that make predictions about what words are unexpected. +A word can be unpredictable for a variety of reasons: it could be low frequency, semantically unexpected, the start of a low-frequency syntactic construction, or a word that disambiguates prior words to a less common parse. Many targeted effects of interest can thus be potentially accommodated theoretically as specific features that influence word predictability.^[Of course, not all effects can necessarily be reduced to word predictability effects, and effects that *cannot* be reduced to word predictability may be of particular theoretical interest. Candidates include, for example, memory-based effects [@lewis-etal:2006; @levy-fedorenko-gibson:2013jml], noisy-channel error identification [@levy-etal:2009pnas], and the magnitude of processing difficulty in garden-path resolution [@van-schijndel-linzen-2021:single-stage-models; @wilcoxTargetedAssessmentIncremental2021].] Thus incremental processing methods that are sensitive to predictability are useful for testing linguistic theories that make predictions about what words are unexpected. -The overall predictability of a word in a context can be estimated using language models that are trained on large corpora of language to predict what word comes next in a sentence. A variety of pre-trained models exist, with varied internal architectures and training methods, but all of them generate measures of predictability. Predictability is often measured in bits of surprisal, which is the negative log probability of a word [@hale:2001, @levy:2008]. 1 bit of surprisal means a word is expected to occur half the time, 2 bits is 1/4 of the time, etc. +The overall predictability of a word in a context can be estimated using language models that are trained on large corpora of language to predict what word comes next in a sentence. A variety of pre-trained models exist, with varied internal architectures and training methods, but all of them generate measures of predictability. Predictability is often measured in bits of surprisal, which is the negative log probability of a word [@hale:2001; @levy:2008]. 1 bit of surprisal means a word is expected to occur half the time, 2 bits is 1/4 of the time, etc. The functional form of the relationship between RTs from eye-tracking and SPR studies and the predictability of the words is linear in terms of surprisal [@smithEffectWordPredictability2013; @wilcoxPredictivePowerNeural2020; @goodkindPredictivePowerWord2018; @lukeLimitsLexicalPrediction2016], even when two important context-invariant word features known to influence RTs, length and frequency, are controlled for. Predictability reliably correlates with reading time over a wide range of surprisals found in natural-sounding texts, not just for words that are extremely expected or unexpected [@smithEffectWordPredictability2013]. If Maze RTs reflect the same processing as other methods, we expect to find a similar linear relationship with surprisal. @@ -178,7 +177,7 @@ One of the benefits of the Maze task is that it forces incremental processing by However, terminating sentences on errors means that we don't have RTs for words after a participant makes a mistake in an item. In traditional G-maze tasks, with hand-crafted distractors and attentive participants, errors are rare and data loss is a small issue. However, this data loss can be worse with A-maze materials and crowd-sourced participants [@boyceMazeMadeEasy2020]. The high errors are likely from some combination of participants guessing randomly and from auto-generated distractors that in fact fit the sentence; as @boyceMazeMadeEasy2020 noted, some distractors, especially early in the sentence, were problematic and caused considerable data loss. -The high error rates could be improved by auto-generating better distractors or hand-replacing problematic ones, but that does not solve the fundamental problem with long items. Well-chosen distractors and attentive participants reduce the error rate, but the error rate will still compound over long materials. For instance, with a 1% error rate, `r round(.99**15*100)`% of participants would complete each 15-word sentence, but only `r round(.99**50*100)`% would complete a 50 word vignette, and `r round(.99**200*100)`% would complete a 200 word passage. In order to run longer materials, we needed something to do when participants made a mistake other than terminate the entire item. +The high error rates could be improved by auto-generating better distractors or hand-replacing problematic ones, but that does not solve the fundamental problem with long items. Well-chosen distractors and attentive participants reduce the error rate, but the error rate will still compound over long materials. For instance, with a 1% error rate, `r round(.99**15*100)`% of participants would complete each 15-word sentence, but only `r round(.99**50*100)`% would complete a 50-word vignette, and `r round(.99**200*100)`% would complete a 200-word passage. In order to run longer materials, we needed something to do when participants made a mistake other than terminate the entire item. As a solution, we introduce an *error-correction* variant of Maze shown in Figure \@ref(fig:diagram). When a participant makes an error, they see an error message and must try again to select the correct option, before continuing the sentence as normal. We make error-correction Maze available as an option in a modification of the Ibex Maze implementation introduced in @boyceMazeMadeEasy2020 (https://github.com/vboyce/Ibex-with-Maze). The code records both the RT to the first click and also the total RT until the correct answer is selected as separate values. @@ -261,7 +260,7 @@ data_sentence <- data_before <- data_good %>% spr <- read_rds(here("Data/SPR/first.rds")) %>% filter(correct>4) %>% select(WorkerId) %>% unique() ``` -We recruited 100 participants from Amazon Mechanical Turk in April 2020, and paid each participant $3.50 for roughly 20 minutes of work. We excluded data from those who did not report English as their native language, leaving `r data_filt %>% select(subject) %>% unique() %>% nrow()` participants. After examining participants' performance on the task (see Results for details), we excluded data from participants with less than 80% accuracy, removing participants whose behavior was consistent with random guessing. After this exclusion, `r some %>% select(subject) %>% unique() %>% nrow()` participants were left. +We recruited 100 participants from Amazon Mechanical Turk in April 2020, and paid each participant $3.50 for roughly 20 minutes of work. We excluded data from those who did not report English as their native language, leaving `r data_filt %>% select(subject) %>% unique() %>% nrow()` participants. After examining participants' performance on the task (see results for details), we excluded data from participants with less than 80% accuracy, removing participants whose behavior was consistent with random guessing. After this exclusion, `r some %>% select(subject) %>% unique() %>% nrow()` participants were left. ## Procedure Participants first gave their informed consent and saw task instructions. Then they read a short practice story in the Maze paradigm and answered 2 binary-choice practice comprehension questions, before reading one main story in the error-correction A-maze task. After the story, they answered 6 comprehension questions, commented on their experience, answered optional demographic questions, were debriefed, and were given a code to enter for payment. The experiment was implemented in Ibex (https://github.com/addrummond/ibex). @@ -283,13 +282,14 @@ package_list <- c("tidyverse","brms","rstan","bookdown", "rticles", "papaja", a <- cite_r("r-references.bib", pkgs=package_list, withhold=F, footnote=T) +foo <- a$pkgs[1] |> str_sub(3,-3) ``` ## Modeling approach -Our analytic questions required multiple modeling approaches. To look at the functional form of the relationship between surprisal and RT data, we fit Generalized Additive Models (GAMs) to allow for non-linear relationships [@wood:2017GAMs]. GAM model summaries can be harder to interpret than those for linear models, so to measure effect sizes and assess spillover, we used linear mixed models. Finally, in order to determine which language model best predicts the RT data, we fit additional linear models with predictors from multiple language models to look at their relative contributions. All these models used surprisal, frequency, and length as predictors for RT. We considered these predictors from both the current and past word to account for the possibility of spillover effects in A-maze. For SPR comparisons, we included predictors from the current and past three words to account for known spillover effects. We conducted data processing and analyses using `r a$r`. +Our analytic questions required multiple modeling approaches. To look at the functional form of the relationship between surprisal and RT data, we fit Generalized Additive Models (GAMs) to allow for non-linear relationships [@wood:2017GAMs]. GAM model summaries can be harder to interpret than those for linear models, so to measure effect sizes and assess spillover, we used linear mixed models. Finally, in order to determine which language model best predicts the RT data, we fit additional linear models with predictors from multiple language models to look at their relative contributions. All these models used surprisal, frequency, and length as predictors for RT. We considered these predictors from both the current and past word to account for the possibility of spillover effects in A-maze. For SPR comparisons, we included predictors from the current and past three words to account for known spillover effects. We conducted data processing and analyses using R Version 4.2.2 [@R-base] [^papaja_pkg_citations]. -`r a$pkgs` +`r foo` ```{r} surps <- read_rds(here("Prep_code/natural_stories_surprisals.rds")) @@ -326,9 +326,9 @@ We created a set of predictor variables of frequency, word length, and surprisal ### Exclusions -In the Maze task, the first word of every sentence is paired with a nonce (x-x-x) distractor rather than a real word (as there is no context to use to distinguish between real words); due to this difference, we excluded the first word of every sentence, leaving `r nrow(not_first)` words. We excluded words for which we didn't have surprisal or frequency information, leaving `r nrow(not_na)` words. We additionally excluded words that any model treated as being composed of multiple tokens (primarily words with punctuation), leaving `r nrow(not_gpt)` words[^1]. We excluded outlier RTs that were <100 or >5000 ms (<100 is likely a recording error, >5000 is likely the participant getting distracted). We exclude RTs from words where mistakes occurred or which occurred after a mistake in the same sentence. We only analyzed words where we had values for all predictors, which meant that if the previous word was unknown to a model, the word was excluded because of missing values for a lagged predictor. +In the Maze task, the first word of every sentence is paired with a nonce (x-x-x) distractor rather than a real word (as there is no context to use to distinguish between real words); due to this difference, we excluded the first word of every sentence, leaving `r nrow(not_first)` words. We excluded words for which we didn't have surprisal or frequency information, leaving `r nrow(not_na)` words. We additionally excluded words that any model treated as being composed of multiple tokens (primarily words with punctuation), leaving `r nrow(not_gpt)` words.[^1] We excluded outlier RTs that were <100 or >5000 ms (<100 is likely a recording error, >5000 is likely the participant getting distracted). We exclude RTs from words where mistakes occurred or which occurred after a mistake in the same sentence. We only analyzed words where we had values for all predictors, which meant that if the previous word was unknown to a model, the word was excluded because of missing values for a lagged predictor. -[^1]:Surprisals should be additive, but summing the surprisals for multi-token words gave some unreasonable responses. For instance, in one story the word king!\' has a surprisal of 64 under GRNN (context: The other birds gave out one by one and when the eagle saw this he thought, \'What is the use of flying any higher? This victory is in the bag and I am king!\'). While GPT-2 using byte-pair encoding that can split up words into multiple parts, excluding words it split up only excluded 30 words that were not already excluded by other models. +[^1]:Surprisals should be additive, but summing the surprisals for multi-token words gave some unreasonable responses. For instance, in one story the word "king!\'" has a surprisal of 64 under GRNN (context: The other birds gave out one by one and when the eagle saw this he thought, \'What is the use of flying any higher? This victory is in the bag and I am king!\'). While GPT-2 using byte-pair encoding that can split up words into multiple parts, excluding words it split up only excluded 30 words that were not already excluded by other models. ### Model specification To infer the shape of the relationship between our predictor variables and RTs, we fit generalized additive models (GAMs) using `R`'s `mgcv` package to predict the mean RT (after exclusions) for each word, averaging across participants from whom we obtained an unexcluded RT for that word. We centered but did not rescale the length and frequency predictors, and left surprisal uncentered for interpretability. We used smooth terms (`mgcv`'s `s()`) for surprisal and tensor product terms (`mgcv`'s `ti()`) for frequency-by-length effects and interactions. We use restricted maximum likelihood (REML) smoothing for parameter estimation. To more fully account for the uncertainty in the smoothing parameter estimates, we fit 101 bootstrap replicates of each GAM model; in Figures \@ref(fig:gam) and \@ref(fig:spr-gam), the best-fit lines derive from the mean estimated effect size across the bootstrap replicates, and the shaded areas indicate a 95\% bootstrap confidence interval on this effect size (the boundaries are the 2.5\% and 97.5\% quantiles of the bootstrapped replicates). @@ -343,7 +343,7 @@ For model comparisons, we took by-item averaged data to aid in fast model fittin ## Do participants engage successfully? -(ref:error-cap) A. Participant's accuracy on the Maze task (fraction of words selected correctly) versus their average reaction time (in ms). Many participants (marked in green) chose the correct word >80% of the time; others (in red) appear to be randomly guessing. B. Performance on the comprehension questions. Participants with low accuracy performed poorly on comprehension questions; Participants with >80% task accuracy tended to do well; their performance was roughly comparable to the performance of SPR participants from @futrellNaturalStoriesCorpus2020 on their first stories. +(ref:error-cap) A. Accuracy on the Maze task (fraction of words selected correctly) versus their average reaction time (in ms). Many participants (marked in green) chose the correct word >80% of the time; others (in red) appear to be randomly guessing. B. Performance on the comprehension questions. Participants with low accuracy performed poorly on comprehension questions; Participants with >80% task accuracy tended to do well; their performance was roughly comparable to the performance of SPR participants from @futrellNaturalStoriesCorpus2020 on their first stories. ```{r errors, out.width="\\textwidth", fig.width=8, fig.height=3, fig.pos="ht", fig.cap="(ref:error-cap)"} error_plot <- ggplot(data_error_summ, aes(x=pct_correct, y=mean_rt, color=accurate))+ @@ -383,7 +383,7 @@ Accuracy, or how often a participant chose the correct word over the distractor, [^2]: To avoid biasing the average if a participant took a pause before returning to the task, RTs greater than 5 seconds were excluded. This exclusion removed `r nrow(data_long)` words, or `r round(nrow(data_long)/nrow(data_no_prac)*100, digits=2)`% of trials. -Another cluster of participants (in red) sped through the task, seemingly clicking randomly. This bimodal distribution is likely due to the mix of workers on Mechanical Turk, as we did not use qualification cutoffs. We believe the high level of random guessing is an artifact of the subject population [@hauser2018], and we expect that following current recommendations for participant recruitment, such as using qualification cutoffs or another recruitment site would result in fewer participants answering randomly [@eyal2021;@peer2017]. +Another cluster of participants (in red) sped through the task, seemingly clicking randomly. This bimodal distribution is likely due to the mix of workers on Mechanical Turk, as we did not use qualification cutoffs. We believe the high level of random guessing is an artifact of the subject population [@hauser2018], and we expect that following current recommendations for participant recruitment, such as using qualification cutoffs or another recruitment site, would result in fewer participants answering randomly [@eyal2021;@peer2017]. @@ -483,7 +483,7 @@ both <- maze %>% inner_join(spr_collapse) ggplot(both, aes(x=maze, y=spr)) + geom_point(alpha=.5, size=1) + - labs(x="A-Maze", y="SPR") + + labs(x="A-maze", y="SPR") + coord_fixed(ratio=1) + geom_smooth(method="lm") @@ -576,11 +576,11 @@ data_anything_goes <- data_filt %>% -To assess the shape of the RT-surprisal relationship, we then fit generalized additive models (GAMs).[^14] For these models, we only included data that occurred before any mistakes in the sentence; due to limits of model vocabulary, words with punctuation and some uncommon or proper nouns were excluded. We used surprisals generated by 4 different language models for robustness. (See Methods for details on language models, exclusions, and model fit.) +To assess the shape of the RT-surprisal relationship, we then fit generalized additive models (GAMs).[^14] For these models, we only included data that occurred before any mistakes in the sentence; due to limits of model vocabulary, words with punctuation and some uncommon or proper nouns were excluded. We used surprisals generated by 4 different language models for robustness. (See methods for details on language models, exclusions, and model fit.) [^14]: Due to previous reports of a length--frequency interaction in RT measures [@kliegl-etal:2006], before pursuing our primary question of the functional form of the surprisal--RT relationship, as an exploratory measure we fit generalized additive models (GAMs) with not only the main effects but also the two-way interactions between surprisal, length, and frequency, for the current word and for the previous word. This analysis revealed significant effects of current-word and previous-word surprisal, current-word and previous-word length, and significant interactions of current-word frequency by length and frequency by surprisal. The other main effects and interactions did not reach statistical significance. (These are results from `mgcv`'s `summary()`; the $p$-values are approximate.) Appendix C provides tables and plots of these effects and interactions for GPT-2. The interactions can be summarized as long low-frequency words and surprising, high-frequency words as having especially long RTs; and surprising, low-frequency words as having shorter RTs than would otherwise be predicted. However, these effects are small in terms of variance explained compared to the current-word surprisal effect, which is by far the largest single effect in the model. For simplicity we therefore set aside the interaction terms involving surprisal for the remainder of this analysis. -(ref:gam-cap) GAM results for the effect of current word surprisal (top) or previous word surprisal (bottom) on Maze reaction time (RT). Density of data is shown along the x-axis. The best-fit lines is from the mean estimated effect size across the bootstrap replicates, and the shaded areas indicate a 95\% bootstrap confidence interval on this effect size. For each of the 4 language models used, there is a linear relationship between current word surprisal and RT. The relationship between previous word surprisal and RT is much flatter. +(ref:gam-cap) GAM results for the effect of current word surprisal (top) or previous word surprisal (bottom) on Maze reaction time (RT). Density of data is shown along the x-axis. The best-fit lines are from the mean estimated effect size across the bootstrap replicates, and the shaded areas indicate a 95\% bootstrap confidence interval on this effect size. For each of the 4 language models used, there is a linear relationship between current word surprisal and RT. The relationship between previous word surprisal and RT is much flatter. ```{r gam, out.width="\\textwidth", fig.width=8, fig.height=3, fig.pos="ht", fig.cap="(ref:gam-cap)"} @@ -621,7 +621,7 @@ plot_grid(p2[[1]], p2[[2]], nrow=2, rel_heights = c(1, .3)) The main effects of current and previous word surprisals on RT are shown in Figure \@ref(fig:gam). Note that for each of the models, high-surprisal words are rare, with much of the data from words with between 0 and 15 bits of surprisal. All 4 models show a roughly linear relationship between current word surprisal and RT, especially in the region with more data. To determine the goodness of fit of a model in which word probability effects on RT are taken to be linear in surprisal, we also fit GAM models with both parametric linear and nonparametric non-linear terms for surprisal; for all but the 5-gram model, these analyses supported a linear effect of surprisal (Appendix D). -(ref:spr-gam-cap) GAM results for the effect of current word surprisal (top) or the surprisal of an earlier word, up to 3 words back on SPR RT data [@futrellNaturalStoriesCorpus2020]. Density of data is shown along the x-axis. The best-fit lines is from the mean estimated effect size across the bootstrap replicates, and the shaded areas indicate a 95\% bootstrap confidence interval on this effect size. +(ref:spr-gam-cap) GAM results for the effect of current word surprisal (top) or the surprisal of an earlier word, up to 3 words back on SPR RT data [@futrellNaturalStoriesCorpus2020]. Density of data is shown along the x-axis. The best-fit lines are from the mean estimated effect size across the bootstrap replicates, and the shaded areas indicate a 95\% bootstrap confidence interval on this effect size. ```{r spr-gam, out.width="\\textwidth", fig.width=8, fig.height=4, fig.pos="ht", fig.cap="(ref:spr-gam-cap)"} gam1 <- read_rds(here("Analysis/models/bootstrapped_spr_GAM_surprisal_predictions.rds")) %>% @@ -665,7 +665,7 @@ Comparing Maze and SPR, we see that both show a linear relationship, but Maze ha One of the main claimed advantages of the Maze task is that it has better localization and less spillover than SPR. We examined how much spillover A-maze and SPR each had by fitting linear models with predictors from current and previous words. Large effects from previous words are evidence for spillover; effects of the current word dwarfing any lagged effects would be evidence for localization. -We modeled reading time as a function of surprisal, frequency, and length as well as surprisal$\times$length and frequency$\times$length interactions. For all of these, we included the predictors for the current and previous word, and we centered, but did not rescale, all predictors. (See Methods for more details on these predictors and model fit process.) As with the GAM models, we used surprisal calculations from 4 different language models for robustness. +We modeled reading time as a function of surprisal, frequency, and length as well as surprisal$\times$length and frequency$\times$length interactions. For all of these, we included the predictors for the current and previous word, and we centered, but did not rescale, all predictors. (See methods for more details on these predictors and model fit process.) As with the GAM models, we used surprisal calculations from 4 different language models for robustness. (ref:coeffs) Point estimates and 95% credible intervals for coefficients predicted by fitted Bayesian regression models predicting A-maze RT. Units are in ms. Surprisal is per bit, length per character, and frequency per $log_2$ occurrence per billion words. @@ -701,12 +701,12 @@ ggthemes::scale_color_solarized(accent="violet")+ ``` -The Maze linear model effects are shown in Figure \@ref(fig:coeffs-maze) (See also Appendix B for a table of effects). Across all models, there were consistent large effects of length and surprisal at the current word, but minimal effects of frequency. This lack of frequency effects differs from the results usually reported for SPR and eye-tracking (though see @shainLargescaleStudyEffects2019). There was a small interaction between surprisal and length at the current word. +The Maze linear model effects are shown in Figure \@ref(fig:coeffs-maze) (see also Appendix B for a table of effects). Across all models, there were consistent large effects of length and surprisal at the current word, but minimal effects of frequency. This lack of frequency effects differs from the results usually reported for SPR and eye-tracking [though see @shainLargescaleStudyEffects2019]. There was a small interaction between surprisal and length at the current word. Crucially, the effects of previous word predictors are close to zero, and much smaller than the effects of surprisal and length of the current word, an indication that spillover is limited and effects are strongly localized. -(ref:coeffs-spr) Point estimates and 95% confidence intervals (+/- 1.97 standard error) for coefficients predicted by fitted regression models predicting SPR RT. Units are in ms. Surprisal is per bit, length per character, and frequency per $log_2$ occurrence per billion words. +(ref:coeffs-spr) Point estimates and 95% confidence intervals (+/-1.97 standard error) for coefficients predicted by fitted regression models predicting SPR RT. Units are in ms. Surprisal is per bit, length per character, and frequency per $log_2$ occurrence per billion words. ```{r coeffs-spr, out.width="\\textwidth", fig.width=8, fig.height=3, fig.pos="ht", fig.cap="(ref:coeffs-spr)"} test_plot %>% filter(type=="SPR") %>% mutate(time=factor(time, levels=c("Current","Previous","2Previous","3Previous")))%>% ggplot(aes(y=Term, x=Estimate, group=model, color=model, shape=model))+ @@ -720,25 +720,26 @@ ggthemes::scale_color_solarized(accent="violet")+ ``` -We ran similar models for SPR, although to account for known spillover effects, we consider predictors from the current and 3 previous words. Due to issues fitting models, the details of the models differed (see Methods). The SPR coefficients are shown in Figure \@ref(fig:coeffs-spr) (see also Appendix B for a table of coefficients). Surprisal, length, and frequency effects are all evident for the current word and surprisal and frequency show effects from the previous word as well. Unlike for Maze, with SPR there is not a clear diminishing of the size of the effects as one goes from current word to prior word predictors. +We ran similar models for SPR, although to account for known spillover effects, we consider predictors from the current and 3 previous words. Due to issues fitting models, the details of the models differed (see methods). The SPR coefficients are shown in Figure \@ref(fig:coeffs-spr) (see also Appendix B for a table of coefficients). Surprisal, length, and frequency effects are all evident for the current word and surprisal and frequency show effects from the previous word as well. Unlike for Maze, with SPR there is not a clear diminishing of the size of the effects as one goes from current word to prior word predictors. -Whereas Maze showed surprisal effects in the 10 to 25 ms/bit range and length effects in the 15 to 20 ms/character range, SPR effects are about 1-2 ms per bit or character. This difference in effect size is disproportionate to the overall speed of the methods; the predicted intercept for the Maze task was roughly 880 ms and for SPR was roughly 360 ms. Thus Maze is 2--3 times as slow as SPR but has roughly 10 times larger effects. +Whereas Maze showed surprisal effects in the 10 to 25 ms/bit range and length effects in the 15 to 20 ms/character range, SPR effects are about 1 to 2 ms per bit or character. This difference in effect size is disproportionate to the overall speed of the methods; the predicted intercept for the Maze task was roughly 880 ms and for SPR was roughly 360 ms. Thus Maze is 2--3 times as slow as SPR but has roughly 10 times larger effects. ## Which language model fits best? -Our last analysis question is whether some of the language models fit the human RT data better than others. We assessed each model's fit to A-maze data using log likelihood and R-squared. Then we did a nested model comparison, looking at whether a model with multiple surprisal predictors (ex, GRNN and GPT-2) had a better fit than a model with only one (ex GRNN alone). +Our last analysis question is whether some of the language models fit the human RT data better than others. We assessed each model's fit to A-maze data using log likelihood and R-squared. Then we did a nested model comparison, looking at whether a model with multiple surprisal predictors (ex. GRNN and GPT-2) had a better fit than a model with only one (ex. GRNN alone). As shown in Table \@ref(tab:maze-compare), GPT-2 provides a lot of additional predictive value over each other model, GRNN provides a lot over 5-gram and Transformer-XL and a little complementary information over GPT-2. Transformer-XL provides a lot over 5-gram, and 5-gram provides little over any model. The single-model measures of log likelihood confirm this hierarchy, as GPT-2 is better than GRNN is better than Transformer-XL is better than 5-gram. ```{r maze-compare} -read_rds(here("Analysis/models/maze_model_compare.rds")) %>% knitr::kable(format="latex", position="ht",caption="Results of model comparisons on Maze data. Each row shows the additional predictive value gained from adding that model to another model. F values and p values from ANOVA tests between 1-surprisal-source and 2-source models are reported. We also report log likelihoods of models with only one surprisal source and the r-squared correlation between the model's predictions and the data.") +read_rds(here("Analysis/models/maze_model_compare.rds")) |> mutate(`Log Lik`=str_replace(`Log Lik`,"-","--")) |> +knitr::kable(format="latex", position="ht",caption="Results of model comparisons on Maze data. Each row shows the additional predictive value gained from adding that model to another model. F values and p values from ANOVA tests between 1-surprisal-source and 2-source models are reported. We also report log likelihoods of models with only one surprisal source and the r-squared correlation between the model's predictions and the data.") ``` -We followed the same process for the SPR data with results shown in Table \@ref(tab:spr-compare). For SPR, GPT-2 and 5-gram models contain some value over each other model, which is less clear for Transformer-XL and GRNN. In terms of log likelihoods, we find that GPT-2 is better than 5-gram is better than GRNN is better than Transformer-XL, although differences are small. The relatively good fit of 5-gram models to SPR data compared with neural models matches results from @huSystematicAssessmentSyntactic2020 and @wilcoxPredictivePowerNeural2020, and contrasts with the Maze results, where the 5-gram model had the worst fit and did not provide additional predictive value over the other models. While the nature of the generalizations made by these neural network-based models are not fully understood, controlled tests have suggested that their next-word predictions often reflect deeper features of linguistic structure [@warstadt-etal:2020-BLiMP; @huSystematicAssessmentSyntactic2020], such as subject--verb agreement [@marvin-linzen:2018-targeted] and wh-dependencies [@wilcox-etal:2022-using-computational-models], and are sensitive over longer context windows, than n-gram models. The fact that the neural language models dominate the 5-gram models for Maze but not SPR thus suggests that Maze RTs may be more sensitive than SPR RTs to richer language structure-related processes during real-time comprehension. +We followed the same process for the SPR data with results shown in Table \@ref(tab:spr-compare). For SPR, GPT-2 and 5-gram models contain some value over each other model, which is less clear for Transformer-XL and GRNN. In terms of log likelihoods, we find that GPT-2 is better than 5-gram is better than GRNN is better than Transformer-XL, although differences are small. The relatively good fit of 5-gram models to SPR data compared with neural models matches results from @huSystematicAssessmentSyntactic2020 and @wilcoxPredictivePowerNeural2020, and contrasts with the Maze results, where the 5-gram model had the worst fit and did not provide additional predictive value over the other models. While the nature of the generalizations made by these neural network-based models is not fully understood, controlled tests have suggested that their next-word predictions often reflect deeper features of linguistic structure [@warstadt-etal:2020-BLiMP; @huSystematicAssessmentSyntactic2020], such as subject--verb agreement [@marvin-linzen:2018-targeted] and wh-dependencies [@wilcox-etal:2022-using-computational-models], and are sensitive over longer context windows, than n-gram models. The fact that the neural language models dominate the 5-gram models for Maze but not SPR thus suggests that Maze RTs may be more sensitive than SPR RTs to richer language structure-related processes during real-time comprehension. ```{r} maze <- read_rds(here("Analysis/models/maze_model_compare.rds")) @@ -750,28 +751,28 @@ As an overall measure of fit to data, we calculate multiple R-squared for the si ```{r spr-compare} -read_rds(here("Analysis/models/spr_model_compare.rds")) %>% knitr::kable(format="latex", position="ht",caption="Results of model comparisons on SPR data. Each row shows the additional predictive value gained from adding that model to another model. F values and p values from ANOVA tests between 1-surprisal-source and 2-source models are reported. We also report log likelihoods of models with only one surprisal source and the r-squared correlation between the model's predictions and the data.") +read_rds(here("Analysis/models/spr_model_compare.rds")) |> mutate(`Log Lik`=str_replace(`Log Lik`,"-","--")) |> knitr::kable(format="latex", position="ht",caption="Results of model comparisons on SPR data. Each row shows the additional predictive value gained from adding that model to another model. F values and p values from ANOVA tests between 1-surprisal-source and 2-source models are reported. We also report log likelihoods of models with only one surprisal source and the r-squared correlation between the model's predictions and the data.") ``` # Discussion -We introduced error-correction Maze, a tweak on the presentation of Maze materials that makes Maze feasible for multi-sentence passages. We then used A-maze distractors and the error-correction Maze presentation to gather data on participants reading stories from the Natural Stories corpus in the Maze. As laid out in the Introduction, this current study addressed five main questions. +We introduced error-correction Maze, a tweak on the presentation of Maze materials that makes Maze feasible for multi-sentence passages. We then used A-maze distractors and the error-correction Maze presentation to gather data on participants reading stories from the Natural Stories corpus in the Maze. As laid out in the introduction, this current study addressed five main questions. First, we found that participants could read and comprehend the 1000 word stories, despite the slowness and added overhead of reading in the Maze task. This result expands the domain of materials usable with Maze beyond targeted single-sentence items to longer, naturalistic texts with sentence-to-sentence coherency. -Second, we took advantage of the pre-existing SPR corpus on Natural Stories to compare the RT profiles between Maze and SPR. Maze and SPR pick up on similar features in words, as shown by the high correlations between Maze and SPR RTs on the sentence level. The correlation within Maze is higher than Maze to SPR correlation or SPR-SPR correlations, which is evidence that Maze is less noisy than SPR. +Second, we took advantage of the pre-existing SPR corpus on Natural Stories to compare the RT profiles between Maze and SPR. Maze and SPR pick up on similar features in words, as shown by the high correlations between Maze and SPR RTs on the sentence level. The correlation within Maze is higher than the Maze to SPR correlation or SPR-SPR correlations, which is evidence that Maze is less noisy than SPR. Third, we addressed whether the A-maze RT for a word showed a linear relationship with that word's surprisal. We found that A-maze RTs are linearly related to surprisal, matching the functional profile found with other incremental processing methods. -Fourth, we compared the spillover profiles between Maze and SPR. For Maze, we found large effects of the current word's surprisal and length, which dwarfed any spillover effects from previous word predictors. In contrast, for SPR, we found effects of roughly equal sizes from the current and previous words. ^[Furthermore, the typical spillover profile for SPR data may be worse than suggested by the Natural Stories corpus SPR data: for example, @smithEffectWordPredictability2013 found that most of a word's surprisal effect showed up only one to two words downstream.] Overall, Maze is a slower task than SPR, but it also has much larger effects of length and surprisal, perhaps due to requiring more focus, and thus generating less noisy data. -We do not find frequency effects on the Maze data, but we do on the SPR data. This could be explained if frequency effects are a first rough approximation of in-context predictability, before the fuller context-sensitive surprisal information is available. In this case, faster methods like eye-tracking and SPR would show frequency effects (in addition to surprisal), but slower methods like Maze would not as the additional demands slow down the response, allowing more contextual information to be used. While this is a difference between Maze and other incremental processing methods, we do not consider it a flaw for Maze---indeed, for researchers interested in focusing on context-contingent language processing, it may suggest an advantage for the Maze task. Regardless, these differences highlight the importance of understanding task demands of different incremental processing methods. +Fourth, we compared the spillover profiles between Maze and SPR. For Maze, we found large effects of the current word's surprisal and length, which dwarfed any spillover effects from previous word predictors. In contrast, for SPR, we found effects of roughly equal sizes from the current and previous words^[Furthermore, the typical spillover profile for SPR data may be worse than suggested by the Natural Stories corpus SPR data: for example, @smithEffectWordPredictability2013 found that most of a word's surprisal effect showed up only one to two words downstream.]. Overall, Maze is a slower task than SPR, but it also has much larger effects of length and surprisal, perhaps due to requiring more focus, and thus generating less noisy data. +We do not find frequency effects on the Maze data, but we do on the SPR data. This could be explained if frequency effects are a first rough approximation of in-context predictability, before the fuller context-sensitive surprisal information is available. In this case, faster methods like eye-tracking and SPR would show frequency effects (in addition to surprisal), but slower methods like Maze would not as the additional demands slow down the response, allowing more contextual information to be used. While this is a difference between Maze and other incremental processing methods, we do not consider it a flaw for Maze – indeed, for researchers interested in focusing on context-contingent language processing, it may suggest an advantage for the Maze task. Regardless, these differences highlight the importance of understanding task demands of different incremental processing methods. Lastly, we examined how different language models fare at predicting human RT data. We found that overall, the models were more predictive of the A-maze data than SPR data; however, the hierarchy of the model's predictive performance also differed between the A-maze and SPR datasets. This difference suggests that how well a language model predicts human RTs may depend on task. Maze RTs were by far best predicted by neural network language models, whereas SPR RTs were predicted nearly as well by 5-gram models. Our understanding of the linguistic generalization capabilities and performance of these neural network models is still limited, and there are cases where they are known to make more superficial, non-human-like generalizations [@mccoy-etal-2019-right; @chaves-2020-dont], but controlled tests in the NLP literature that analyze their behavior on classic psycholinguistics paradigms [@linzen-etal:2016tacl; @futrell-etal:2019-neural-language-models; @warstadt-etal:2020-BLiMP; @wilcox-etal:2022-using-computational-models] suggest more human-like performance than n-gram models are capable of. These findings further add to the evidence that the Maze task is favorable for RT-based investigations of underlying linguistic processing in the human mind. More broadly, further comparisons between different processing methods on the same materials could be useful for a deeper understanding of how task demands influence language processing [ex. @bartekSearchOnlineLocality2011]. -Overall, A-maze has excellent localization, although some models showed small but statistically significant effects of the past word. On the whole, our results support the idea that Maze forces language processing to be close to word-by-word, and thus the Maze task can be used under the assumption that the RT of a word primarily reflects its own properties and not those of earlier words. Correlation analysis between Maze and SPR suggest that Maze is picking up on many of the same patterns as does SPR, but with less noise. +Overall, A-maze has excellent localization, although some models showed small but statistically significant effects of the past word. On the whole, our results support the idea that Maze forces language processing to be close to word-by-word, and thus the Maze task can be used under the assumption that the RT of a word primarily reflects its own properties and not those of earlier words. Correlation analysis between Maze and SPR suggests that Maze is picking up on many of the same patterns as does SPR, but with less noise. ## Limitations @@ -779,12 +780,33 @@ While we expect these patterns of results reflect features of the A-maze task, t ## Future directions -Compared to traditional Maze,in error-correction Maze, participants' incentives to finish quickly are in less conflict with the experimenter's desire that participants do the task as intended. However, even with error-correction Maze, clicking randomly is still likely faster than doing the task. In discussing this work, we received the suggestion that one way to further disincentivize random clicking would be to add a pause when a participant makes a mistake, forcing them to wait some short period of time (ex 500ms) before correcting their mistake. This delay would make randomly hitting buttons slower than doing the task as intended, and we have made delaying after wrong presses an option in the error-correction Maze implementation at https://github.com/vboyce/Ibex-with-Maze. +Compared to traditional Maze, in error-correction Maze, participants' incentives to finish quickly are in less conflict with the experimenter's desire that participants do the task as intended. However, even with error-correction Maze, clicking randomly is still likely faster than doing the task. In discussing this work, we received the suggestion that one way to further disincentivize random clicking would be to add a pause when a participant makes a mistake, forcing them to wait some short period of time, such as 500ms, before correcting their mistake. This delay would make randomly hitting buttons slower than doing the task as intended, and we have made delaying after wrong presses an option in the error-correction Maze implementation at https://github.com/vboyce/Ibex-with-Maze. Error-correction Maze records RTs for words after a participant makes a mistake in the sentence. In our analyses, we excluded these post-error data, but we believe it is an open question whether data from after a participant makes a mistake is usable. That is, does it show the same profile as RTs from pre-error words, or are there traces from recovering from the mistake? If there are, how long do these effects take to fade? Whether post-mistake data is high-quality and trustworthy enough to be included in analyses is hard to assess; if it can be used, it would make the Maze task more data efficient. The Maze task is versatile and can be used or adapted for a wide range of materials and questions of interest. Its forced incrementality makes the Maze task a good target for any question that requires precisely determining the locus of incremental processing difficulty. We encourage researchers to use Maze as an incremental processing method, alone or in comparison with other methods, and we suggest that the error-correction mode be the default choice for presenting Maze materials. +# Data Accessibility {.unnumbered} +Data and materials are available at https://github.com/vboyce/natural-stories-maze. +# Ethics and consent {#ethics-and-consent-optional .unnumbered} + +This research was approved by MIT’s Committee on the Use of Humans as Experimental Subjects and run under protocol number 1605559077. + +# Funding information {#funding-information-optional .unnumbered} + +RPL acknowledges support from NSF grant BCS-2121074, NIH grant U01-NS121471, and the MIT–IBM Artificial Intelligence Research Lab. + +# Acknowledgements {#acknowledgements-optional .unnumbered} + +We thank the AMLAP 2020 audience, the Computational Psycholinguistics Lab at MIT, the Language and Cognition Lab at Stanford, the QuantLang Lab at UC Irvine, and Mike Frank for feedback on this work. + +# Competing interests {#competing-interests-mandatory .unnumbered} + +The authors have no competing interests to declare. + +# Authors' contributions {#contrib .unnumbered} +VB contributed Conceptualization, Formal Analysis, Investigation, Methodology, Software, and Writing - Original Draft Preparation. RPL contributed Conceptualization, Formal Analysis, Funding Acquisition, Methodology, Supervision, and Writing - Review & Editing. + \newpage @@ -798,7 +820,9 @@ The Maze task is versatile and can be used or adapted for a wide range of materi
\endgroup -# Appendix A +\newpage + +# Appendix A {.unnumbered} The beginning of one of the stories. This excerpt is the first 200 words of a 1000 word story. Tulip mania was a period in the Dutch Golden Age during which contract prices for bulbs of the recently introduced tulip reached extraordinarily high levels and then suddenly collapsed. At the peak of tulip mania in February sixteen thirty-seven, tulip contracts sold for more than ten times the annual income of a skilled craftsman. It is generally considered the first recorded economic bubble. The tulip, introduced to Europe in the mid sixteenth century from the Ottoman Empire, became very popular in the United Provinces, which we now know as the Netherlands. Tulip cultivation in the United Provinces is generally thought to have started in earnest around fifteen ninety-three, after the Flemish botanist Charles de l'Ecluse had taken up a post at the University of Leiden and established a botanical garden, which is famous as one of the oldest in the world. There, he planted his collection of tulip bulbs that the Emperor's ambassador sent to him from Turkey, which were able to tolerate the harsher conditions of the northern climate. It was shortly thereafter that the tulips began to grow in popularity. The flower rapidly became a coveted luxury item and a status symbol, and a profusion of varieties followed. @@ -809,7 +833,7 @@ When did tulip mania reach its peak? 1630's, 1730's From which country did tulips come to Europe? Turkey, Egypt -# Appendix B +# Appendix B {.unnumbered} Full numerical results from the fitted regression models are shown in Table \@ref(tab:pre-error) for A-maze and in Table \@ref(tab:spr-table) for SPR. @@ -880,7 +904,7 @@ knitr::kable(summ_spr, format="latex", position="!h",caption="Predictions from f ``` -# Appendix C +# Appendix C {.unnumbered} We use `mgcv`'s `ti()` tensor interaction terms to test all main effects and two-way interactions among frequency, length, and surprisal for the current word and for the previous word. These effects are visualized in Figure \@ref(fig:gam-grid) and `mgcv`'s approximate significance levels are give in Table \@ref(tab:gam-interact-table). Based on these approximate significance levels, the main effects of current and previous word surprisal and length are significant, as are the current-word frequency-by-length and frequency-by-surprisal interactions; other terms are not statistically significant. These significant interactions can be summarized as especially long, infrequent words being especially slow to select; especially frequent and surprising words being especially slow to select; and especially infrequent and surprising words being less slow to select than a main-effects-only model would predict. The data driving these interactions are in the sparse tails of the word length and surprisal distributions, and as the $F$ statistics in Table \@ref(tab:gam-interact-table) show, their variance explained is small relative to the large effect of current-word surprisal, so in the main-text analysis we set these interactions aside. @@ -905,7 +929,7 @@ knitr::include_graphics(here("Analysis/models/gam_grid.png")) -# Appendix D +# Appendix D {.unnumbered} The `mgcv` package's implementation of Generalized Additive Models [@wood:2017GAMs] allows linear and nonparametric spline effects of the same continuous predictor to be entered simultaneously into a model. Doing so associates only the nonlinear part of the effect to the spline term, allowing for approximate statistical testing of the linear and non-linear components of the effect respectively. We thus test for whether the effect of surprisal on A-Maze RTs is best described as linear or includes a non-linear component, using the `mgcv` formula: @@ -936,22 +960,3 @@ knitr::kable(gam_linear, format="latex", position="ht",caption="Comparison of si ``` -# Ethics and consent {#ethics-and-consent-optional .unnumbered} - -This research was approved by MIT’s Committee on the Use of Humans as Experimental Subjects and run under protocol number 1605559077. - -# Funding information {#funding-information-optional .unnumbered} - -RPL acknowledges support from NSF grant BCS-2121074, NIH grant U01-NS121471, and the MIT–IBM Artificial Intelligence Research Lab. - -# Acknowledgements {#acknowledgements-optional .unnumbered} - -We thank the AMLAP 2020 audience, the Computational Psycholinguistics Lab at MIT, the Language and Cognition Lab at Stanford, the QuantLang Lab at UC Irvine, and Mike Frank for feedback on this work. - -# Competing interests {#competing-interests-mandatory .unnumbered} - -The authors have no competing interests to declare. - -# Authors' contributions {#contrib .unnumbered} -VB contributed Conceptualization, Formal Analysis, Investigation, Methodology, Software, and Writing - Original Draft Preparation. RPL contributed Conceptualization, Formal Analysis, Funding Acquisition, Methodology, Supervision, and Writing - Review & Editing. - diff --git a/Papers/Paper/manuscript.pdf b/Papers/Paper/manuscript.pdf index cc9c535775f9d4c86276a944b481a2029426bff1..26357994e68335a09e824c59a519261a3959f0d6 100644 GIT binary patch delta 218916 zcmZ6SLy#^^v>@BIZQHhOo40NAYumPM+qUi7wyit=i;@1K3$u1q5JRT%FC0?O;5&YIU@ex5tqE=j%5pacfYF zXW$gRCM8p*qwsa(XwgrA!7S3Lf`MX9*RKro>k$(MqT<>(7*a#HeZ0N9`UNVo^Brd7 zLj+GLnmM&~LcE+*@tN-_zk9!C?=T%41iWJPwJqgQ_IrAJnHgdhwH9?xdRH{$spn&ED zKPizP{MOghp=IVE44HPvr)Z(uNt8nQHk$=wA$J+HG~er+xp&ql;Y*ia7a05 zhQR8*3m^48&V06RgB&`z8Gu!IBSHD1 zY&s#%e!FWxJ%Zi3tB1&MyhHt!vaf20xV0+Jawb#IwOm%X7ny~BAMRLR&Daw@WAzbQ zwTe=ao8h~tmtk~*7B>tgo*#7TL-2D(I|%{-24eTFoh<>MJ>mKCq9C1d&8=T&{Wk9= z%bFx(E$ZFX?Nx6&!0k7E`A@W8-*}dLO7YRaa+C(4XLXLf_KC_V<`iOSRL~+KX)9c% zBjwgCo@pHSn4D^xhpN|EX*u1&3SGrFQ-Ca=Ii4hD@^F=Rf&+E_p5}qVmZTs7&mV8b zvz@8VCFH`%)kp>17Xt?gkH}|?M;=g$_blCXy^|OUx;l+GKvM~gF1EF+_U6hAOITQ# z;fe7);==+$Q|X&L_h+xlrJ18AnB=OKCW{_{$IGr-JW1CG6oXNb{Tq9p$!Go!BAFm& z;$%5+Mk6@Y?KEn>^}|H7QDtoyRkaZei;R}|ewoeYRD~ajODAbu#W^)V5NP9Q9F~k;8U&5td?V1{KfCCRPz?c9-U4d zrxGiG75JbxCa_dEJ(p2Z_nWbpPD?L&?4z>ugwPy(Gbv_w{lx2WN*%1yE{8>B*-Z|m zC-Lh8A>s|D`GSsuE}PQ~+8=vhy)~J$+{RMz*opzYpo?XHf!wdL`&wXkN|Ou zM4yW^C>C|qzQ4Y@ac6ZF#b>?!{*L6#cN8g;y!p}MLgbrmZ>5$o^Uo6%DW?3m$(pP0 z=!N;=vm+p#(ixCP7r(`mdUXD!!P9=PCL>`lR*TT>&3)b;qf=lt7EZU3EQ5ZW`Bhmp z4G{wZSRWKKflc+(%Lvu0lyt@~;l>*&s>DP_oBZB2&fz>9+Tg;wOs+w8w^HEqlRSqh zz8-C{3Q|hE&{Hq8zVwmk+R!h^BS6+0mu4nBkorB6$`XbRSKVbRF=82&H1d2%V)Nbh zkjz9n1$x{aaj`#9m$JrYyS^zTNcnYrMPc;?EI5)f%@9olbvP44I42oY@Bi?_>GTB3 z1c$Lt3_@W$Rd&f-vg~JSRwJM-F2N%8S4syv5CQSANYluu>4t*z;N3@GR32xJDYSO=z2?Kj}0PM?TMC$X+}xFab;j3lBs4>Tq0kP3@~q=1?5v7P+rVbW9MT5 z92*k-VAI0n#J{I#BQqiPckC6-M^)UMM5*2OPw7@{#A22Uz1m6*a9MuHSoY1J(v$f zwmzm(90_hXYT;Y^D#->O891*>Sa+`XO!z14%i_&7FTpR+Jts`N`u8{rtKco$eU`QMRGk zi@=>=X3?9vicIRT=B%n^Kq4YV{9gT3p$+qQ2C&rAgR>{sHgfqN%$|&5u4uB#s_$hQ zoG(1lNYWO_o)7Ieu8YHEP*YjF+&NLVmQ((q`9h2$M-lTsTKHT*5oDGp>Yhc?FR`C) zK3OT(6=x~xtBSv@*P!puh1Gz>p?}6JTG-xvoj`)5S%zGsA3m|yH zZc<(#9P~d+(|;qSvc^6i)$S~G*hvQARc3e_{<>M_yutLR09{rYrmS@zfM6;^RU;f_ z-~G0nKf~bBE(g4XQ9G-G*>G!TiV6HIyt{vqLKoPF)tOV11yVO1Q&aQ;6j>xrQ!F;4 zj=SY6Hp7K^PMT7Ke8qJ#YFZuRl%L*j;z_T{7de z@~RIpO#^9|;OV#1pqv(hxY=X&0X{1?9+`-lJopa1@E-pgA!II7q6n+1_qk zpE?*YjrdqiFq|27qE5S-RAqpuHl|0|Cjx>uulsgeHKaaZQ8h~xhG5*fxC1lP+qzh5 zD00$&;f26+5WAV&6pYWx9OlEblg?qG$J0718E#bNz9Si#=h|;00apa&;gHO8*P7?n zSI{*_-!$n|febrpstF5X0Q2QoR2=AsBJMmlM;jz9I>!Vd0>s2h%O)I|w--3qfCi0C z#WbMVRHy#G`Fk&X^7#vnQ7YVXiZY^a7F^kTgM(pCrcCOWsL8feB$vw&a{or#FLZfZ zf>wZ*8!@8NXj_pUPzO6#kDhzwYk5&hf7n!b`Y9pC;d=tHOw^jiE#E2)h7pe+YP@0~ z$Qrxyxhlq-n33FP6Zoj}4tD-cRj34kt4FjNpA82HWKs{T1d*GBUiW@HSNSPb3OO{0 zTC~_+L=&3A%fWD56IT9i%;v0=Y)&{}nz{znvSABZ*FDn=pwG8yz}a+|*JET!61G;s z6Bw<=gYGRSR;W>CoZYQ8NGPl0v5vVjhF|5%FZPxu6JxAwg~6#vcx7V{LmLqiZB4L= zub%{PR>rN|88I@7zN{2U_Y0vbXUOpUX4TYQO$JY5<7FL$G(kfv$CBqT3dB@UxEtFx zp+C$UoO)BCD6Z+f?%k1Zf=3fVha2tA*1*(Gp}>5RqXNB%DiUIIzhU+V_3;}$k^g#+{X@z1#uXL z2FJCR=~u`2RwY+`mO-Q-bN?Bt;9@qG6YMCH(zB!3L{PiK24*~CdGMx`)_{GCF>@uf-=yEKXt@Ut?f`4 zt6M+xh{x~s92JwW3)cq2WOqO~tulYtVtSj&m#LmFl_gFv7sOm86%00Qt#`jofheGz z>MVun`!~ywF|JDoPnfI}${PXS&^wnX2zbjWvCFMwlIPP%NItcc;dzvLd^lGBC)@s%-k(6>x*aBC5>(vy1(GqVF#_Y7jqsxVK>+%3A(-MJbHcs}GZPt|;4E z$P(f+>IbKhFGzZ0036!? zFdrA^|HFKxI@0l1W5|7Hn&&A>1E``+ojl=03MRvm!CbFE+-A-PO8lgs$|W-=u_ymQ zUs{<|WB@#5FtE?v<)uzv)!J>ieh2J5=53Q@dTD4rX7^=G7~{h~4uBwF>*qJxHT_FG zYplC`UElJXXiq#b|Ia4i_Trt8aqHjPg+q70Ky5i$H`9G|0hE;j+PiWOZ^njVa1bSb zuC2oxWHOln{{rXBW!t44_sUInTRZ6(T=7+^!zz1h?U>g}BcAL9w?c2*QpHngJLNWl z+xpbNt$Np7u5FID9k+tt=F0GY;Bcx(@Xi!I6Ymb0!xkB;r=$W%hex&samc7jPLWw> zard+9MDaHFNm*OFE#B}cKdrc*BG_iLUugC?!pR8!=lOP%9xc;9I^H1lO*Z8b&h<7- zX0h~ZGSAqyAD;O}f%~K3{*Twrez3-$5ONQa$LK&@IN{&7TPD#9s%lN!$8de&dO)ZZ zRz1e2364(!x!4v!8GG|x&KL@&_yAK$tHeJo>tFs57n8qz)2fJ}BH>%81wN-XksR{7 zc4BSF;e2_XS-EX^9rk)BrUzavdmtrbp0YLs%%BCExGK~?iS z_$Lrx|Cm+*EkNpXvn>h(Q=~u07zbtnr53zt>uSm@eIydt2D_X*Dh2=#(7BFUd|vp~mm=ubNYnbjXj` z3w)e8<})&pM;1%&`z|)E{i?dH672R0;q?D0zqOnI1n5!_@R?d0Y>-OFMSJpV@;V~; zQYwsk04ai2R&?R0JyDt8gHoqfdxJ<{2zLFl-zE50)}`E)8zgQ`llUt; zxZ6`WiSuKZA9tMHkYR`qqnYZC%1}qjCV2GI)ruk!hNc`(#&xgzg5lf{inqM*&m68K z>aWwB-p^K=wy>aPrXh%Xvc%pcWDpP+28ZMNP1}roz0ix6xol8_#~&Z zTP;CIVYSK)Wn5_#c(lEuf_6#yAq|}vaJ=Gh)pjihzSJ(=+I^SFGPeZ(okisq%f>_+ zuF8dn;bNS6ZOqcpGdU3YtkdS1ce4rSyZtXfj2*XIU~ldW^>$O|Bex~6fDT4Lp0TxB z{UX96jX7AXiFy%A4TDppAGdt+aSY19ZrE~iNqq?zRD3PuYt5oy z?*ndyA9a2woIZe+BuqKqezM(r5XN10@I=A1=8UzvEAj+8;9>CY zgje_Gxi>vkg`x&>S3@wCtDh>6kt$$R`UZ|2a3KIRA60DlFw12cFXAwnO^_L?O{SBV zsVm55y^l|+!G@8hH-p}l^+*$p4OOFgvq5bpff>`|@aAZs=(F)S9IfLIHHZ!PEjRVa z$L3D0S$ff=Cmk3__3sG&F|mnrulUT$Nt}e$$RG*uQ^qgnASz(xwM=ni#3PBzp+P5O zJ5+p--f1c1y($V~E40+CT&I_d&cuTm@-^twf+B<`9SjYe22#omJo+QXw=GfDG?N6B zQ~rhU2Oy44R8yHALKBwM5} zASVmkkYNyb7Ol`!3h1VUnEmf-rbYd7Q0ogV7bCBO_f0Ti~UqV1fVOPK*fHdNdMzpEIsj4W6hl0nP^1B{c zfsIh<^N#V70QqrOc$)Fe$$2M1kg!`xH8L(f@i?K0@Viv_k;UUm?s*{DC(R36z-SHc z=;+SvGELc%BN#^68eIe2W{=EDwcFe@qr=F(OA$JzE4N1MowcDHuwcV8pR7J+2n)uz z6u>l=fD)GWkG+zh87-U$Fl<@GvGc7m{@JC+7%3q z1})t@$E0rWgIx43dev-?5eDnNyu;h8a4|eHI*uXS_~hJcOpQ3V&?}()MNgl-5H}zP>&ZSv z&O|&kx)GTCP#^(dT~<=Q; zX+UI-br8GD;%DawB4l>0Ls5a#A@t!p3lv?|s+5EBNYXNa72A)7%_k(Wv!<(B$@T27 zMkwWk=by$T^Lutt&KVT`1QayWhE7;lDJY>)iV^Iez0!a{NX}W`Ki_lV*N@*ZQ&R z4z8x;9?`0?WpHMXRfOSz$}=prYOhQ@Yvu9OVtDdqnfsXD$GdP!9~q`>Od6TqtF{+v zhDD*yD9`{b#0Ujv{66tSPrs9rQLEMC3Z~ zj8b9Zn6NKTEA`UYOHw1WTH?<{2)nOfpl;VT`?=;n>@vpk;j}=HlRp=LIyj*RR_v2Z0Ja4@OSiXEHy}H4V4t22(*yFZnIs8-h5e)OdJaw zD>cBThiY~7`Ra)ECC;X%8);;FvY)E#26kSP(_;A_J4)Jt7X~ITk{Lz&G9(`ZthB8> zLRlr@`&|#gwIqS#fDn<8ZRt8m4y{maG4vJ)@@pOHXm+}g+O~hYd01q;eQv(ISRDq#ljcA%4&)H_O4#+_XVH;u*qO(W+(u-bh&sL5~{p2q}mvN8+r-6wSZ->86_ZY zX|_`ZiT+}0rc>;>e`75vBSys>FA=@nzXIA-xCHn~Bl56D%VM9<{GE2HGwL#`KY}eB z1wDEsk_`vLapV1u0-2=pZBTURTw__01v7j59`PT{VCRoyFL6Ol1}YDDk;F`iqQ&_=`K;WLky37TI|RXRr0Zag>L)gyR=Z& z#+>SO3`)hT$;o#YALLS{OLRtQ4OU83Yo=lvFuq1ZZGbMfCHLMUiyY&=Y6+klCbx|z z`kHLzG+Nhy#lb5~ZN?~J)+NkkJ(iLm=AqNR+#Uy~)Y;mw`?SN)nA4OrTLnPGGLg0*Oq8NL7np;SHY3}RQ80xK<;WLJkdK(soz~)l|+zz;uROU zc%mjmh)7hytY(RT$}GnT1oG>gAor8Cxl-dm#=yC9R`TY(aDn(Y2bw&nOyS&pUBj)| zbd@h;ZXx{boD)Kf4uTy~X;|9^ z>yg0_2|UHBK8!t2u(L&ru`sA`(#eaO-Oi_QY7q#_D**MJu0;WJYYM z8}&!ZN<|tlV0TvVBUJbg5jE!T3P<~c+zN8$eS8WT^84jATUri-e&8(Dqve(DcC~0AOi+!HI;QT;l1@N&5(&Q z+IzlP5WfPjZiNX2jd8?)50DDD#_t(Y>ji5UJ+3AiBcpI6&YzmIs6{*DqRW0}cwA(1 zX$vLvk=y~Pi}xPKGN<{PSQcOv%MX8nTbf4Y(~wQIz^s>tLIn|?MC3KkO>AiD=on(X z8e@HgOF~zsLIH?jtc<7f8ey!yY&k4lE4Looj<#4Cn`6Wc5cYwngEF{-UB46|V3yeI zvKZX!Qq+nVbNOJBd#jJ5$)xIdqDIjscqh_$b_xRqZlYq4w63lTyl2?B)2~jPFbv~ArbKPWdn362Rr}{uVRS4ZC z<|)J$YtEKcKfjFw3%*TLsz$@+?e%m28rp5>@xTz&@0nh$pONQ4Z`LFGu(_4r^qESM0;x zF*p&{-1h&s{|4A5r-4!Jpf5VgI_(4W_c8B|Dr-rY^BF=n4AIeCD4lE#-X5{NvxPWD zstjiP<$%>~6RKr_4R_vpt!OWIztZ|n2Iaq6VfU1yi`5C z-ks_Q=Vnpk1#i)3IE%SC(kvJpCpRXie?mfT!n^zi($ScbPHZd`-Pl*^(BT5jqyj8G z0_NpVfBS6yspaZ}j*sIMs5P*!L5;X6e$heS2LpZ0wIKR}ANcKePMZ*_WbY+VzSqo^ zv922N?(J<(@wc#>1TCn6&>`{JY%tawx2i&D6UmS`T&)J*GEuo zhllG9kEuCn#>b;NSOyTWUcMw*7RYj0gYk5Tab-UZjG$Y<-B)$hkik$a->n2C(pZ5Q zkMI+Ta1l$;WJY&ZT@w#3w#G2fzFA0?4oDSx>zltYJ0{XWmHuW?%)p0w;f_yHp+!EZ z^wIJ<7_d47C>dghsr|yd`hXyJOxer7UW)wsRD}d_e`qFyP6p*>=r7HcGsZvUdcltW znqZN3U90Vr{=T&}-wdeAx{+I-Q^B;#tS2!#Lq~mh)>Svd0XJMJ@b@EUI}S_?6*#HK z7N>x_83aXcA_Ss~vu0Vv@9LvfTHA(E=8>-*X7)LCd`qnag-&iP-T?d%+o4C1+P#tJ zw7EG}HlJA0#gLNXg1e2{){!eD&?vg|_ZSSi=wb8z7$bvvs)tEeLH~aBLa>?&u!l52 zq~g3oEQc629@4z8V0wmw`6f=SE!@2xV5%_H?{8LvlUvd@NkbBKSy_|h#q|jP2nxud zOJ|^cd_K14^0t0!I|1&&1^3n@-Nhb_F9-n{46Hzv_JT2gBaOT(>0C2LY*=Z>%IL(` zje!gWNeGK0dO_s)(`nQ(0&UDOWg%~R)bI1kZM+T>FIf1#kg4svi-mg5HlZY z3$ie$#<1r*KRnRIZJh|B731g$t*ZC=p*eP2j6SJIQ=>+yBCeR`*4+e4j8T~5 zilPAEo`F^P19TflNku;6ti6W{d*bundrxGaLxR_sCIC_JCrR;CtUjY@5>QW>OX`hJ zocO^HLxm{rqgDj%|`j0ZheK*!~E{i`maXZ@a!cbM4&Jfi9Bh7ceG^ zy9l&D-Y23``FfjOK z)`!|3a6p|SOIp<5FsM^KLmva4t-p&pZ84BYsZ7+(t#$)Mm_?Xz=jAJbNysvKB$02% z4JOzxgriROH!(UXec*7 z5!8^&q|(B8rqcHQ=9*T@Q%Hj&c>dLg5|_!?oJx>y>3L=D$=D zS_P=y0U1wAM;QCHDZH0ODjo%ZpOPGS^U7uN24{l!^%UBBY0yA&a)ak4^T7}Dz6DCg z+7NnbkOfC$meb>gJ35PV4irNUAnlX5cOu~ME~DCEg~$&YhT^&~?cXFvq(G?L!X~hk zndzKlIJP1ddo{rMkVkw}H33ztK8jiD*#Xp5R|fAqOo)umhw*?w|JW99HP%ELjZRRi zMdqQ<;LSm!Ul)cD{(%?#L$hE;37U^~gf$tZ_(8>X4-O-NV05y#%t&fv0)cpXSb>sg zx%dixtGXZsCahx}$_BAY3#~5ttpPr<#oYQ7+Kn-6BsaJq53OTAi|e&XC{NTs!9{T=L;8$YYRRU?LieD`~F!b zSp5nB??lw&n`JS?nHu2Wcmsr2S9W|RCmRmxpj{7aPZUA$#%V-d5#`Zw%93V8+YJZ{#*|Y&Fp$e$gJaW&r_EL9@f2IQzq2)s zStfA(^SVFe2bOt~!_7EFX{FQ05QZ~|C!mNA^{4tL`L|C@yZ& zVQ4+u>4w+QW5;XDDHty8`~oU+eKB77*|?uUbDhVJgmTkyal@Uhk07>==y0oF=3~nDT zk$hsdLUT!)og|$`T0*1aAZ;|l4xQ)y6j1Fr4YU_M(baa;3B6BuJ+l{oku7r$(Rd(22pdcOYQn9uG_(iKMw%mU*tJ zgu0Tk+*H)|6qhTFEP-QYm;mnE!YXaYv}BpB>39nlDbJ0IBM4rzrLh|{vIx&NH&mgB zOfJdOL#l~Su5{rc*~_|D`1H^cJ6yV@>LpODXF%eLj7~-BFqs6Q*i~6VIvT{zl+pOm z_P;yJ8A6uQaDd@iN$!zTlyqM`nVOsp2-Itt!O3`#<4bSr4g9o04#F1-#J|SB^u#(^ zO6VrdUB!XLq@zAq>My#3R6N;q$>)!O8FAwSTZfX)H7)4LG#&Ghr5+@sILr7PH=g^W zv1U#!EB?=F*h_s{C8~-#@eFH^Cvvoo@66%VJei85p@1&`j!*+c6|_+irkQxeS7rp5SR^dZ#>d3N=%K-3Yw&i|xv?DY&9&wpqV?CMRe!)N0?Z>>f;Xlgw@3y8+LN*2;%U~| z4pCfddg;SL3AQ01Jpe$q2x>6n+ARy=rA~3F?|}T-0m$K#t56$Q@=6p<+zQ$RKH5g5 z37{{69NveB;IH8WgxaGdXkWGPDtY}#zJw*T;p{9jT|d%KH&F6J%01VVZMgn9I)=`M zo|D!Fisnl4{{oCxM?mQmyp8}Qlb}7PZ!+4mjG|q^=8Qs{3gZkhFez^AA7p2BDU~f_ zeSp`y42Vr0KY#0~ie{gHky*3Wr?~_6H2Sb!!h!ifI2*lerEY7Qz`7E$h!tZ$&hcoh zK6$b&3wrwC!7j{xWeZ2`xXWr@yK3i9km?(%5XSvi?|%l*0UV_iMWmb!GAf-e-GS$+ zlR|WYU#Z9TB6CtnG~+c0qMo54H?jV2KcMbHCB-;UdL3mcUJug;MFc@a>$=nNJs@`6 z*$!GAEtN5zP^E)II%)kVcK`<22v{ltT0=KML$z4yB*N%1hz!k{KeRWD+=$}{xunfv z9r{2#QdL~QdH~kP%Q=6cKQUQjqr{#5J=ZGvB(R&1YB-QMT~Mv(wOy+gD4Ub558#8H zYV5mRn4qK1L!I?q5albHHP;`mt)@o3ulGZ8Rd$q8rmDTZ{Py0lWGGK&)H!5|o`(Rh_zn%C8QFg2`oW(e+DGVPp6mh0cU4}f1NVtL{2 zAqs{59QIky!l@z`m8T|DV0rPCjb; zpJIC1U_fU}+jOBCOeLt*u#Fo=B z8cf>utpVgxXhqW$=YL;v#=Cs8n%QLW?7oTjSL?Q<%8kp@UjB3*`)%^tcmE}9$!LiT zFkeBkVNVUAAOEXWCsEzknYe zgb=ZW0sBJ|aEiL6Z1l!Sua3AI?_zc30cF2OF|Xzb9Xla$+q|WB52^!-X1*L5(M`aC z%IZ=2DCm_r|9c&E_$AHuhOrQDm}>Xg;BY10=`qLFS04|Dz;pZ3_BD?ZjdqK@hq=CA zQ0I2T2GVIVF+uB5d$fbMb}RqFFJMJPEU>qc_G;{{>GMi$;>76>Yle1tBXd~UF9Nn@ zx4+Ph7(`El)*ADkOP!K%6y}6!)zM1F$#p&I1RH3Jto{3S&wl=Jsox;qT&5!0q~q+S6Re??;LrDT{p?oEZeAIFb+3e?sIxgzl} zOnd__Uh~hoS2`wIhM?J|d+rXRZowBH-h*V8uME5D&-0JoxmM(cj3w@($n4y3UM=+q z)<9?aPH+8ZA+3k#wiD}072tHjFTUK`ZvLtzVy{-1z{FNc$Pl1!!A%Ui^4eF|))$O^FOXTWx`Br{*z>+EPz@-PG+dv? zAlh6`H9d+sTxhi*5T<%NHdjbULuARz^yzCg^#A+_{A%~tRPcQYB!ez=(6qP7MDdM} zhUA8!1&s)s-T4cr1;FZ-kcbO@Zu{nMefbp+Z_a4AzOw~Ur19^UU>w;wpqqgCYnw$p zcNnp5(xrhhWz_5T_fXAZu+$6MB>3;VJyoLqag}vg-EKVZTA(cm869Ax_PtJW0=ZLg zf(m1U4-cCISjRtfB2j`Jw;LvgB)PDmPahKpcJh>OkuT5p3{cOCl4A|e;3xoDL3@w% zT6W!&H3K}vmJNN6l!~3~-DDy03_OP4{pbsEVjRZu=lqMCmC444!etPvq+PcAYKe%r zb%7c54NUZ&(mgQgNG=Sl@FwP0n~LXQl2CV&L{*c?1q=EP zi&lcbr9x$t>VZ(({%V@!W zPjn?7eM1Y4F9(gS)kGRSOqG{82WFW1Gal(M;Oad>9e}Skz<{7=8;T$?$#4^g4Blj^ z+6eQgp4YzW1g2twy(N~1L?>iqe;`Jhv(p$DLQmmkH&J?s$B%WCw88boTR;wOF0SaJ zFuCwwz)J=y0>Qqa8*wnQK@bEl&V9U;n=B`#ZhXzKka#xhK|uFK=A;A)+X#Axt)O~M zlDOl91PIds8pm+bF>@LCZ%i)a1mmyIE!h`LnvlZK9nF(jgnoJfa(% z5pQD@PR`FLV6l72XMc!>s=V!MUkyH?V>f_p0mEq1P!VIW`ho@wcH;zeP0wf%<9;W1 zffPj|s5M^1)eZkjhIr`UXdWT?qCqXS=8MIv)SiFL{;bfZ4heM>*acRGkTJASoc3A$ z_0PlFgJHg*2~naBQ9 z4angGd&bSia7x-9omJ+tk5=me(dB|3Z*&!5M1f@oZ`a}(&`#s+|A^S5*SqS&$@2tZ z%7KqZj(2u(qiD=GLAumGu8ac1pQ`U<95HIb5T1Y_iM6JT${+nR_zSj5CCebjGFFN; z>8N`5lbJojDbnbQA=+NWz7E4VZ&2{V;no-G(vn@ z+U-=k=l5gpJL8x`MKiZCDUI3(zK@hK4gcN9NnuKK53RyCLX!)eOiv^)6&|3LKr#fq z>`mm!61)##q}*=_NV3}{808LL^LDRh&x?_F0CmJ-=hIIJ2^icOfbo#ODoT|20Q}t= z^wBO#k**Rg$cQ(koX?`J={Va|hEbcXiEqV$x)cwJ#G}I^_rkBcOt4TN6mH>>tFSO; zMCeIx9y-7SZ^WER>-QXMWn|O~_6&z7l4lJ$`NrlKbtL_Kefq6hYX)sRxWCc0C+8m+ zs?@tWoI--bHj`R?#*Ew=E~{|E0L*63+rs|ov_@ZZcSOD}jgo|AQpWcj8=%6o?r|3% z$(DzqUBmrqk)@gst~Hy;yXzo~m)uWwfh(u^Do?^|5yIwRP7#j$R-$wD9aJKz=3Fe) zOR*@dmc7TADqcDD2U^1ht?oK3Si`wzo0<+ag6-NI9$R|NtIX#^;Dik<1d!~3pL95H zd|`lyflm-VNen#yYHofC!a+^|Bl1#p7w`JY?N z1s9aZ{6^Zj!r5)?o1ZM$Db6TCg6|KXR1DT7Gg; z;JuJM6TpDlzvx=V*{lCp!Pkv(j!; z-ewT5pmR4K?F=bTA0WAyFYa$NIX`WK4=P3{OcVdhkLFm|v2dXt8<&3|c|1ToUaaKF z>sX23Ee$^CJ*5%P(0GP{jYdP5lUVY@5Bz9CKoyZ>1pTw=0Z0x313^wm60WQh01BqF zUwd%Vf`{?lesiu7j@H&+{B=h9Q@kvNNUtTf^P;b~)|3Iwi13!YnRdGlp(dU4 z7u2}wQA;tti4n!%ib$$mR%NOKL^sD`Kt7^z>BGMU z5_?EMonVKm#OgJh_HDlY6X&H17hblxfNkOBY70X(;+;<1&cJ7ohto+0({_1-j9C09 z$!J+9#_A%-q9jMknK&~|9#W?A+)3yQu})M>pIJWX)~iRBQ1&nhle^DjK9U415R9O25wu!(wi`O zv6Muj2bgBzcOk8y@vidiMWoKNv4l^R=5H9n7U59mn@y30*B?~wy-V%23i?;Ww6+Zl z;*tr_0I|p7w0w{k$-;#(nP`Z_2cv5A5Ycwp*Wc2Kp>FvW>J~SH?0|u`3*GC$%t{hG zyX0gD0YAwU&b%6CcytM^u@KlqHyfb#?jPW>1iWjd>KVx?YvvxV|7pqqtD*VElQN(7 z!0^>FD8isd9W)YxCeokeF7}e?*ieY9yeRjUp z{7r(4LHs4N6hO7uywv~Fl>!XlpZhvt8u*8k*OY(2YI|_FLwl+zWOh(pzd*uLdm7&< z0G96>?#qFBD_b9jsW7m7UjB4=c^NMNrODB`P}M$-+u zjWb!T?mW-2uxBJDcvS&|5KL0X%=Wey0ZxvLlbl>L8#pKC6%JZCTtM#!K!pH($Ag(Y zBWG|Z@BF5HQNR?LIkRM35zs%+riM3R&e4;=+F|?M7Qv^2Qw8Q(^W@b?{^M+&yZ!KQXL@Nb?#Q|<0wK>EKk>~~_;(G^ zp|?B0J7aRukxF`F1uQBE6LYfD5IKOEnfrfh@LC<+|H!n_U$9?95kZ~3NIKwv+}~NH zF*$j5wmX$ChaV9ShLl-0k%f_9{`b>&7e1nd%;!ulH!BMyLbe$A`Q$2$L(u+EKBV6> zxl%q2!`Q&K3Kges{NG=d-`nBStGgw60t~AxTLC`1|FPi`fJ&y>rrGeHe_;E!3MUrb zyBA{MyQrx=?>7I_f=eBJHEvhYo!ju*{(Bn+IG~`1LR5?M?K*A~3e;%IaX8^&j8%9| z=5iE9!Yf7%n{`JQ7eW1+OdDTby#}-{(OL4OI4Pyd|8(MA)&1PKryq;o?`lX2I{>Z!GA1Q!!62xWtac)ZlpPS;oCc6wmTmZcXv9;x^c zn-qO-FUuO_gX2^xt1B^#D>%F$JQdr1^1FhoUy&aG$^EA`s4jm&-{5&U@bNeZzU^9; zLB(yXud8r1*DbDsY`(( z&rjBTV4pzi5U_)EY3G@gcf9%CpIFKEg8hIP|F&Kmi{FMS-Xf*CM~4HK#?+F7-V}=% znrc#j8Dx>DuZlEUg>Bbu^2(I5OpL&`KiS}k1BwHUg~1^SWVFApw4CzjU7Z{04vbqg z?lM`hy`IA~e?HKYa{jl7`Km{7_4FcwM;ohL3wrHi0og^+z?NMO7^6GqtNDv`NvOAW zowC=zH$oBY_c|NI4(Gc0?!_tEz@j50VV|Mz^PE!6^FjqvoT^f+Iu^P~-tW#z8rb&&lzDWw z3I)s*g>OPuRMBxAvd&^0d)n$l*86yEu`s64NndhPVlGyaZ1;Z)y1uqGY;<5Bv$&xE zm=LF|`pl0)U#p7{tHkzOm29e+rz`m|K4f96#ex<_whgeHfFYI1rx;Hup` zV3*#P-jyjT-(pP~L*fnepvbRe=K*1G`n(C);k1>KR<&J~n~a#!y&Y56tqnuIf)VI= z*Oj*8IPR5RiTvhVr=hLcIv8pB^Gq)QcST9aeqs)&G-s@7{}h^saj;)I5YOaDl?TgDMA_tj6CIny*o`*fYV8gtBl%C)K=>Kr_4a}7Q zZMsP&wr$%JTN9nwwr!u-wkMj{n%K5&+vd)PnKF5^nLoB2x4-|sOFA>gsX|`xWJTj_$B@F%xJ8^M!aky|Pqp5*Lvi`WFPs~|& zD$2bxX5|+CpzF`uN9=Zkc8XorT;I#?kgA(Axu(VWQ;Y==c(eGH5h9MM+ekesS*z3o zmIH0(8S?bUu~bFkeog^{6?h$lPuQUM_!R6Mq>L3JYXEt7k&A=T4V!kg2_;~}1SqYm zC>S$X&nJXnVn&X)yil9`>!wmkKIF$8S zv2ogE@Ou?u?ANBW<`}ZYJ2ieSrg;I{!o9_xqIsT(;Q5ZxO?>VhRC9GgeD|3j>+o~? zF(OlVy6Y_Np+X=%R)`4+vC69+0L&8=*U#2-8P228xYo+dK{%JeVPc}Ig$9c{SIXg+ zkm9EMTo}5x!%gY<7GT0cTpsk0A6*q4l2Aj>41avj&X8@DE>X zPI$YfO^H_D(1YsJVjUp~i4l{^t^)Got&tN&VGvHMIQ8HhiK7Q>gAS| zOk@iAHYlz^ls?(9Pr~LKO%t988yhH6Iv0hyQdS z>g{A)khg3O)IcAHIPl2uV!_SvsxhkI0EXjD=WZSLGTZcYBTJk#1<8xElO0=i)g;l( z;d;-+Oi3tJ%na7bgC=lrl1V~#RnUIwaeMW4oF68g>ml>OG=v|5Iw*3+GKN8 zJb0aXZ2cE3o|sq~Z#Nwm^A@A)Ot@`V$#%89c?lqFAy8RHU*s>ajcqPO?PTiDUcfbR zm+bl7b^gQ^*;)CVGV`sg>uY5znkt6(<26>FWV=lgMWM+0&VH_)e9kcREOM@WbRXJK zg;^OT1eg(_{`dCXSRNa~i!_}t#`4E$8mB_~40?;^0Dh0>(dEam!MfOO=G=P{7c=yc zx{{7|V)9;_MmMR~U^O7|^Pf45S4Ot2_@Rcu#&%O>b9%u1s&Be4?6*%Ytyf6zcqB8R zCR`>S0oM((tg7jV`KjiK-_PB_P*@0m!^EwaU|TuJVTt$DfuWS_B>xBDZo9 zZ1=&M{9PSa?h@)N0d+jjnFY_Y~hk9(!h_1jgb8K-_9>)yU?St&#A$yYK0FG)_phm ze670`3+!H8guhk|ZJ0zcOEZLu$ykU=eWJdKvKKHr4SM=27E3aXuoU%Lin#Q1g4`p( z6{|P+%4!=5X6d8418JdGMCU6H=*a8pWKoH$TjWBN_KY=R_s0i>rle}2B(Q=PkAdo4 zwhqMeyVL}Q`cIZJ8Tv{qbSi)x=PA<+r`AIocg~t7Y3bc$E>iYckwriwyae`2>sX;d zQPZHZ)Rlb(6fMQKoZJA zFq}c1ux2%DLiehO$EloAC!(kYJg|^bRukfwea@6IMuwJhMWcHp`r?mb4@r%uRMH@# zho?khUXEN`B}keHWoWh`;C%X!U*;F9Oe}eRrJnZUapMi-f9EHh*H=J)nJ(X%~-_ z-2%6x25&<9zzs#9{|DoM0=mitD!+B6E9(@MJ2{YQhOc{yYif=rpetbid!MOux|a|$ z5psFz?4<8iSUOOtZO;KeKci9d6w6b<&eWdA`AlkFjWPsmxKO4dXpSO{R97LRy-ahe z6IsbHN90rq8eXr+VThfr56GxB1$gZn3x3;=@>ZBsQ%XESCiWyw?N>)Z1Qs-2BO<(K zE~~1)P4qHcqyIR3wZXf2Txv`p zp#$BwAPvHk!%z1DNK>*IqGml##A)wF^L^-*PeC1pIGfMWdIn_Y3OZD>x}mfg@S65V zj8^#Y@!)F(R>HKA0LcSLwio%!s1p((oPk&ua-{_7_*el!5D$b28H;sKK6DvQn!-QF zF}IO%k9-u1tFH(V67`BKOYYfISrdYyWtFLyZjwS==hIG2f12B~eTza{rCijvnaEcY zP#lM`8|g~{(Xk+w9*)>o#$HsOcS1q*ISSH;FiY!*mOk}=6E_f#Ik-I()<>26>fHoML>W9Bag{wX zcR19kzm)*&tPV4LK9QNOu=UigFS)`A98vi=B3Kv$9Vy8;C6gMq#v#14QDWBd&KL%_ z3nsvn^B0B_f%b5VoO?LI7mi?qY~rOV7yG~WFm@;c*@QP5GNpOOCmb3{)X;z1QXPV+ zo@;m1)aVPj?r^$;E+pr>#&IwBovqy6hfBv2K1OlWI$=^SgtYA&!Jre%`PobTyH z_a~DznNAHgjDtJEGsIf5HeG(q;7WY>ln(8=|8>mH0cgUXA~P{Sl{#U69pUXQKbL{^ z(puI^g_?*Ui5#}DNaZIG5WQOVEFT0BlG%@wNOKBJR%SMVJgt&`2uGAjB*TJrVj%h# zpT->UliHl&712xAe3K+B*g(lIHb7HZo9OM1oamgaeRHVL7j@0^LR~ni6v*8s|N6ggRE=IXUW^HaTT#e&@j;JzK*ElQdZ#OF_S330>24 zJd7a5%$a5WUD&QtR?BSVyf)C9s=xeFY;x zJDNEq%#MK89Q|7YHL=0t@rNMD&J^~FQbkAgAy9p8YX4OjBV}oha$Jv*59_q3{_lHP zqIUxQkJtItlEb5?1ozIFAn36BEq9NW4r8?Foaa&iVewI*@px*pvo|^|9EyIc;o zA&Wy>&ykU%agw$^$sEnMjrPpC=xaQBC{CQ~7bAy0{JqXqOa-QS?CVGM4as3p^6&ou3M{M%DC7+X0AI!V8v^Y@CB*SzfP_Cqa zbRsZj?xccrc4Q7>W@05KVH*bvLl$Bd7S6O?NO-h{*K~ErfA183yMS{1=Y}Qe`L{EW zjrsqQ=h)-18yt6C`uT;p4&&&LR)?ru*1R`h?W-$44r&{qVl(GSE7NGklBSmJF)E5u zy?7icqa=dRM`@Sddv|1zp}_nc6-M$##!nO=RpHJ9{nN76|l16Qv$!5!Mu{mpl`-oz$xpFVP=w8^M3_P?TL->^^=bn-~`?ScO zc_pULmK>C|N6KdjE~@75hAb{obUvIj(f3Q2TMTtL{|woazQ5X?{WjddC08b$y|eqr zG&QH@V)|@Gq#ESU*s}wgK&B(m0B>AF?YMmmkqW#+cn9^Y05!r!Z&E1`DI#}GoGslE zZI*=8+$hI-V&Jgi&sn?Qqog0E>d7ReX^tlkl3+=!mG3#S{Zwxr4fayH%tVd87q(Hs zqrqIM1EtOE-9{L4s+|O06&6_oN9yastFI#a7Cx-iUE+W32%m$>Z(3w!kb`-=AjV{a zpLa`uz>e+C0;ag$>5dhLyA@6Z7BOc3Jk{dDNhY+L7$EDPY0uW5o44&*UG;VL4v8w{ zLe}(TikKG++o3Wt*T&YhfB6$2l|W}Rgk57T=Y(8w1Dj?75W>jrxhg=8vDW))9Lsy| zhKI|9w_gcRCV8Hsb`rO{{arJ}Ju|%t58yQP1AMU~8h&C}QR=%FIzlc!yJDG>zzNr7 zHdegvV*h`)fo=B%_zk&&lxVzpr2>*sj5HH(aloYHna&<|?N*bloN z9AGj~I#q4rr%byf(`1^(x#<@We3d;KF<^c7p1_+6Xz1`bb`eM?+_KNb%eW4NYdYD1yXkCGmc{e0OwFHv%ZJ&uB*#fLEu-R*hnB!#mx{;Wq(Gr4zxIQ0_kB0VTECQ10GQ=ga1x3lZxz9;K z9c##XmlnbBFe1`oD1ib4e-XrvEM1TfF&n0(B1U{`!HUQXr$=QCNHE!}!8k4mA1&lI zNz-#BWIgF;>0|T2b=0YzMaa?6xx09H(19xA_=xGzoC$2)2RqVQzL2KYydoG1LUX<) z<(WI_$Y4V^!G)J4%KXN$A;^sriWcOR*y{Xk!4-U5b>)sAsJ>tgSI%fvZ@mwC4VHw6 z*gvT3r!9&tL2=sLP0}GyYbr81A){hN?yG-~#2Cn_K_{6p8k@j2Wi7^^x5MgQ%L3hV zDy_6z%I}^a;bacO<#0BM7w+px(d5aP=3!~y1fO&U2lp6ogG$G)o1#acV-y=S;d zcxs9*jVh!9xXB9T@1{m5lw@4}o@rG1+fWb-kdL9-^3jX$^Umc2X_(H65rl0d{u&IV zp7Y9Rpo_O?+6b67fu9&uGOo~WQ^3Iv;)=)AIMRT;!fd@A34u77=m%-zivC3ZidLDAKA_U9Bk>R{ zk^M_WKz(@d2(uRvX@)|;8x>i;zdutF!^x+eRK0U|hJ;k6{Tl!#fi3EoC-H64eJK!0 zw70wFji51e#@Fk30Fu3g<1Vs*N!W#Yj`aDGReqmZ-k&sl)-lm=+sCrx^=<-dkNc|A zZ##0wmgob%JL}W6Edjls3OGYn0z-lBoY}Do5_0RlfiYg;w5Na%LPq$lvbY9C;xAbm z+@t6{1-FMk40jx%Bg+Bk=WIy~jCogXu%BUh2uXOt$j{L>eDe~)76FonLw#`ByOTiR z>nGH(9A=&98oLApZ75OEc&h~tj*9T)LnXgPC#ofrVFRR~{j)7`fcTj@T&s9SRG`M8 z67d5)I!yzQ<^!cTh0pdY-WHTY^FY&3$JfyBCgf9)3Nx@%8#n@n z>f?OBLA=eB;+MQ!XKJ4peAxZjXwgFCH`yZA*t+h-6~IrmNKL0y)k3+kn@4ndwC@X0 z(_I(30tXw?)W4xOz{}P%QO;GMSa2gQ4TPu@S>^)>nafYp#{A83Y{I=KL2o=EFM1{fA(z$ zzYaOvQqlG#QgHir58NUByGHHPTPpe}V@ceTddJag_LiGGATI(%#=wF<-ZUceFTc?e zSsk{0A81`L^PyS9M*FYJu^QJNuC8W7za9W}U~T7fV$Y9sOos!z$mKzz!^xCY(V-qC zQu$8TaeUg{v+~!_&Oh;fi)ku{KLU5Pm6$CK$(*;oSZHnWHi-}cYSv?lnc8;mv zgVFl<#6+Tf)Ay`n;M{}W9eIBX?{ndtFHfwlVu@L$fFxt~%ixZTg?wFoSNo2Te>SsX z>j+1Udz?1ch-mDHZpjiBNQ5*hbxe~<$7npkUBa|0=dZ$ z(_a)M2wQ`@`lHjR?H5nD>LwBh&>^r^w&9Khzb}D)#pVeAQ+%;U~@>=I;j}j+tOIGadna3%+?H4XB0@$)2}n_vi1EA?P%8PiBT5 z+}Ui$9M3pb_m;+-klz=S2ppD)@0wjS(?TEN-(jz>pZ!OZ?IuaDo{3^vVZ$*9zG$|A zJ@Rud_X@zzW$$)gtnT(p#%Qn_-y-vq&vxvgYA%?&&l$U*g>$QA`|szQ8UQ-B;E-Kt zNlEnku3@KfN8Qjgz^+Eyh(VBrTb`$VcSY^feT5jYv!w9+1jKMh)y`qF)$Z&_2$~R& znZ7Ws0Pn263w?5C+<^tqfj)hoZG^4EwqQ#pY77*_ESYbJcDzRfe*ee$*YZP$0`j4rr_13l|GHa&nCcRO6W9lVYhfk;udIeT%)^Qs*ay7c zdx!47R2zhE7{=kPq{8mse>v_P&PO~3$dbJKQjKiY^{~!X3N~^n>k8+ji*PG^_v~9_)mPe1^r7Hp3Z2+vEqWx zO*%!Gcc>T|_vxc-Ec>)+hH3c$bG28pHv`l`qF)r}SZp`?_=$5&QVJYPHJ6C$JP2 zm2hBc5}Sb^?;vYs3MQyh=d&&HFV>JsyHz;O z;k|zfO zG@v!#vx?ULaH+UOH2z%?|BgbB@{D-$lP`K%SeBHntV`wKtae zDNrF4PafWP8(C6)qCpN#G|}&|r|NTD<7pTC6YQPQKD+4E=Jb|EJzbz_mU#9sNSd{i!48!Nesn} z4>(&-3Re5Gc~v<)*R!&}qB4j>x=RffY)2zwaUwYyQ9lS;psGYZE8WNxyC)IEwDLInrZ@|K~4<6A`6 zg$_$L1Ecx096rj;vN(-a?%CBSq!(Vu3IeO6i0yD6xKtZGgUr``HBuu%dRNb% zS4Ne#M<;Jhqu`l9L^0+>M8TGm)3A+*t#)tGN--sG?u zU!lpEdTU~M)T&#xTp|Zn_*5eyWQ1JhWq?!@by-X@IVJX_9}>ia=|pxhA!bvhtIQRR z%rV2k6SI0zUPus-!N>(Qz@Pe4Lvk5|JMQZYc0sWpU?v#Wt{gwo%gRY6G@bX+k@${& zIV*DC#-6pPof6GdnSAeYMvVqpv0m8W(`wEhh*HRRq*-)RSSJDrMDO}8EsHE9bt`WKujhMh7xVMQzt%$Lp% zrjv&-c6d#PT|lY_8;xd?2q_v0+9=1ka*^M3eX)6;GeL08GJYR$ld9W%GRqH;>cvwZ zCfM&=@FT5--c14DQ^c7*QU<6S!slk!vh;=%ho~$rl3D!zSWmJjM zoSCW=1!Dmf+)8C{p_Kg@;}qa#ek;KM@S5Z1a++1Ts0gt+CEO%B(A)Xk zkbAsN@p(o6no(az9o_1hAyt}~JuFW?@l#>>UV4^)`62@&kbapIGfR9o0QAoYc9y+d z@s8X`_5>gXFKi_d)w#>HD^+8}?;;1K{D@DkG?ND|__VKU`z?HAieY}7fH=vUqx&uj zbtJ-0!_eU^dtU4?bW3oGzBhaG9?Co8tSZhFE2!Py^8>^(`MoJ3Gwci>Y{7%6#+)<# zVl%e~PuA=N}Klgg96$@Do<7dewvM1O$iV6Y^mDb&o~FZn4C@H-tuL%-5j zPbslwkIG?OzS##+s-w6+Dan4LX!30hv*UtaZvH4ss2=S;E+L9zW~2*tw#p~xAa9kX`}IG^8W2*g5yb>V*cW#tW{#R$f3lU*SqBE2C}uaYWW1HkF4Vf7%@ zARj>IRVdbPef^WAb(f|hTP=+|p5!9c1ZUZ2h-(F2LJDGj3@#XTDt03jo|AlX5MgE% zg>hc&gcT;ZQ8(6zIoy+kj#G3>Dk3swAo2`c+k`yVV!;hI`9L;$Z;D^%hjNPXFjqe|%1)#D|&hlWhd< zE!&!LG4^38@bkG8rn{u4TmPkH;apTNAkYL`z@02OjY)gXtIU}bfljMS)73lPMVX4X zoXsJtB^iIYxgN@Q)^Qk|L(A`Mw1oKm+E=Wa`-;=EIJPjFCq8IbXLVf6p^EvgX|r5) zWmh?f)F)lZ0=99w5AoC-_bd3~qDl>@0q5owg90a%o4=7FlH!M3XBSTML#0k8)Y3)u0qp%fvaK*KkeVJGUS*tfGu}F{YhlD z^$RevH71JRzDSD-tyneZnkGz_^NYj+k8_#TeeY3G8`;X^8LcN{n(_%)yw%pIYxg!7 zfI?_wA{Q#U!2Wrtf)t3=m6iOn?Gly*n<-Fia^Wobbbi}?T%v$}23l%3t-HE4-6aWj z$ZNHl011D-pC+Ws?~26Z?4sVe7(5}dB=_BCX1z=UVUHUng6!2S?AW6$(op2=FW|GX z9EJ>GVm(oN3#&6J=HUkr^2XWq7$Iox~vdL^He*zs|lsmOO`oW1aS!(pt^SIMhnQxV4W}3!n{%<~ ztfEBj*CzI&*Ie)2iFGOnnj8+d@g;w|zOn_%8~4&Ci7oH=zR$;fe;j`2{33Vz|NKsA zJ*9BqVC*bO`CtD6OS%7#uq;PY+kSoQzk3nUC?$V!=d|ap)*dMbSa5(d{6YRzf259- zjRzdlt)t&(#=25+WuK)1c4p`F#FP(P!-mghDF6g$m2?KkJn&1kkA&pe>i>3p{e0g) z`qHf*{os=-nA|rk6cG&P(0Z53v?Ck`0=-wC1mnI}KJGkP$=9e4j~y$gt=$YShG~n% z^K1U{VjQ$SJ61SP+lU?_D66V;T9zcZbpWyKRd$Yrs~zGD8iGXoqnCkOW&!4Z+nFUh zdolZU0L=qtM`gqY1)LQGWyj1e2+Bw?uUk#Bz}mslMpZ*AJ3+g`k*qML4sQxz1L0eK zA`H(=FG0MPcQM1JVT!^MdPzt?)mSG%#E*|4TqCpX+osJ^zPm5@Pte3V_Y+9UP&wjW3W_RckUT`%jp;6A{uVs2WAW0H^3k@wEhV^r55XBjpe?r@a= z-}y2;26utqJd|V7n2np{A1hrzyy7NuMY)2HIl^-*v53MIw$c;o0Djw_%&VDYYiA?x z&8jS$*s>J>@9fFh0@S39iYj4#--aHB{gLfHT-zg5b*u*xD_Y&)KVz@~~M z>+YUha~4qI=O^+s;rde*vl;|+klv_u}(}diYq%QPGAaG1{vj-hIa%XAMz`Tj(a7Rq%CMX8#p~n zpsujmQ?=V!;rA$>9b(A}-txkEVUBx4j(DJnr#m+1wcXAT*fm7fp=TBR~dg@`kCSky{9u>$K4Psf}!^9Z9Mit@d~ zq?9>{*T_jo2*2vdKyG_|uwWVclNalDFh2ez{gcIi! zg3kzt+julwjt35~6I6qs=TdhHO?#mU5J&JCF$(ApB7F1F(a3aw1MAg!MwI3PlGKl3 z@=I~O2`NY=<( z31XAokbV*TBb-pd7p=w|LtfE^e$-1~)3hla$r5}QH~>qRh1l|p^zHQ&Ea0sSFypBH zL0ss+>?LnHR6z?dg#Nh`nsi;Duw+sZy1TDD$#S0#a@f*)mT!n`1v>SALXKK8&Iq4w zs7r%Nh{3oxF}h?H`+cl`exf)yZrS&5-0!|!0W=Yv=Ur?)^)GQQ>?i?PP$xRCxc(P= z{w0^|9>9|M38X%i8%ETQ_sOL&U3=KT-{iWjh`V0%qKJ@)sxbxz_JO-K!F&cLrkWAk zLQ#zDvID%eL5q9|FrX%#StY$oKd0-HE)>b~C`PBZL{ndgcOY#i;uVMsoYO#RuHHaxH__k^-a_&-~(>lt`Ey^5SFz1p!inK8kXFROxL@_ zjQ$9D5o5xx{L!K>Yr^UTCgGV~EA8c&JC-bTq3VF7n+uvOidCU-)3MR(-GPKSpX-KOnko^h>Ez36aewc zcf++7XIPPB%!St0nuA-Q`^OugUb;nKO0duvde9%4jtfMD8Rp?VVu$!g%q7*-xWxhc zsBcqOPzX+fFBH!*AV2(;K1l_qMCq?c1%ZmM--mt?L?nULX-cp$q*Y4hW)J1rL4>sG z@my|6732~)`!+abF9L>O3`t>?&O(w<%C7kf=l<}whAeQ1goz9rt>`YQ?K?Ip1AHPN z4mrJDFPwapk;*1&Onic)JgWPXGFL9(AG z2SF{_PEZcHyJy!ji+bNuVEdG54VjJThMq=yboJokHOtoe7mb`R$E9DsW6r*vtF z^lq_)@J2C828_#)n+`DBGar>)jvK3bvY12yZDFnqM)0Y;^ z01EN;(u{D?S#}QDlfdw$7^Ok$E{Dq|=Z51mEr$Fz9;g}fq{7Oq9(zMUH}?o`={B2i zc5c~p&yq#)8)&LCq3}>cRG>MqtexHAJ2rP9uc8u>`W)2gr^et2j1sp#gP7E>DOk4f zv26xD_wwmwg5s$I|4a(b@u|un%F8N{xT`KvqCT0BQXUtj2jwIk_Sg80#u-yijK^>O%lv%ICoQuxvP2bi_4IAeg0xX{8Vp+Ab4Jg9^g_Av(>CF(m(LBSXy|c5Ej>_a69IYL6;W#6S(w$BNRLR~fhLw({UC$*_HB z4RA`uYdBjKpi(4ajgcklmGjP{j=ut;kky(?d&59z-FE1*QG9)B0+u31s>;G;zvWi-Y`#=?F{qoDy2eAyP!HE}1 z+$~~6qKG8aOfdO5l<~Ke8B?uPX^PbT!bEWx4X;%ESU6Q%cwQtLt=9N-cQLkDEP?O5&w~j&0DhhyBP$d@z+gaG9|tJ4{*#geZ=fxQVGM9AzN zGDd4UM6mKWhFRM-@beTYbbt){|5fB^ZKZIqV4Up#ZSr8_;`raZKo#%0(|$|c^(*Wl zMSi&iv|R^r7Ef75_GTG?RU5B{E=k&jkUApOLpDK6Z)pGX&7}}DvdB_fO-Wff*um0; z^9{BUOORC}cEY|)b(1r~7W zZCrg}bm$Yz>(?JjTjHp=zo_;iS*|Zy3g-wmEh-HO=a^64ecOF^%p^7-yY0KR*7SoRPgTt+S5DT&bP+**l!Hrq=OkaqS)mkjdd%tYWN$Ky_s>I5C4AJdZ%r|3rR5^ zBlpWQN%(FKkqgY9C3?`bP7jg@%Psb&J|q51fP1aPhLU*Xb9*U zRWOStsAchc3xJ-|_EY>44Ylm%%r!hHa1(PgRt2Ki?9UIEvoYIs;2#F)Z+u+cjO+6U zuAsLJW5a0{3jAvP%Rc@aM!I`_`l%J?8&TKHv|!i|r#E9A5FyAywl%7wJg@D4E<4Dr6_8$1e}|#pp`>yU*S}W<8jw zDX_3@PZ(O*^62gZgJLn0vR%hXwsS(2g?1?L+8V9QP>aAGU?pLy!E^+RSwSvzrBk@c z>64Ids>6%b+lA9{tUuIceC7=5d<7eIxD&3;<3bM!eJ=v{@{tQbYZt*)p`YjP$eZKI zn%c0js*=8zJ(4FJV{Op>*QXOkWUyNK4wLB;*P7pm|53_mzvffaOc$!wqp>fD9g z;b;n$ioGhfm(%v-{q`t~s4M^IQfYPGPG}*PS^v%e_!!qcw~}%jj3Vm{!G&{^8yNq# z%}$km@JL?2^i~Yc?IgTGCE6eS#|6Z-Q;Zh%@DoqrY5x*+!IWY&OV`tGXD9~W-Zkm! zN)limLA@HQ>r_dS#Fv3;XgI*QR_OdQF@hQ=$J$ZnQ)yRN+Lc0=#2mk$WfUQbG%`$} zSl4?5Sd|B&Ba{BqGnLtrjNea6C07Vr5VTW|)rE5JqUeuUE=FV6Pm?*XHOj(j0dT90 zE45U^e^57G3dwZ-EI1)*OM`Y}j$s{6x7d|SrgK9n+du48Ir zFKi=M-N=^CEm>6%NZ_N}D;O>5V3Nkk5E}SIjMga4(6-Etl~6zwIda?s)ps7K#lJ@j zj06?P#djmii_UC4r=@!n>045oSe+|hLU4)E-sMFWoS9*?M_i}_g-S9#WaDCA;<3bm zXtx7{VXw}}AAh@x_j%=LV2LEf@W19}Y_44FgOav#aEUiW0%O3U?{W8XnK_J`vMVHE zr(%+Xp%UVBBqe~1C9IeXav18%A^j(EUzZm_i8M9Y`&bt0PH1Ys`zr%FQL+tnoQPt0 zc1lL}CRLj&5z3sLb~0v@=-)`gosUpV&clKjKw^6*n-v}8@^>5s8oP2hqrbimAm29U z4j#7cbIQ$%JGGe{OQO%V3iON|YK*(_d7F& zkiQuvIZg}QM^pr;eaJZb{wVdQQ1Xyd_=%dX_JND3abT9IMc{g<#6~YMi3xh%BUCSU z6YbvvpvYBwY>YEOgjqg<&6KPT@L2{z6LUl=Y9lv-AI$LH_aa0HBmHOvCR2I276TvW z4$nrc`?n7wBE--PQ2Lx>`=}(Dv6j48&K7A!d)CJMvxZ}L$ImKVZ~D&*=XkibM81>* zBj7y1MB7_v2puZ6R@17^#h8&`eYSQ{N#~lKuw4ReuARf#d5%U5EIn-jcpaUCnE7y` zJr!7oBl5Pv9vN6JhG{guRlSN%1Vkw9(~m6=w}ZIxmb{$s$cB{2XETMK35A}){>6yw z>6K`Bk-nPLM>$FuIC1SGza+}_3r;@zm|ILSlF_TO*WXPYv4$bPp9g1VCs|-=XJvxq zsa2KTA&Jbwt6Y+~ZM2yN*eas&%TqbHaK_@#7cu-qZmYPvsLiy!0ge!AeokSWw@#m zd&@onIyOmHb$Qc6p9pcri;MTNG&|7JPDFvO?}eG1ctR86?srC<93gTIY#Mg}kZpJ} zevs7>%`XaSZ33+C+)wbbW!o>~2L;Ja${c{_&$@S8&(76X?sG)nNx7W1cp;`^oX^{u zHV*#D;X35(6)SE%5OWe7YoAWE&1?2^QN|wfR+dZJov2{pG}j0&NFL60apgSA!J-Tg zY}bZ1njgRP&*;C8w3;mEI~tcp^T-wK)#U=|SNfC8Nxb-~Y%?71r=0Sb{13X~91^Kl z3P4>GywGjpbF2RlA;%k%g)+DP32k34Bx1A8PH! zpVF{HgVN}UgV0w*9D3}2%u?mqDFPp4Ci2S3c#rgT#rQ+p zb}!0;jA4ymNng)+KGktC%VGMy`CL9N^^KlU{bOsG>`B|W%-(R)%oq5|t}p;WUFiv6 zc~cb?u|!PtWaQiacQS2lAMwpD_ZV~Y8L=P#mf~0c^5O3w1#vU@C+=7a)1$syV1NRs z=iNkN1z%=CW)+D5hh8Z4GeH6^w|Wg4;)cA zwk1gpf*(44GnE z<`*^3&v(`(;ji)Rg}_m@+rda#;PQ7~%!Cfsln87Zy&4LLGWfWFLP@Q@V(Yr6IDbl`u1MT}{W+S^J4J$j^baN>qYc$AnNKmlzX(x}W^ec^8Y!0WhGL<93f z?UN+~Hf~O=na;VLMpP`F#Ri( zM&ftkH(V@FLv$u$O?WhJ$PXJe>w+&ii{}<8BJ);|QLPPqLVg&_JcNyIIS>=@LJeX* zu_q==ePudE44)k{e2Fw5Dgk1+z*O69JcUlTWL=xm0a`p3y%e5Nr0JGzR#(Vg!^pG( zAKhWsmakJB8tZJ@H<@6U!6h+LX6uYzfV&Sz<6z{pbt~x&rEorpLZa0EcG^#*yUR}! zepCb0jt-9T^AMR32Bs3jm zd!L^4P%mX+*QxOgFKrT!{=2C8JVD%5-<y;F*8KEzZ~R@m89PrqR{j-FJL)!0d+6-HonV(#o(w`&YzfUZgbOv|PtJ*nN(u3- z1uvWHVC!AHIS?O$-wCn|@|+a}9!x)$}N>_ZeHjD#M9sSA#$8f^oW4iZ&Gq z3uG_}gCpHwy=p4VpT9cDA_IsBm$2ShAGo%NnW*q==lCa2B0jck9kUHbUkz+Az=PR- zBYEz^PKT-%M4Ww3K>lk>ZJYbveyZQ8*;VKYp6FfY1FiLs^D4M8JY@j%IYbLnty(P| zje~z@c(AS%cWiucZFCT}4&(`oh5V^5O*muP5hCQW@zJaK{It?d!3KvZZo2FQZGBq{ zzqN_H?ixZ78=ape1#?9_6G|W zYg)o2oNm&|7BeVY8cGeQ(7!wOB%N()Os@a7x(NImOtPkS<}Mb*oE$&dlZ5%v(t3{I z;DLj>fEtrw+s)~k6M+A0U(VYXNFYc83Ka8BPaU|4p*IO%915P@=u))d!FI`r^GLZL zZp_vL^^=G^pk5B+y7N)EUgPKO-Mvi5$L(F3`uE`X*Xw1?*Z%$Z{JQ!ru1HHZa9h9^ za4X;K5%&`H`>Vv^{m{O~?{i(I<>N}V1Nhwdl8J$_e&Zf`&21b(iKQ9N7crX`0Wv&31KGpXE) zzNn{dU;lz$&X_y=po>GU{`v1PO(aZLbGY_)_!JojdM97gmFF>GJ*Exs6lFXHTt;cm zeo)MdwYK{OI-_LZyTbA6z^PQHE*!x%ZR#jGJD$cnC>4NM73@SOW z-9V!y{NoSVF2TsAz$)~Y+U~)KrYJ7CM_yXqLxe6lX7^kc>7YE?tEVg32pHhM{KJc9 z3T8r1CcSn_==gN1W^jZ39Tj|~$K1;sdL#C2>Bp)f*OyMJapJ)$+p6sR9_M`{HXJ}_ z)B%F5pv9`M?P~db0Ulb|N=%7ywLxQu?ZUTQ?Hig{TD&msE~0Lhp3mnf0ppbO)Advf z@b)@M=2U7(=g-peJpgHvHf(e$9W$ZQWx}aL$C&w4N(K|(fuib++^$@u%r>6FoSGS) zr|6zZ9RbX=!8A^p8cd--<-V1rxTTY^Pk8OY z0r%h_H+pW8`eby=bhU#|;E79sXD-DouyLdWv!-a%J25feK$fO;!%1966{A?TzD%M> z-B}*I;DT*Dj-u*TGSY?SdL#nXRLQ}*xv}|79kyVF{a`+9S;dZjEOow3)=*8WDbcU36R0e%pT7YS z-}xBZ@FRscj5(6Lz(w2gptvy-VTsjsLpq0btuWp5yVt1=s{XVPrt?U12A;0c>>qA} z0D5-r4bePn$5W@VI(ev|uLtw$orJfR|47BT4DprJ+KlR|3}ku=Op9m$6)b1xa0(@7 z0eVNT9T zDB6j#l!kixG@v~?W2C$z^U_EuDSpA}8T?2wrE37&QnR;Dz^-Oqz3rRoe&FeHK5G5~ z!ssDDmyUQV74}j7D(Ww=dRE&J<<87mQ{RMErJ<+M!bq9iInxy1ubXnr2s%aeNTbhx zT1#mj%aFTr^p|CWy0$`voU~jA%HB*QJXmCGG+E59CMngbK*u68@Q66ftjRycJrk^0zcDm!co6jNuteCJ;0~4E}$gj-Yme(bG?jM_vRkH^C@xL5A3@?m_FUm#y^_KJDq5`Reu+vi$#h|Ng`hW*LnJ6kBLgOCs}#Xf`W` zT;oxlICdCKeBIYSsi4U~?`omHH>jl#!e)BD0B(|6KK%Wo1n&3HvNhaD z6oA-`_sVCK66zcyIq5Nhon{4_>4lGju3gqZo!Z9C%jOT2D>$}KV-DWy5oeguTNo?gN_Mtk(shj+Yr-q4_ z8)D9s)ngO3(^MYd`?hDY+|_T^z*c@~{TSOM$MrC3#$(qpaaCNKguWK-ld?9F(rWd` z2Q){^!HO{c1&Z35%Nx2ccDA*m-jSP^-UyeMesRNf8W{E8fojy04@PANjEmlFk99Mh(M{R4uEr`dK>FjJrLI_;z_ceLF<&nH&h-WT9Qvn;ZG}t%b8D}fF<8J* zi21w+rlUVqwNwC+#BWMBrY>bdC6sr8XNhj*&i&lzZiH|!c}KN1+yP!2JgpZ0eO-Qb zX-1Yr<2(o!&;CczAw0fo_IWrf9!1shC;Vqy78}}-W zJ1=SSNs6qh#D8&hWW6uUV*_q$8@Zq`K*d+cx3qX4S2i0)%(mLND9aC|Q8b1IT)O-? zU=dsX_sJ)b&Wl?nnFO`_#uJJ=*!8s815>$;n{K<;#=10FaR2^oH@3UX`b&rJc{h-Y z8s6w4+R^`kfI6;z0(4Z~R}D4!zSYioENK_pTh_euvd7(9V2)Q%5S#RwYnriv^HZmhvpm-W6pKx#;L2}+UL5VQPY~htRFJzbga$rWpfh%ByPB((E99vx&Fuam?uv)nL<7Vs?s=W0}dAp>Z4`vsncF$ z+qFFZogW{FE3`7ZI+uu~-QO~nm9}6bk^=W2iK~4;+9 zq>b&0Fu&PutEdoOv(S1lqmKQ>Io8%QT?*nXk|2#ngz{}Xj=t8$=4kS~Zc!sC3<7V7 z92xis|DkIAhnnI$nor*gjMpgKTF-8`(FB!^J9=E}=}?DvN@Qn6$}I2{KwkkD(P-GtjL?8>>k1c z4ucCrhuNEG?^Iq1sK?!fDCFW8q~nzRHsX2A_TlBKiP#1 z?Ce$ea%QvT$fw%2j}wic<1IdSo@&Tyf<*SMkz~avpWp zKMAJpH%r8@0T>usEb@!j%giOANpVas+sR4L&*2Ut$P;+$&F~Z`N{65E443e~ zgnyukcgEtZBa585$4US$t{LSg7K{ucuS}TuO5J|T0YIDMA2`e;xBotji;KKyuwe)c z=KDqYXQJXC4!$@a2%X?@^(^}_4`a^j;S>u4tVIGq9x0Sj$Or;U8E zq*>+1%jKQ3wer=}sr)6G_8LWzUO(`QhRXPVGlJf_anh=n z(M7G|%uDIvz5=l7?vD9m6!qgCYjllR?<`-1AOYXsgvQstHeCE~) z7kCy7R%#!E%wQncUV(zmFQ~euwiP>q^>fOnsiLfPdo+$HN>&@#Vg4`TVM3;8t~8-n zY=u~W4#0d;{UyZ&(cE+@I9V;O$!(wAC2{3JW-VD5AJg*&?@N2WPlkW$lfGvLu20(7zvD+3!Z##UIkNhZrC# zH!1m}CR?#7!FHI|a-^nqiM7L4(JVE-=3qYli`V0e&aLLfH)o^==AReV{7OEME$xi3 zi0|MDsY>=H5}^PHHz{j1J*0-VPb;yr7ry|lTz;4;WZosJ{4;wr3H^9GR;nYkrKAk| zRux3bP6!n{w;((ErYbDD?{`ZUWulok%by?^d8p2*&O+0EdEA1y$i83r&-V({V?mNN zDrkoX5*X2r5$MbvgS=-dOY$;dMAv?WjCJ{8&(M)BVIj=0ZsX8O%$Ek*ys^!y0t;>e zGs{Ad*dGFyZl6-nM7f#C3wPWV=j|m9>}+xvcjQc3)gB99-+h~xOe(b zYzfukFzW+L805@1NvNoAH08w!0W>#h-{72*Wf!iEgDZE9zrlfTIf(?shW| z6`~RMFp_e7fdM8X`E96vwIHO?bMderpIf^?XMI-K#HlbCT;2PU847V=A*Z$B!v|jG z%71wd#5P(${L8^MmKjSfJ+Kf(>+4|CzSr&{?-*C~Akt{2#ix1_Z=H?$0%(KuX`L`{ zJ}SMe0GRdVX|}svCw3R2a{Tb7o|l`1%{3XGQpxaaO&>~{-HEkwGDnN*a{H1fR-q!^F!$O;-s*&J2iM8%>HelH|(TO&k~-8R6!hg68($oa;Qyd?mr*{_Ai9 zAxc^0>c~{3HmPW*2vaLCdS|3&iJ6$2dbfwgMQQVH5%<3wZaE3`YN6_M^zLa;`nV7D zn7Qs_{SmHzU8vqY#;*K#(+5K)4QQ75u;b7JCQ{{U%>o&w1M6F zT%eI!%v%^qka>>nQ0)g<(_Y8j2L99D%kLj1rIo_iLbS-5Jn1nT}>yvmUT zSW$>9@`ka1=Pib1;@E%&bp_jD1}yRl8l}?n#O+wvV%E_OX9pO`e^}#c5>}!+HG~Tl z_$mR%?pDGH{8 z{^23z-9anf?yKnzg@lSyr!$NpY>;{5%4tqxMfkz=E-GIIc*5uSl+Z`eN<25RzudK? zQzf?lEZ{dmWu?p~d+g>`(&c$rEQ=%FDq^uRqQVHBr5!xx7l9!g@mq!9@~O?=p_f_h zwGmID4&L-e{@GdM>3E?v%CTPyoH9xehvT6@!MQguC2etm#|6{bK`f5V0yA z>2Pm^F(kfW{#B)o(75Tpl;F*O#p928-69l$p_^8D2z6rOIlUzeupwwG{Y>2}`=Hv2 zd=LmN08Axw-p1(Z9sZu${d%o^#BCGCe4L%E(j_6Tjj<#zJAV?h9!a`5tklm(1UeGw z5bJJ~?d+PwJ}K0~qvU38l}_jG2VM7DZ!JJ;Y;r*GzgwIWdeiy+CFXv%ZsGjShKS7; zl+-hn-?V3}I4p-6NV~bd(;~x(3!$MmmjhGC%h|kkzx`uDAa19g>w$q}Y-7tS>HhU1 zdfF=X`j~E$7gS;rvsEK-hr&h~ux}F-W@U&&y}ue-=O&j8|0OYB93~bl#ij69mm?1s zeo;#(6xH@C3^`NzZmSr;cP^0>(MnT!g4rlN531R?LBV6gw=e#`R37*igC-fVF}0J} z%0e-V2qzy8F(E1XzC3q4&cv$4kJEf9 zlnB%MxVVRMB>jqWCCCY_`S`f=qd={tc=I??Ya`9Cxh{b~6OVk~Xt_9PPjh4DlJvHb z`ipmEdhXSce+a$-uiUPvKdvKk^q(&(qCTHqlHMj~7u0?^CwypBsePD7u;Qh=r1A02_@M)QKJz_-U2@#?^Yr!VxKJqoxNaSLyd5XLy5zYvMG-i* z+1y{=&WPA1Mfe_ldBPrx6}&**_etbO-1I@NSPJgjH}2af<9FNE|kMk>W08urwQ-K1qQ=0pMBLT|dRc+GxtFZXj_n7<=&#IJ&2U2bv4uL3|H{poD94MXlB zBn+MVp(}qs)m%YG^H$9Sgqeihz}IWh z19o03mA7rI%;>f2{P(ZR+qH?mlY4C-g2E36c!k939ZT}Z>+;z2E*_kbyRB@=mv>46 z$xO&azY4GS*!Rz!Z@>g=cjY`|cVXMUxZD3-ZewiRS4j!`;>fMtwL&xq1yF|X zQkGKVpPtD*FuDyvzC0eb?wwOC<&H>4A0TtiEY3qX4;W!@JCre0p>y+aky8aMSHGJo zbM&(ieAYRIx!66f_8s~9o|k*xdW0S_1Orxvyg7gn$AyP?LhY?)5lMGf8N`2;A-9bG zb~ZUM?I)3vq857ReLO+?JnKXY@UtQT){}tPJ6YoiJiIA{zRyV*+!G1F@v?Wty{N9y z*wED5H?_~Rr}j}o?|<5o5`oiY?}God;oM7ye9!Z1Pf@ly+uD7eCYrKzePe-r z2M@aGJHh&WGH^b#z$`Q;R)G+QHlC&v=QvqkPr0Hb(U*+5d(y!V=1ne+c^w=8~wPf!t1DKu}~Ayd5KQRlBwKO zhEEc)%K8)F6N3>{6y%}8+fluntS>NCps2<8cJB3s$#`!E5coErpMUsgjhg>8Y`%0Q z7|A<^&{+8o4DZPfVPLap^^d4G#VtVZ`#+bV^MQ|JAP*V}U}2lK ziAwM9ecD=9m(QJmU8nC49x&j`Sz1#q+x6mk)tH?g@NUU1$<7yOd9_9Me9sq(_mEYr z<9m0`sO9^zk_tm#wdMVGe|YAWBmg8&9P~>Qru@+_SDW1|?B3 zvCnj?cPXCG(W?FSbq^FMj}nB(+5g+Up=;y@{YtgQd<(en%d zz;1o`pUQX1Ndt}`2oslwEl?=K%fo^o#%}na9>e?oyY;L(H&}Pk>ThQ%8h2O`MnlMC zj{w~xjfIMdq=;3B>pb?5O)`hWqLsp8!)?-ce%URgrZhK>8;XZIPDGBTCtTBaqIHXl zA*tFHzIWi7O3$M}(^nkmhieDrYH|0}FWHGSSBm>RqC8#Gx(!R?_8p6snI#(@ys<<7 zwxaeiE1qS*c9O38gS3Jb^odzj&<+P=40n1Rzni~ zf*Ui;!p=}-5_Df(ATgDE%0gv3m-p0*!!d4L1(le-0O306$l_4|v25XrF9l);595sd zxc^6~wc;K{WP8BHXvJ50oQhChE!+0D$_kGi(VRw)K05P@0Ou=*rw+P6XZ=rV?b}?d zw@+aBq%|5(QYyk__pqW^58} zI~dNY1coId`G9z$tg-%JJND?PO%Vv-G85R(4Orp*Vc+!-(gKklxg7SVEv*8!10w+Q zJgPEUg=Ysjk4hda(g=%|_Vo835r!%n>;BDeL8C?%ZJQEfP@7$iQip&{GU0Y|4D}dq zc?UR=Ivg(oq8bA!0oS6+^E>I}V(U9bysBjY1(WDlK7B&LcGcq;Ops`co;!?>uqhB* z(jVS89ac|@5JVUU&Y87?B zW83@3UbEllw`pzD%}bB6?y}ZCTMHmzjpd9ekvTLj2&7(}0xZ?Jr2*5^<`a=_{IkEf z)#*4AC`j~maQj(u;Xt`RuLl1ssC@yrX(w^q$uiO`n_4(%ZS0)_E6EvdlzZa~X;U|K zcS=jgQ)(kP%Q>+FWDol1ik-)4CprZsA5567ggyGqPe%axh)a$DiQuq7@H>$9@~v-S zMe^a9hfye4!jY3bwDHV3Ar7;3#8M$xF#;jd+*TmzxF--xcOv47B|`~0mgOOv80gafC{-llNRqp<)T3)Jjp`+30m z$KBEt?`|){FxD3Ri zNa*cRlqJ@_0XU7zEij#jZ;q?;>_f;02F4|@2tm)+Dk-*5jk~9rB!+<=M(w{o;a#Uw zRH1MeUx-5!X?i`5#&62M;ZcP3Yzu?(UWXDm#T!g7c|4Ke5ndGhti3n~c|lu|B|8^# z4Q*AO=!}MnW5|!?Q-Pna;kJ)^Kc<`}*l!?L-diW*t=H&|%~fc%XcD%pd1GrsrKVLN z12ssi5y?8x%;Qbku#W^XiDnh47Nc6!fMe^7Wc^JMzwa&O)`c^hN7K}TZ;k#<+EHpV zta$6Ah)yF|Y64Cf$iL4z!W>XmKs6z%k{Uua;Vsfr@s*eOx0RS%7yA5|mqt#)2Url~ zb`L-%zK!Vout$Wtd!xQLW)5D>N$p$meQ!r?3Zo7PbJ&Ms70WmfJ~}4_5sCDA0LRwW z6p1UqJs}Ne9Ny+_n9jb!v6{_|Q|H8J`T%L)$50aFv~h$R1q7#`!29Z3FO*)_w%=aD%ITdaD5{61tuYYPk@Z}2v#y&sC*_m2y1e!4Z3BE z8lc Y!bjxFInw;rV-djlX9bA1!hd>a8T0JIABv}KNzmm%|n7`C1G z``xz?Zc0E84!>q_$!+uxO+Ui>Cu6ma_X|9MF6(!)NHs|$t=WEKmhwmy0XAZOn+XQJ zUKOv;xtFh#3hS&73c0o&${h3AAuQKy zM*d8j4;aiUO5q@c44k{AGwZLhDB!3e5Nbf}z) zo=DAvb|n_PDr)!G5vq5oZDhNy4wjA>B)nm$EBhV&l`tEj4%ZWMse7=4fV%}H(P~z7 zm(>9XO8hq!N}ybgBSu(g^G=GcSEVZv_JE&L{T7v zg(OlXQux68+GD1Q%*$=cdx@(HH-l@y%8>D7_636(t_V8s1^~S^^Nc_YkFGKmaGRv{ZB>dlM&nG(SDA3?4)ZppU2&8FV6W_n!E%(yMtn;OwR7f{E#fNGZJfNa8VtD-pVBROXx)vORvB0&rM?% z2)CernaBtWUbfJ?!Zi)^b*NB0&N-j}Dl z!oO97h~-_7E^yrKsh6Xe2V%&OGC75B&S`#Fa~2kY^xI63xAW!X@lXzpj_Ar3N|?c? zLi*jb-9s3ZQJUp=beKesxy0R8^oy3bS=XG4P~{!@gNE7SO}*4bCqwIKg{%XCp!Vf1 z)L%8Ne{8=}L)>V#G+htZpD6Acb9DlTMbI4=0M{I(c4XDZl?iLdWmbQtrLF;;G{Km9 z3fa{rHvD2#w|^NE!`GVznloiPK5NM0-Q}18r4V?uP#`II@MdA{UmJ1cd=({5L%!2MhE6%S8*c08x8`|5jlh8$@F?T82&|yG1Ss zugZXkT-pSEj~)Rhe+W+|7fTt69O~kCxrt{dux7+^u6r%LtlTU6Y2&+6EC=zGmE>4% zx0Z2&Js1{dtM~7mrms)e%N$RWRNpvPTMKZV3RT=S&*eDQ1n2~O*SL1oIOux0nAF6d zkJ3!t&hl8|@EGYw((PD~nnvr~_xV9|Y?dEuiqh0A%)>X=SDf>Y~DDM?6 zjPTd>Zmy{=%52>Q#Y{>xt&!$i-f(y0PC2^W+UF+#a3NeUJ7C#y5U>T{9fnxV4!04v zsd(zOa5$WE*Wi7K0J06$HN>&XR;-@yQmJwmo;+MR0n=9%&2Nn6*LciI_`MEK6d!Gl z4yKhxqdD7#5~-1d5;zE(0NonN;a;9U4bqUb3G@#nQW|eeH_^3i4iLvMzvD#Jn`icM z$ZgaQD+3e|69 z--lR@H+}Iu+4@MB@9s+I3$)?1e}UHtxd(i_0psjy2&r~Kou6tX>hki~%%|5E9wcnX z(prn;gmoQ^&vpWT_m2zywt-?72vCga*y${wM1am=qySZiJB22_rl=`@H8jz_CH{4< z$ATmgit>{saULs??BtrKeI$xj7$fO$5$OuJ%OWX=bcEW$w`A`)>}p17!vq*-#~xkq z0D>I&V+`OV^Qt12H)6JO7Q0Y#lE+JYUMu_m2(Z!4n|4<1CZ<7X#2XdnETk3+JuOYw zU9;WiN({^E17lmqRP!NoiwQx)^kOaN(^d)?EIC-LC3+}iGu*Fv(g7tDxfrKJF5T5A zy#6F@>4`e#^q#vdXXUB)xk9r4KH%@}2kd#$whHLXiRj%psC}**_o0pCxJ0o9x#CCk zjFq_frT^Mat7wJPat`q)xD!0lU~vfJUI6Om#Urgd(fxcg>30@93aW<+W8ww);wYdf z)@w#QCqyChOrgV0yA$=zb$=(xT5AVScv0qt zUxb2w)Ty1v2C$yYFQh%D+F%lz#{Qp@WiV#0pxFUSGw?C}KlD zlhEIcJs)iHS)sd#ZX3x17-#d2eDv$=l+~)2??wAf9s!EN^!|PbnUF|p zP6-!RY#=A`ihhi;&YewCm;N}V-%EH53bXOE@M)7H%UqGXYbsl6cly+w>jK!PUS1lq zhm4cR|D8^Hf@u4=2i-4&f-L*nF8k;H6x|qN^kOwcO2DoM-b@w`nCc|NFBtcqew5&c zK@7i4r^T-SK-Kw9rX_9csA2{`oVKOW3%N@hBRg)@3ilM@_IR~JT^a2DEMYakWBhfyZW-*!;WQNkGF}g5n zUx}5OrAIh^&OooI>!~^P4Wx;-{|yhNi_1D4>AnR;E~pzK05YuOPNO9IW4!Sll+qq9 z3HJUOx7gR|5nm|58A=T(h;w_Vq0Os)xpH5SjW){{^u2{ux;uL*H$0vO_}!T$tk5Im zs}ze+!UrP{aR=zCto`pqYKZKdlUxR&)JC>8+>y>9LQ{4%kpoD58(S9~ zJu=jHh#(XaI?z_2jQ{V#p`dNH`OODi5p@(EW>vN0&7PTNhTr|Gg@z_f{&{M}Bxb15 zviGoL0hYW+i6Ye1eGwTgCZ?di)EU#TbF@#YV${+2@7Lc70+^u#(`~kMIlQ9{&il~# zHqRMP&UZyG;jPO0z+qdg%KLQ`i}8#6_oh;|h7@j2G<{%z^}eLWCitL-ZKj`7{g;ES z@Ly%}Oy+1cT*1K0EnAb(NCB$?lWOu7|G$>KaY{iNxSp(uvh`Iyws(9Dn_r zc{Vm4&O{T=sLo^wOUxPeS6@MGhpXXw-IvzAMc|hCui(QeQmo+0D$Fj#*Xa;LmO9SF zrIjDxJIe5hlj7Xzx17-f8G708#eG$ z8H+($t7=51RH}x?Xr~7GjoHFDTBYV0EABfvtznp(_y>*#g*+{rY(AW9ginO-@R!Je z5YT1TrP42-i!Env%)*JF6#NhGyd3zVrT1+v!dir~A;ysBV>+e;%{+CN)o;%>@a|a1 zt)2qIMjvxQ4JN2wN7g{w>pew7Z2R3m4rpQle$!ISITB&vZUdBx%+cpbUC0t;eb7CA z(;NBLhQ5Mg99R(uRiN}~J?if`2sM360zeWu;o&U^g=`ZCmz8c95#M_W&S%3#JzjsD zt5#39N;qi(5w8G(`0h39(G)|#HU>X>+zmMBLJ(fGe>I(*He%v6lj#6FrFVGTePhHS zJqG1ZhHX)|qIU27E6X-I)Iozdf+%i^P|PpQGhdmpFhzux$uU}iQVsfpedax*0z4x^ zvLGh;qez%SHRHqEjsDpzNJM|-52Me7HaOWZ&WHH(PWq=_^=J-hzcE@C9P`5qe2GLg z=YACWMdxlX5uyeulomHmR3G8hv+XjTG3vT3$2L13f71+JU!NKvE6bZD4S=A8%g3M5 zl5ei!`8zi+nuB37X1hDR^2`&n4|op4L9HJ%T!WHb!0I?2s2)(c zHRS(1$1Z+j;=W!X4jqOQmaTDA(XhLcVz@8?vD>8|Mon1&Qx(d>At#qW6QkACa0 zt?R>~jF&o3DS;w5(mdVe=))pP_oKdl21j_pqoDLa@n%jy$$ zP`hN)4mWE7aF1g2NSQatQ^tr#qiKRmyABrlMlbw3mw3HuO8L7tJgzb zI;|>jdj}(*v(M5Utsyo=2g;h^suwt4WcwOr@QMuyArv% zm%!Hg^LzJ`D%w80wa|0jG0eEr{$bGiuSlWv(+6OnyQ^2`)4c&h(^GpUY18jA;VB=s z>4O4wF%796#zz`7Sq&46YF#F6Q>f_4AP9sE7U8rXt?ktsVCvfCYK2tH7^zt=d{vpe zo$KMfic*<@0ZX&sZWF&rD$zj`gUF#9k1;&&L1wAp4}$7tml%?Ke~S4*9$EOad1ZTD zdsYImF>}S@7+Tk>-3=G2!yC1A0@UQY-GWOXTt_bmoS|l0V)BE1CxoEmCOaap_ZC@x zlXK*LJ!ll__*I8{wa5(tb0y0jKw$EB@epEsj_)iYLz^{qQjq`rDrn>f-z<~Qziwu33{+&q7PuX_qE-sJ_0k?3&ODZn!j%ZEXDmTCw`mE>->hRy0xDP7gooU zb3V=OBtX1YR#V(!#0?(xN&)HNqlL&lY5U-L*qOv${z&yW%U~3EMNr`O3$&@g(?E z#W-)GqtybTov!LatI3^pOG$X$X{TsbM|um+g>V9Y+LN|I zR~=Ov5tly3^!Otr&HlJXj1IvZMcIb?!wME=Y5etp@L%3V7K(W1h?(5;h73(*{yMIJ zKAb|Y+tZQ0<;L2f*OM8=76NRjq19jCh-3Ct31rK!Y0qOVREbkl7RrF5LGuChZ6@#^ z6X*50=CD?ef=}BI&j&NYcWS^eoMaCQViLg=bLQDM)a&)4_sVkBk>)o5_^`tQ3c?$W zptJ01uAYK4CSTmL0YlVNJHcaJ)rSBdP7vJHG^sRykPmEic=5(^_?hs`H_l0j8AZow zwnQ1DDkO6-eih9+jax50x~H_riNphb+-;_M(8OV3x|>QcEhS655Kv$^ex@^vpQC)? zMzqs(4*PGfi6fKNljh0^=zk34=VMFZs*<*CGsP(OG`Vp!cansE^oD&wH%VFQ3A{<& z6x8!bDk5aXx>ZPiiDzN;zPK}zp2A|O|8Ti)t@;I&nbERa<5C#8f3&{|?6VMV-9p60 zG)pdOwXkG~A@{Xq4NzV`L{9+_F3C(gvY~c4FNhmg26acCH$!T>DpXs-D_CPbfw%$1o^yF~}8W394!-0BsO~ z#4O-p!>DuLlPOaQaBtzce_B0wI=5s}m#?TGo^3A-sRDIBFDJ1v5HRneR8(Ckp0VUW zqL2!`V|Y3yXJNR(T{(>c#HG0-;yX~TT^>W9By44$wioOOC34;*C)d!~Y4NHk(<34W zXe2ms$&nYO*w`tvQtLs?n%j#(bMOjrH@_FqcmJvz@0R!24!G<&8*!S-@No3N;3$Xn z(|*uJ`2^yumP!Du_nR4AR}I_w{iwqD8q^s2oZr}Un>D~Nl-Ena*BW>j_V}ufF3iV8 zhIT~zjA9@tTrE{SKTx)t^pk41T3)q0Ku+)o$vlH2v#qW>)vD<5jvizUi%OppZZemQ z?^M%!xtyYKuneN@fAH>f|LPl}=teqatA-OQ%LQtWUNA;_#HZLAq}oFFt363?Lo?Y& zbi3k5_+R#vC0z!J*oGW0Sv0GDNB8vzDC#&t*{<7Wi>SEYB+>yBz29}iZyN{uYZ^vZ=JDAS6WIG6ydfTeEX#IclWSqeCcg`Zv z_L6a97%ErQRNb@uelUmF2+)}FNf+XMuUQc6It}zA^w6PHMe}?%ro@ZE3Il^LB(;C9 z$s?}F{-LM0GP&|jo%N*wGG}~M=D^$Y?+BPu_TVC*G+Pi~KlqVm=h7zy7S?=BkWk|N z+@<~@z_PB@(;2HU&7o6!Yd+Q`%Ah1HK~D5QG!k{CC(`y)^qQNHe0tfjhKwFV_!>%_Tfvp z=o$~8%?u>6$7P-MnU*XECdyrMat(v`Y=3n5; z&eoP=A0JRM?oDuWfr@@%=k*0Dr5V4(g1uSQ^9bXVW7#2lM)A!d;19R?MHWKtxMuL* z6R4D7Sez3mY~9*D4SK)zqWz6NC?$R0F$$xLpv6BOUlmpORuCp>fsL@|*09Iv{fLlM zXhun<)XiEe57s>kMiQ|!wLy^MzKV*^H4ZZ5z8%sq(Uv zXk;ZLeovI5rnBEM%=yD7#@7zL`fM z@FZInI z8yM$0uZg-AA@oipu86P?mmb=0uMxFJQlbE3H@1a2_xnFiq0TZ5eptec>7k(N(#_{< zeZFeM8bfq#|BjAWLpwzJQ=i}Z2cgzj!F0!5nQfGP9Dj03R|kKJ)OX@SJuXqExRiFuF^B!H=(p@*nI zy}KZ%VAr|K#Y*|IO8sXyZ(P15M_~~D?MCQ{Rp!WPN}Qb)n_?GYO0^_2FkMp3+9DM_ z)JmaO*zl4%^@W|+Kc{5!e)9b_^W73C6II6=i@}3ADJUsJTjuZBR&xxcV`nTCNgmP< z*;aR~Z_ZW6Doy(cN_b2P8>HR@0g0l5&jcorOlrdFPxmWz@fU>ZoLAy=FX9nQ6HU3O zK2zea8D%jeRA^j@VxuE3QQKJiJi*H(aZ!hktJb^kha0(mxt)97v}i(Eo>R&|RQs>Y zPA2vkj z%|YS@8!xK@Aep^F?>obDWe-e&anyIXE7`)%qf>T&A78(*W6@QEt(9&3y>fH@`}cZ- zaC1BQLI2B1_L-pf_cl?lD~uioL0%x+l5E1o_tu?p$#nY9gV4gRe}o%5APp_ampU#n zP=6&CeHXK}v74{zEf?)>XqvZCt`K0G27i(iDVMk<_p9<@k6M|v`@ld2h^RPMrVQ$S z%Z8w+QfKLx+N?_`GS_P5mwGP(J|Bx!OWI&i*k7MGH!r+kq>aL-6`CX(g>gCny88c- z_SR8VHShbd2`G&S(p}Pxq>@r1A>Bx~w8U09pp-~UcSx6Xr$~r&NP|dsDe;?q@Ohrk z`mXoCcdg@bm_27^?z-;lo_&J8tS?&8Y=tSF#px9RPVDvaV@4f!vN;vndAgUmv~O-i zs8zMAN02e4j?n7R?bbZcyI~wtK}y~bJ^>WiqX%RzS0lAC{>K+eaJ)}U#23@XP#M}%S-w!u2+jmSj|>owb=TVO0+t; zN~VLfSfH!LE0tE&>yhC}rB5?kz5Syn;epFiqj_fPg zv!*&(?v|egS#p;>w42{qYP*~LAl{waxKSUnZy4Va^%{Bm*2?qjAVk!wv611CO1;41 z;&6h6b{$19g}^?Ra5HKWiC>fF49>9#C1QUC^-Xf)m|xD|0wLmvUDU1NOpqO6Ub1BT zM&|W1*AA$6vrtSJD`~dbKDDmwHyZo)>&B12I^Ex(UaYYv`9EyDmJL4G_?A#L{>H{{ zuZeB=KF6PY ze$v?JGbMkLN6~nGez4=FBz<0pDwcE@k9tSw-ZJssT+w2g^SMyyybFT#snE#|TxiQ6H9Ptm zbzJRfA;oQmPgCWxxRa=hsiSZ2erCYUdK@c1eX=|1)(}liN0xxnJeP8okT@QD(%bXm zz#~%~_w>`VLJbdff2r!+_Z-_;=SPEEm2P<&_GQm-qqU;*H_6rSW2HaObosahovhj& zB|ls_fVR%7fB%^p))$}-R>SY~`cTfF8mRiql!(mzr!SMeT2>2BsN?4FWV*ihOu=;P zjABQ4RA39&{o&ZMko&W=iuv^gM<({8@dDj%j*HrU=2gCIV7OYncMWZRcdO=epKn8D z2+?YxpLYpX#aam4HKEy|LE`vmGiZKx;TuJj(F7U44_D*7r6b;Yk73IJy=?ew>r_qu zYZI%Z=I_L)3SIAOmJT{=EUnD*3a6_7@O~4S3nMs|Y2a^JLCH{v2tVcxt>E`m`l{x= zOj@brPfN6#D;n#%olbdMWsxSp>n+|vE&2n0-xx<9Nj!|H=@wn~)8W?CXcuTi4OM@^ zMhMhDGuw!@cV`yO#||8=FDSS*Zs<*YRj^m0^_6;KH*eic;5Pea<@vYn^4reQC4GVo zXEY8o-yaC29{111C1uyD^SvZ0T+#1VDfyltE%W=mZ*r_@QS=iYn<`I=_AWxP<@%U{jvW#FO-8}%VqST4`71tfGt4a6=!#4y|B%eV4+| zjl7DYccq#zy|u#|e}w?Q%I$}Y-|SZ9R1HQFvvww~lEn~@Lx>~pRgMIr0C11KYqhmj zE4#4^&(M@8Q$EW%BVGQJoek?e$LP)rW^wG&gZ_hoD_M%X&fXzkY5GR*-)cy(!HyZl z@^LoTtGAb0+$$I=yw38uwijAdMws3YZOMN}XeCrKiL?7eZif|A^3~vs`Ga~ax-TZHEhd7mcYizMx6+RqiGrqy~{{H6EWcTORZy9dWLt~HLBS_Z6 z*^PV)?&?sCSQ7mx*rP=|nGN;n<{x9nHF8M2ac}d(!5sVUag{n#OXK@Dy}T$Nvv3by z_X!2x%F%q~B$)OK7Ly7!71U(ljS=N=~+T#!$rk0s~PrBZY%r7)>E2PCvA;d!}T z3A$%BSW_tC6z83&N=9dtHB8Zzi(>ywxgukK=gY?{EVr}8CO)G?cTe#V`UJyfx zg90i>y3x>;Y)8bZY;>fLmM`k{2pJd|2n7w8EYng z4t?o6;TqRfX}%$z_1*TMfy%pLtG!O<&{hc~$qswVW6?{6d9<8T@Zjdh z`%G@kuZSX1jq0|E$a#J=CuGR>izeThZ`wEOkkw`JdqpCrCe2SNo^$(j+b zc*eYB`><)<_26m58D7Tjuae2}juJiwS;?*DT7IzyL+AFqgTgF(?=T>yVVvydL_9Q) zPi-svYlktJsc-JzuDENIn?WufBEgt4l*_2B{kF%KlVi`FL~v>HRdb;fTBrJydT$lY zN$T5S%u3pb&d<+y59?FT>JR%5cRK(n#uTpfq0yWa&@IR6@l#UuVUL+wI^z4^S8;}ti@BM^c@x(+2GoAg0 z(W^lni>gh=<<{^`_kDCq^BUJ{4()gDD##L-PrYMONl2;xzVR@q{sTy3RIJ>uQW6|Q zz!wiWJ7*RD6(jnAli$Z7v1pFR5#Gkq4^eh{X1d*4-yhb}TUp zIdv0W=catUp{>Lk>iHg8d@%1OnM*rhgwoI`d;6hp&TQS$8s!Jcn{D%6)z}3XFJ>V( zUu+RmVrea(bjeZ6IbNN|1@BqE-k*!Pj;q_Gm9B+Px_V}WRb92aZYtP&lIBqLmS97r z!Qxf(!twkA4B@tCGi3H*^jsR%88oc=-TJX=ntD^%rY>^?f=k-T<>}O zvzc6FE!vpx@Nvw;kI=&EXG2|vL7{-Y!LFS>wcP95of3-vVGMhCbdTOm^{qxYubfo9 zL1+(=28>bWM?28UdwG;bjWeCZa?bzsBg~*zDkW%oJ2)GWG22Lh}@sn~dl_rEh*&O`bVajS71H+E~WDRua0*Ax)5Jk?|*aNOx?zI(WVtWU`U zC7=4yq|E(T2SL*o?an)FR*4Fq*uSCWH@Qz@3b)D9W0icUN`3i3J-pCv?K zl8UrO?-~}!HFmvya8K(u16y<={@aI3sJR$-Q8)*Mg*H<$6RhzDH6NfE{InXfFcqfh zwtn`ekArI6u27)90lIF?WlGOqR-ExQh@{s}IqEo%D!M0A4@WzPTF785^PymkS_$5_ z*Rk>D?623g`Q)-xS(iGE_I^%v>37X=~(>&o`}Y0OjnhB?s@vU$GJ^~ zlyrQUOUlPLM86?%w&d96_LWxlV*!rZRJrM@7`$m3d$rRgIXp+F(O9yh;e`;KjKJdl%>0vXV!LlsDF|%x^T~LUP_&q%*R;p-F9Wa^dXfX4 z8Rlob*%_YnB4<#$XRYO4BgLc;sQHsW)cpcwb!U;+OGS=MV8sp!;-w= znqm<19u7uxM{V-fNak%mVpbe0?2@KkE9{36mL68j@|vi-J+GHv8^vc`^M&bb2(Yj zAJ)QjJC9ZMlPDT#Lq|^D_|4xWc+vCQvue~YKOxpzQ)1JB0o(nl;^$E%hd`sbPp-S7 zm5I|^zrH7u-=Hi)J8!m`a7x%1mBs(Emh=(BPIvw#(@zB@KN+7H_NC8c$+%S3Za-*? z5eBaB8u<2?u#QfkgsTs`Zx23m6DB%udaYJN5}4HBua|C5&Ym0Xh2^_@*C_heAMD#Y zCy@_l(tigj*UBUZ-bfBGll8Ok*t$2^PBg zz6xmc2pFInB~#TMrw(2;Tnt`ZAtAdF8{?>Y6aOj){H>GV4j}jCmrlkk6kcV${MJcv ze&pS||F8Rh+{in4;9ejXe9w=Y|KGcO;GQ410P-&1J?_7E5C8kBN-l0*ULL-GZ}YvK zEV>H*T?7BFS56k)a1emdsHxsjdeeQlb{$_3Cvx-M<`skF1?^{r+RIdx_HWU728b5v z8-PYo(8jJ#`13@MD>6=tldCqER@zY4L zmJvaXqCMo(G$IrpCj9%D;J-;6VphCx1$CN+tsjr>zsfs;3RkWYmbC{n=91hFB!16m zMJ#TPUiFgKpd;1A?i}s9%c0D@-^cSVN!pQ+d*U)JqHjL*N@Dw3U3uTU%XCYQ3ju^c zl{%pjX1wh(omF=8hpixLT3@KqFj%7hd(ijpXY{?7<7 zb}Gv$WyIr{hNWO{TSilRdCo;2ewq%!g;#(Wzph~UG+VpqMia|X{JSW$p1tpe)RM&*haOqdqLpeV8b+6U! z@5GFHu(lLPu>wogo#LkK?Fx!%FE6?HxEglaeBV6OkW}slU!$F~F-D}k+*xdyi0e>G z9;WH4bpGhOAkD064*|E8GFlZ`nN)3qzVcdKeP6$aXJRL9g7$L#wKH{`KO9Ch<$t8j z)M(PDo^dVUqOH{@w2>!2McY7$!fnAL5dYE3HK62*E0$vrYb?fZMAa6;`8ulK?ol-( zg1gYF1VusfmLn?k#E^z3k=?aJ{9U|<^h+b|dG+L`Cl-PRq`^@*ZkU)*cOdN#S0&|H zLl#8VUc2$>S?tDw$ zrg?;n?%TVXXt)HPaqeb76St{aj43yt?=i8q%u6BKA5tOuUMH5|P_qPnlfWftCqzx^ z9RquxHOxn#1-;HGW0&iB>&QVM{)==BOmbb>+yLW|W}OA$h@K6?mh*P1UZk5N$NWwV z+xm@R$lc40eA#Rr)+EpX819E-R8sB9=v#sp*GEVKmNqnRTd1`TD84s#&4}O*yqU|D zdRc7{?Lm7+>%rh9oW;1*EPR!HU;=a?VF?~J3(DobB^u&!?o&Bq+1#r1Yj5h)M05KQ zZ4=MNg&g1vVZl~4;^ZiFu27^$AjLxAYpEboj@*KG{jT_)<}J=sv`9oZyso5j1G@!# zhcxhp%Vlw-PJC!spqoJBmpIDT-sN)J_LF-~wU_0rS?LuRqxh3hCeEZXCNc*?Nz#eX^n>*ahfo3IT-$ z-LK98p9t^kk*?x50iF~TR9bhX;U>Ny>OTre3=-F@6H*2W5Hg`EkH28&6YnOT)zODF zV)RwUF#hfJ+GVaPMnp7fGrzD-G$JUCt@%5=TksR3f4j>udkb0qe$#^L2Q!R$*-Cw~v$yN`_RD1o2Rl^g9dz;7&g7PXv6GViHQNyjK0q(3H?}1lmv65OGJW!J5e)efSx+b&}4S*MD}PzJD1;0 zK1lpI5&C*?*!GwAcktB37e&$W#TOOPN%_md$zJ!o!xsZlBZvxPfw1GGk}7r34=GyK z+xRWJK%mD$rl`ud{BSHkUIW&a6m4j79n>5DuH6F5?|Q!&@38%yV0LQ@0xYggT@a+J z7BXb$+7w%i6Wuk2XD6?9ckC9VXf8HmD`=39c${&U5fKp-r#l2BF&8s?U+n%}#a9ow z+0!biGE+GGa~b#eK0S5Csuy30Xdl$JFpC|UG>08az{{6aY>=uO}2FSg60 zgp`;5KMVB25-{B^Jw_dqtVjJw6HV1htTu_-WG;=xGQ}Vc3RAf~@%bJisz3a$K7LEP zRBRt1dTQp={df_U=Ct%ogSs&ybfe|8mvoUpm_IjZHjFL?1&qjog4H4Z5zk`6RLJRMn4lF7WfmABqKet1saV3U4;7L_)cLn+ z{Q#!?MciV6v$(8bG#C-0D|q#GBw!+}c zI1OB782!2Sy?YUFVb`0xPQ0eMMF1Zp)z}TWaavTIk zy0YauDMxoVJb?Wc;3mB3>YT5@w!w3$ zoh$zIRIdEpKPBNa&nY3NHfE^Ck5=4 z5G3E=q-L=7%XQJI{3!q`7=7Q(KDOa3hWDuc7umIm2?5T-GyUh#7G0)Z6&AnB+W+Mc zMw~d8asX37f0G>LsxIlJ(*7pgSwleFu2F*N?)I5j~_~u_nq-sesT{##BY6s(B6E*dHk)mSJ-kj}p zas5|>9;p)>&Zj}8_#KnZSeFh~jQfP`w$XPkCi}q$Kjpo{QQT|nT)G(kdBLAOpg`66Y|Ra;8C z4Z70JKLTgJ#Dc{%0?@+`!esuEr|7CJ1K)&#a-4XPo$3=7KDja*r`5G0gAq8dnA zRfHxqh`wlEA5BdVz+jMe^koRHQ+sJ2ByPaW#E!D)|mroqA6+ijNw<#-3lTSq5+f2EC)YxBu*;+ zs0^+ojE!as+_M(1?{j-%GpuTZ@C0mbUK4HfxukNh13*#I948lG++ucV{AU`MN&Ez|(_t(~%b9~ik#hA1CWta28gc^+WVAVBNhZdF zy#NxKm?*7A zgB?dArr=52k*Ogq$Lun0zzcKU!@2^*KgSsKX~O(_9LF%@aT1svFwnu%TscQgVdb4lev zV0dJSu_{b@xkqvHgZ#Ufa06pzacT^V)WG?1UF`nJTkq0xO%$sDcLOHE#oB_jfdit$ zdI7T|-quEg!EiRRN}OwD1K%5ONdH4poXdiUgVRyV zP5P26gVmY9>g+&%xZ(pFcn@b*Bso%6b74W;^SM!hXa)K=G?!FvhusCPx8Pg=69eBM zVgQ6*%4-<$c(SfA4T3HE5ajnuU%$r)vjEsN`TjacF*iX=my{wH(HbrFrY;z04*>RU zLcd}(Y{E}>LCJfWpuxtRVYSGM0|uim4#80cBp0efrZ5;cz!v`VHV`^~IIW=%hpHc_ zBU1(NjP+nTz}(PeNUBG^hy%crL7cDzDPLnS1JG_l1(S3( zVILQOAIN&W(-^94`TAr6b3oi>~%RO=BXcwfN`ha9U5CTrboHk?L!!I!m4I1YT!WJR+1Z&~idd3)}m za`%5ldC90L8;Ary90({Iu!76N6mX%b68Z#~ApS>aS6N`!O#~g6G!70$W0|k;D3}QU zL*z8!1ir2j+v@TcGXG}l2&8cT*#5OHehc+sUXPI=>ZLiMzmZ<@$P^1~h}EcaPUdfw zz-UDTd+$G>1oo*2M=i)Mm+Xc5Frmi|_$?B2`=(&6-)aY(W|al$>TrS53tI$u82&RP z79#_J?Y}^%W*mgZzXR$HW-Ph;JP@1@fcg}sk^K*lkpc>i1h^hc;dagFF%v|ECu@>s z)QxmdZjpKfAK?6D9E?^EMi9d;$eCcmp{qMIpGFS|hY%0}OS+J|h1zvX0T6kl`~GuY z0SY!K3g)^a2(a-KP{iO$VIpY^5@tc-+x#!_DVjU}!{U(W1@ypq+N7VQ#lmu})8v2Q z9t05pu6Kz~S^;N8Mtx9ANA}Lgzo#}Rz+otcwgGozK=eVcbM~B(L^2#E=ZsbY>i?eG zEN@<_8mTsdOWngKG$3Ch$svr6fYTt;mL?wC=n3_zE}ZKwLBvXV>^*Pv%H{3OO|+5cF-SM0 zb~O)K5flQDbqOqz%ERykcVPGibX|S942dgnR>u)E*&4Y=fW$(O3k0ede+4V5ngDeG z0U)?^0iJ6UL@cUP2NLgJoC5In&ig4)AmM)pTYDT}r@#hqY``9)W9f{HA+Ro732p;%9 zNgpj}3}pl+(s*`o+6SZ(&gy)~Yyfs?m00pN*B(8H@UQ2607oEWbiQyQ(kg4KxlseDo+O#i{H{A#d}FG@=Pv^ zE2Ld787I1md+;6Ztu$^!38f-*8V^jW_ab3E=$g#flx$ znxFf|9`|$V^k|}WKOYh_;eIFsQi6EZ=f2`ULLkX7gOsFgK6X|g4?-Q+h1}l+ay!AI9pLqv@bJ01&MDLAC(%xm5P$f0d6&fzNv>Vcuh;6%3~vJ90ZXE72kPIBbPf%xHDvOStEE;^z|J zY*_eSe2fB^4M2-lu=rRxqkCL^Y~O3YVnA{ra&W4DC%PA$_~ZM`08XghQsCmhJRD}o zIrs7&Dor3UsIp*JYN=cu2G)eVT~gT?iMv@&PX8d{Gb9MT6I?iA1-3+D48cw2T*6DY z_}s@4FQ{Vn94;6hdV76Ttk*;$Nsfy@lsFUwFbe7Tr|J6tpwSeP)Dts?`blYu?_Q36 zmlkL8x7wAe5(b^fdT`ruu>_pdIX8gGRB1v%3PB!Y&$WLs0T||t1*lt4SSRu%wJF*` zM-xFvGYS6sMfy$<8$dmDnLxIUpX(sQn8+^3281c>w`~jjuvCDhYWz#b;WHBWD4N;^ zODoF>sSU8emk*{ec&6o;URDmqDI-L#zAV5o0o6s8{L=5{WGGj?d^RsmH;NknFhGah zzc<9rHftfL-D}_QeAZRj zDCja)G%9j&qvO5D?umedD@L=p!%+8}jf9?-@-MXEmqT^IZi?`@WJGuWJ`{c32#fIA3rPE2}^M0t-rLyUylDT0Nyh~K( z^X9JT=AehuhSlK3#M{?Rjc1!N=WaI4wGf4?rJS3(I6--}uzvpMc+U0Wq@r-=*x=F5s0`Vyi!~EZ zxlJVlXW7N`{U(aN!Hco1rwRfWThJ&Q;kYUE`Xcj!B5?#uZ+4LUDEa&|=BUqs26VBp z<+HcJ?sGtKzPfes^8oU?;BP!1u7r-t3@$cj&V-Lz#o8}2lD$}-k;bE+&oOEooa{mu zG0K~3ojy?HAJnxM#-!i0;*%bhbE*s`8bKCOP)f=c$8y6}mwJEGlg8iQAl?REJ&u>W zEN3$t%~|N*N_8>7%vM`^tl~bMaOYWO z*&63s(_{bUCOwEiO`3balfyg6Z^$>OFq8YKfvyLK&LV4LiFDOVD*nxp>*|zveF~kD z%X`metjDBoep~7L1Nnr|sj;eOsD4VD+E#;3Bl=bvVfoajK5KS&{_IVXmAe~v{?K_! zkt9s?y_BMO;POYN$Xzvi`dNPgVaJ(ny|FGr;;23jujVRhN7g_dh2O2;)Kia!m|v3U zdiIm>St;rbZH^cy)h`wC?@Ov4IUM-&dszvsVJ;MYst~u&3ZMQu1CdO>{Z#wwWvlVg zkSofl=8DBgv9{Rf;X^Z}yvFC%U)|j~RpR9ZL^|Wdtc)pLsecCD=`k_Fp z&F!5Ry}6`VuKr=7`)J0}HTn2o*DjCEaA+K7i9Lp1vA}8zncs_H5}9bUXq%is z|KdAEs#9QGQZhN>`qO)41d%+wWtSNE(g2I(8bS6zzmF{MWZa8`{!iT_Gy}Va=sP1D zc)NxR%OkGz*wQRI5z}8gbm|U1)Yt@*R@!NXg&cWX3q^!@Kh+t;>aJKGlwX?FZFpRX z;ZZj=(f8bhut$AR1FB$3)lr|dyf5+_v!?dBwb0(Zh6CCdn_vb9Oen2jCZ%zIq*fF! z;5jk(;LA7r6;YA}o&3L+(gM^2;#dbU$`!eVef78EEJoZXY~x;&kM`uujSE?nD`=H< z@(Ljk0_WbLc7{iBBJDhb%btPOu0Dzxv~N7~pU3gy@C+WFs6oJ4EouGUgyrAp-N%ID zEJrr%`xVyhLw$Uc`aS9rS7L)@6u3j;LqD1k%YL}0$oKLS>V{1!yZe5jk9&ihgiJbd z^@q481lm)+t`!_fGIkFrIx}VFdMke;a_>s6LVl$%2RG>V(U98SI?F6GWJ>&S!3Xjqa%mc&G z>Yo$-stobn7d0-?f;$@Zq#8FQDt*l(+0N@~VzqDh{_>TPebikj}4G?34dxf3-s{I1Ay zbNX{$qdYU(S1YbKwx!zEMS{^$f#++6qjcEiA-Nt@8JZ?J77^_}XSp#^a*r;&w-vl@ z6L4cC#VVDc=zgcS9aG8ECt~Kad%#$;ZW3Cg)0B}yA>tm%@==h~E2-94EpM~i4#KYS z^VQSHbmdH_VKI#wLSK&S&9fSw+Sza{D1U3kM3mU~P@c%S)7oL?p(casfw)_K^VLfA(%GvA2D~~q1&&op zZSC(1GTTmm9#B=a)$z2e!HC^qT!AR;;(p8$4DYW`oTX(|&)D;7^V02*e72IC$Bj#( ztiv927WScN7~zlp6ve=PqExG zP|cuBnDMuiI}~5hWkxgOE6*G-GQA)CxNQ7Sv;WO+cJKH+95*cxwjaX}HAJA98S*uT z_)1x3kGSx%d*WSJSN5MYn91X!re=uDa?x$<@VdB`MSb)Q^$D9Tnx^0JudtP?uoKu* z%DTRBXqc;zypKEz2YR{f>t1co0pTFPq7r+)`5$8%qxuX{gKW*bgz4(oNcgEnN}?11VyXE zU-Ccfm_}Qs`~jL064DTE3+FA3!VGfMo-sixrcWB*is~;)!{fZz7y1m!HM`p7 ztZ2HbP^g%ywPf|SzX>oRo~} z7Im_JXLft9eUOE^D*I05H7*Fy9(Pqz?$Wi@-At+6mXvGot6+b<#mW*MZclX}-{g(n znX!nu6o~tatSp@Ku|xi+aLy)&9=VR$wvsHlj;0PyW+Gqe&Wc;$>W>$o|7kBLv&UNx z!m@C;ckXaA#y>G?KXpY)rL-)(Meg^9V`?U*{O2YRoj0RTSfoupEy@Xax7g#ya_Z`M z5kWy8U((Xjp)&`_Dz=0-Bd1b7z)uX(?Lg0Mf;gBh z2L})fRFSeDqsmttTB>jTq3n^H;5ntHU%4g2KuagY9MJw6p^7FeYeZMV80Nq$u2NbO zu8C0%eX$)NP{9ii*F;pqO$WGn3Qyygj?j|Tah3zkn|W|^9d7!S!p-OMaBoeJW`n!{ zpON|i0SdeEILDkWeCQMjxiIJg%_J~ffeZq{U&KyQiC&|XLm`>@!ev+Ps7B- zQ_c8;-srU{EgcECUs5TnX-~Abc&$QDTBWoY3iqQYEJo+1r<>!Ums3R-hztl1bl_v( z5H5H{6UWGe#&9t3RrR(&aX|P>2fI6&D>q1IBxN56vDVt_ZG@R+-65LMtXhS+lCaanXW))>_XMr(E1vbb!_u`sy#xGX#y1DhA( zS%2@)(ib3USyTKe(THCCuk>_4lg=9QPc#e|z`r8&1&^+`cyE26&sTk2Q$CWX^+}~XGqz@l1e@{zhR_;b zX7hd5MLMt<27@%7r|noxlCs?EqzaL|YZ+P$z0TKV((=Lo2%ZSxK7*mY;`Ch=nqF=4 z1$Ha*vF2DH@7}SGvQX>$?~+<&;hl#;VEZ}ra@RefbsI&n*!wX_%cr4<ZDkIPwI?%L`cGW|wF>Zl z0L?)ZxS5G;V#3Y4VQ?=#-1Kv_eBSHuk_M2-8;byoQFKA9I<9+5%z>|xVo)^$tL`2AdDItN9NXC#h$AOiBzPLGr zS{e^tXIHK~v$g*nt$=|XJceqv-h84buju5`s?*IRO@XRe2TXcy1ZcS@E^^E{OoakK_ z29J-3ZKV)JTOEm`$%@kb zLF%~yyPs{SnE3LwM6rAl+Qw^l@6ogD+zhgNcNhIYY;Coo2YiSURZ2s(&9O<`sZ9=> zdV3&Q&8xhWXR79pFlsHE7FLa?etVS zESx{x8PD_U&72B0z=j-}{51XL3F|gIT{3?;uO1h>a@UVPG_>R&j2A0%<(^{rEZ?cF zXX62Sd|4u!G!CBlbQ>S5;8kavU{d-x;*0OM(8O~$u^qw+8;Wu3N?0W zC@^zA@{2AIePqw~d|Hr3X8!4{y3DO_e}2h51pP8aU$=UvOJzdv7O&l8gO2qkw{NBA zi^fR|BOvFTlcPq%%g@5CsDX0EHTEenSx)#}%wxmBB!lHD)VC9F zexH-;Zq$UM8ilZXRmJf)WEo*c{Gt5exKWSYLat$*5%u%jogd-&Nn{&(B(O-_jnzU; zaa{b-?LnZCFQynKVD=iV)kSnKx4+BXPI^ojA1YOYA;mnNOBIxfN-D0%{7LlCN`UWzS*69L(ywnMer9_pN@LSjY<- zK-VAhl}J?I!Dc_J#H5&pa-ToS6G9`Y3Z(Lyou^0=B=#V0&DJ-sxI1OzmOpOExVCvH zAYeGG-ileIo|z|@vD3?dI@#c9hV}jh|2!#zCfJ~upbSA0nEUgVH9}C zA$ksL@AI%3`SOcM*WNl`iL>&#s>9Dq6J3jGz7J#l6$`3`iBL0nM{I^kd z)_S3SWG&>%I~Kh#G`H{kLoh-5PJw(>!Z|wIXHf=e15{Mq3ahH2Bx`qlz5H;?kmA*v zQKCw>R;+B>dr!#r(ubjEQ;t9Nb@C=Kij8kXdb^#FC0GrHm{rYHtQ_ (LN2`14hN z^p{8!WE|&tlsLw*HCwjX(K?d*gstYRLGg}akZFdPz+8o5D`q7o-P#kplE^+(DMgN< zYRfNof+bfw|`Way|bKH z_1D?#>l+zDIA7l|RHZ>@t@w0Kedx+xE?aV*`ziCjvHg)X{rJ~|He&i{>UX}V3<|}z zRl_&R1lMdf-HnHz4t)_XZz-MGY4e|ZS;#QbcP)1_WMi_Quals)kpAAwj0#)N{9%vD zbIrUmJ9FnwP$7PRekw|hu7tiG!Q^+{T5S}O@2l}9Ow3JDR1YHVY*DGi40Sjyblmvt zi~WPIpiFI2FP|pXcT7Jxnr8Tj@XyNpi0Syp{Uy1+~u`;p)7})Vv5DRkX1; z6xyP%uuzg<8eI|+*bkcEXk**>3AOXt)(K=Uv^?4FEM6mwG7>PlMbJtXZ78HyQbVo8 z8|g^a;=li8qZ$8vR$Zgb$Gdm?2l*O*@%PrVR$sD_5Xil`W(QmB>?JRzj?EO8)!5ZF zf0b5srOJ5XL&&B^W3UDks*`#ouI{{(M3WqHj%!&|%XPK-n7)~2Iz_}Cdc8EBqa71=(Ptnwt076x04XjcB$e z_^NmSe;Bi9Yl;Y4tfWav+w;xJ6Ur9zqtsf9L#*V|s6wpNxu?%Sj{(A!HCB)yY+$QVE`*cK_7>=d2gazMOr z_~bO=1zueob43hpbJFd|z3;>#G5}pz9zYTLV_FJbK>}mJRDHPY*t!^GoC1eFqIZ1xhyvP<5k5HiG^R!^wE6x zsUszwlZ-*GJZfRk{oz_VCyIEAw`1X|ibpntZuEf|i~BJrZBlFKJ28I~oVZ7U3~_cJ z1Sd-NO)bnv$iT8ZzWCp2PZ{gd*|mD#n|;8N;C}piGIU0WKJO%jC!^7DX)SV_-b&!9Bg|mZGgm5sW zR#(h(s+%MdR-%vPp1@}Z-0_E~vRz$rZ0ave2hS;)sx`aVj}PZ6(|!d_=k8>N+lOu+ zzS=*wpZ5yeRMZSV+mJcgji^6M*>{R*p}OhLVXtw!^L@s16FQw~)oA~#plM2HJ>4Dc zPl0U8H<2-Hl|Aq=V~r ztzDO=4G&{LT^{6lYcMLtnC2$u1D!N4*#}fi<65#^{8A?>uHq^xnzCJ$QYUyXkyEkG z+*^`ALQXYOH$KAZi^zCxL?=JJSlL5!bMq>+`zB32id4Nh86qZRD_~}E$wU|KD0yLSKwHSH3R5iO=P)Z-_?TR-nK2~@>!GFKnl?94}W3UGXc+X{R0cfJYafOdeyd!jvA zYtj!Gi>ebr-yGOQ=RzRg*wg%Cg)n=_!k*pX|+f@%7ApoR1RuA3s`Tx}#>I^P*B2leHF#zqq?H<=pS? zu=2I|nZzF=gY~Giv*02OiuD(R$>a%pKRHFJT%KulCaZi-Ub#uL>N{ZnX24fsw5$E1 zCMlj;Irose-q6OWI3zxL-*Col>0(y=Ylr1=j!tUOE%+sO2NQgEb=emvb^nxL&P_<< z-TyhU_V6era&4WIXLK6EE%ZLXZv9+o^(!~U{Hrk9sD9R50>9F)<}=-Fm0aysyBxAe zAH6}fN+5i7n65YaG-6gxoD57M~+-^IHWJD-4$DWy2rAYQDWmTwb zA}cEton&TjQL^{S==XYGN1xCA{r(=mKYouBUFRC_@fy$9JV$&+047m?>}p$1@WfM= z$t%jt#;gWcl;4bs*B|Rkd00T~KdmUreT67RJrp)=M(N+m;M-8;0e`e0KhsrTOp?-n zG1bpriT`iq>RQNh`Y*C!Oqx7vfbnISk0Vk>sD{G6?!V%YUCj8mvZPOX)`$tE|6eWf zLZhS8pF}A+qJQag2e`Vl$LVY+WImA-e+AZi*seb6{fuXOTz*6z{ol&Yf2o0WxH!+o zq`6+$&zU)5tJ1yVddZPSPBi&o`?dm+uWO5TSQS$sPRvCufI>FSx-=qIbj+3NJl*< zWNOTjwu+$8!Bt<1nKQ>xwfEb}oH+H$S(-ANzHCL$shz*&-h1DV;~90bcj9g(7_S^H z{r;e0InI8?m>^R3=AHW(xhl`Dj+b;9kC^^xxmr3|d+H9kBz5=!&%mMkUS$;FH{FJ+ zzvNy|3P=#LpuS+)SnGC)kuI2(I3aaoxl)lQV1;tos8G`5j#mO^%f~91?apXxeNs-S zz`fq&2rR6T-!gKq&T1z_J<-6Vbh!)PdKPwo{D%~jEtX?Qq*pMw+zB%^ubO(#gaE6#- z+M4gd;q+^i9V|(Ar0etTLhPre_P-QQmUf)z=JXyIu2iJBtxfzk7VLj)p7DZW(Xw{B zSytI5caMRm!$0MQ2VG+cq0{MhPE%ADb(W;mrYrZ1_Pw6qcEiLPM#X0+hPsoU1Sisr z@LaJ0p?yZTeJ*8nwg5Gkzwk`|Q)SYWzO^4vN;M_p~kQ^{%cD z!IJ7d1)ZioILySJ(D8drFk&9+rc*r6$5MN!p=4j5|B33K>2$*JkI%!ZszKe{?h-;* zEcZE0#j+c$W8?5V^E_1{!`C0TYZp&dlI9|_$<-HSNqg>0*nnB69U^U?5bPcreDAIk zhNqS5b%oXB&eQk2yy0>LR#|eopm_Nv))=#J@ND_>08x2fOPV*zb+SqGfxQisn5ggw~wK+U_2D%@xyT;2HFXxljj-hNHIARP!yPA}E7s zp%Zppt$Kc)EQ7vRv-mOlhSk0~aCO~Ev|TO0^Uo})zk4RXcPF)# z{h3vk+T2DcsDA)dooIOCYd_VT9w%gxdAxf>&&kJDywCR%Pr#EUJ>MpkucKH(jLlEu zGk+cLIV4xKyuA9wVEx;#!&y=_uP;gbnYwkW&cO3-Yw_p&Lar;{yNB~*dUAhW|7-DY zxRnxEyU+9G+pw>Z?WyiMAC?Q4fi&0p^_==U-pg2KZ3@6!!^I4-^kX51OCFRg*TEv$ z)=y4%PaMn~&)PJx%qlw)gApqBfjIdAC?3o-&yxCDWi{QsZd9MYQV~N4tx$2DqKzTU zU_u@JzpS#Ppsok^&c>V}*X_HyZflw4eFi33E`6hF?W#KngxP0pNZHY!%=o?ABy}W1 ztlHhk&wlERv->dvPiJyM3}IlS`a&|xqx{eLwJKGxqgbo~cIf;ULCM?BZ%(@(_x@4U2j{d`T4J|z($!LS>J_Ba>`=e>sP(q&SulkS&BGK z&E;Y<-(g!E)7^A(H|s6;>7Q4ApX;Q1biVV`^mKRNu~Kuvhka_wrOqW59b3kZQ)aYo zQzg%fm+SvjNxV8WlqGditS|p5P>)s)Gyn+vHd{(fS+J_CH-7-m^21qwxIJaTwWAzI zXU`JCuOmQNevjUKBe(-Y526vT13P@0FSQbc5B@sJq#5Lt@D*4n*kSm>(+ZeSbxi)f zJ38R(Fid!Kb=}uq>Gkm?LAR+_@N8d`fu~paW4Q;>)BD|~(5g#)LmzhpIW&B!KPF$e z<_tUaOQ_xzUa_ZBFvvji4I}OI-0WZwTcb z&Dr5KZbr$$f5pdCu`X1S`e}@P31J3A>vY^bm~wD9t1Jm0Z|uWJH>)5}2$F-#6hmQ# zU|E|DJdIu8zbI?Jm&r*d_F5<0=x&b6fHx+e1ieq2#Y}(b8Ii{>wKSK0uWe$|d{#&d zJXLU*iRobzQ;XT^=eyNq=Cv&PR5USi<3&1EV}^N2@7wSAnjFZAw=eFP>=eHiI<=D` zl7O8qUM{malws(>zV8%Yw)_qK zdB!YZ0q*r7o?LNR$w|)m2=>JhAy7J$FZyFBlBc+j;2NbS$}`mP(5pA!&6;+|@^117 zkmx#3vMK4G@enN?U)n6)p)7?VmBT)Ft7vtx)j6ubOS*5Xst!LYn+?@m<>J}!6@O$v zd?Lb<{PHVze9m{3kkX-JLK?Lhrh+q7!2`JeYr)~!e=^cgSrPZZ^_?|!29;EVwR68^ z%BE7C?3ERZh!7fh^YCqX6?4)s)7`TD<{U|KuIKfAH7%weKMXo|QS`iM!{2a(?a&gH z6l?H5%|m~?@%4yGgVz`BKT<>Vh?KSO!e{(dp7%mwuzH7aSJ4maF#hO$&i<*;_{NNmCNS@$z1=*c<)$KZ}d z!}AdEblH!>`5bRJkCC}lKeX$9AiMQJdT;EXk2d66IZehLG#IWCjsCF_cqvKe$&s-Z zD9!^x$J6^)tpmf5&p!_{NWlzf$1u_r4^)*it%v0}Ls?Q!j~D?%-dKfNWmtr8<%P%7 z{_{{hgxa2NQPINY#d7X&2yCbr=yb|4)=zYD2h2Haj(z+3c|~rG?R-^6@~Oe&P~O{f z;)bf+Ue9CO(-RZyy63-T+(l6t3_ox72BI5?@5*n~MbAL7@ZrOZwU?)igwLZ2DB8GJ zvB0qtdP>Urlu%oKBj0*=3@+a)Lq$rvgD>Iw&|Q#ixfk*-z-{ z5+k_i%#WCTR;jZ7^q7;*T#MXR^8lw#jbQO?h9ikyK~f(GZ_3(BUGP$ccdZ9rW^)c@drFVGcA^{phGa%)zBf@_0>600!kx>$e{t z`@iqZ2?x=3cf6)AiwdC+@xzO7Sf!$pV9?nf4K+~{Q~=#msBHa_2vm+S*k>ErNf{L$ z#Vc5Rq?hyc&J$2pjg1yC=XgDL!v4$1uGp98cnI2I;W!^1H}lxH!0~%@T*+&afEgG& zU4cMQxWMdlB$f4pI-KO_(Yams9)hS@I^I^hbsGdc!!(IVF3h?In425%HuDUWbWK!E zjjwS~sqy7>3Bb&ZLTA4d$z2bae^$BfYdQFmNM7&@IB?y>YA}&_&p!73qYkv&=z3^1 z(C$HpU#PJW;eb=+Q2y;?VftuuKtB*-K_~)O!C?#>{vAm*Bpi_0it4>RIdB4`OtARf z@(d8e44-*Q642n2RpB=Xk*<3fmY1<3J_YRKX96&yj%zmX6JbPjsPwYJBz? zM`5Lk2LxcHA!m2fV44RMkKu1Lb_37z(Bz`!`?)hf%3*RQMj*7Xc5d@XqC@QaYmeT2 zLSz@TjTHSS5+}Q5FQ>yzE*O#m1Clyea-+i#bf}A%K@q>JSnX?=R*htFigVbP5F?<6 zwm6#=MG3lvo7V(OFwhb&vZ}4$CBdVtczx=qz5+rP@dpHoA2{z@_8UtSMdJ+y%u)qp zzPOyXgj-0YJcb2i9B0liAd3L{-J@~nX|6jbzQeXw803$N`BWj<^V`n5J82@#fe2ML zxlPR`67OTqT!0EX@o&Y1sab1S6$X{{I%8-rP!6~<^)7q(f~(&0@9-JL(Ut#+nc<*f z^FQJA|IdNpQ{VRkKeT#CvBtY^>sa| zH+(WXJL=;)URQAnH%+bn3N+gsQ>x$+mLLDvG^sFENiRl6Yg@b)At6Ay{NUPbWz^AP z_G?adM-HgJFS%Y2V*n7zuFum0KVnf>Uf-Y6$? z&3mGl);`St`>FO9RUwk`T*NafwvUdwQ_CG!@+r8cs4{3(B*8*qlort?)Fn826i{T_jhspOMc8byXWrQV7p59FhS;v4b9DqZz7hR2<2Jj zn{=%(uFogmMj9an4gc0$Cg#bX^5T7>H=`B{Co{w*F1(yL;H~ANWV7LZagj^zvlO9W z0(++Zlg4(F$e;odw6`9a&ya%>7w311l7jRp>}q$`OK7)q6`Iw7@wAg+C$I8H>EO3e z-t)jjZ)3wRjWK!O-xP3-KYGK+{NV@uu1DH5IJs2{zm_4cx2VVbrI^CEn50^C(~>h!vRZc^>V%yio7!6EQ|-RW#9Hrf zlRL3^IQvu%L3;9=s1U2L;plTJ_JrKBr$QD}*>969F^&+W?!LD}4@_q%!rw4fG`Er$ z^1W>1E&uhLzKYPkHY|IyUYuewFQy~oU?B=d{;>dmIPaF8RGZ)fD=fk4EkjlQ%$82k z@{eBgvmJ&yr)b#PoaKbx8+c02PoyVT$mhT`bs@JEmh04m5i< znq^7#SLS`+Cs&Fw(j55;kx7}G|li(-U*EYtgaL4qsJ{Db|?4BXT?_%hc-XnWlNg>dC zXtKjos;F%j-)g^4g1q&O#iIv~^Z!ccP)dOM&*jApRSBuWOSEjVxep~jAN!DEd?WU+ z&=XMqyDD!~_>x1ZfYmHU?!k)Xjo7F$74^%GZ?#p+%vH6#!0Y~*{=()!EZZ&BVAaKb z)#wkV#+g_KzZ(7h%|q`D?Q(~F^Ne224{8q|&@j0%txT`mD9LSQP;gzewJ0NmU_{8B zxqicYzmQ?)$dyQn5|2AK=^A1doHB{Np)sNN8}yA73OQ*XFhs8s4Mp3E{^2l!+|g^# ziFW3(_E?*~dAA&T2qNqXV#ShQFi4N@W&0Wjc_qx8PP+4&fx4Wvsl2l^q2V;&l1``i z&qI}oy|S{?LpD&uYU%(%72=zlu&Zz4y}odduIku_``44y9&DQGV|x4PEOhUf-Yt-- zKW6jgVpw6(kp@Rdmnnq>&9xbhhY1sO7;Rb#{$gP|&Bt1OsODRx#no52c5jI0Wh?Ei zvDdMlLK+~YD8962PDbrKw1s7=H2vdkJgMvF-jg-?3g37VKr6hoTZ5>WH_KA^nx1cI z_pxohMK%h zuJ~#Sm*s`ziulf~GzjSF-0iV6uKU_6KZ4F%4`^X;J?cL^EliiQY9Fb*UHW0G<3$aJ zcp=)~hAIDDxszKRG{d=!Ss(SiW&=t;Y(DuO#22r%%M%Xmeb zuB-jZgm6gWvUks)qtE_P8T2Ldxh`U$wAWzYQ}5098vihB#?rD(TAi*p6CHKgM>{=w z{ti3TT-;$Ws}A>Gx>zr=VMcSkl37Ho?QRw0XnO=B`|K%&{oz)kJ7*y$)+$cCvF)nh?Gl zacE%uafHhemE_&hqHG+qvfQasEu#KHBQdu?uL;j&I~JU5jUib1kkb?nrKKNUYF)c#5Fxha8==j&y)KjfsV@jShs=-XvyIVNkl;q2=a zl&o4wJ+k$$7`}e&y|mBa8I9d1G2R^){%kvv(C)_YHKm`$PxPaI$M`+b)5RbDq_`xK zc4q4SAeQAPdhWhkj=Galhe;7T$E+x!A^gDV(U4nT?`768wFvEdJ~Hli(eb%3@THDrHI-d&6FTZjP)m#Pz-#efNGNMG2KDONz|f z{hZAg%A4R1rFQSPt?fJD5zAEF6e1`Q@^{hQ*}ZhuZ^jf;nLRnq-|(iLp0%x+_{B~8 zT(Ig4Wrs@9RpnaFyWR&H)K>4F68Mwv>?bxR+94W!Q{%z#GcT5;ME@8%P-VfHF&(BY z2eCH>9k%{|-RwzDLXUrGqm?_(S|#(CPeSxD-$T*IS#hF|X?}&CO&`BICJ^YG_vcGh zikhxLampS}rib=>A?y`f_{L1($sQMPKdO@Db>pKf1lN?x#CU!lG1QM+tOtk6^cH3& ze?~;m@~n;2>Fp_~xA?5`^-tLv=M$f?N@r=;Mey*K-Y7h72&BoFCl}Vt712CU_n2O1 zi|rW4>jSZ``KvBN)KC@~q3hlt%5&_5m@YBAk&KloI4p`OW90K_7_IBE;~ZQ(#q+6s zzAaFH`k*rHb!8Q*c6!8mI8Jue>bDF2RhK@u{I!X&wA|wD&M{!9 z>k&U-xXgdGQeSbd9SaVNu)Eq6O*5Xk&c-qDww#}NSif+sJykP$z5N(AmNg*mG(JAC zt1|lZ+~I$?QFkx@(AcS)W%mj)M)Y+z7z79YK1tqNXurXsTXAo`@Z5#!TZOV!9;|}<*zwYj)x_Hj}8nFph7v+<-&%Cgzf6=CdilI&p5pL2CP=521S z39lwUAM1IS|2pCnWDoq_BX?gr_j_zX%S9$#R72~REl1%7@v*chM6fNb)sP+da=6y{ zi+0Sss5ytp+ua6`2oP+84&nlNm73!XaQ)!9+87=&2-$B~jX}oYMyd%Bf?Wa5(hz~Y z1Z<1VHu6lf>!fcEsihZ9e3$|%qo~UHMVnW}fK-lD(|>)$5j_6nk*ns#5YRv1hzZmq zmXtc3>7zZQDu?=%^~S!&+=X+-E_fnCMvM2}Rj7-a3Ch_Z(Ahs#LZbmm6M+gs|nzi}A+`dYTQ5yrIMS)j3n*8kXA60lsm>$|#k zBvW5xD~WpJu3}0SCTtimsoC=KR51)wDa z!by{OOO?Yqxw>$25l*^t@I&}Br9_(nB(jFEyWxb2{t#?Ftn+;Y*MJ?U?xaVk>`Tdusd3&DaWh-~N zz+pb=@Gcy_=6iw8M*jCO5e^GTXJ5l%F6r>y{YlM;dqFU#3_EP2T?po!3cf$Y#_ROY z$rB}g@7VnVv7GV!smazpWVB3tRcuPh5xH~+4i1u*`7G0~_WK{{zywzx!2}rvFhMNe{%Uz$ zuK+F0W#g}@M>Lh`L*e+P8Qe7V1Qzv(6HZ~7aE{XkrZOPb46%J4BJ)=Jq^oXC1m=6G zeQHv-rmJ=o6y(U`c_Lb zwKQb|ZgbJl?au|OlMCJtu$#AJ4LGz3?>;E(VVPuq&Bpc5$<(4x@66$}%P}k_A{ZXD z+yh&D8}Seh-Sz-Kiz4p9p&!r^I7&@NVHEj5fckt^GF?84m)gm{^RF!=wttt;tnWxp z)c=Quu0HTeY__s|&3z`m7`l96xI1mXn1LX_l}$P4p>TG`B1^;8ZZ9=qH~|NxDfw$L z)}#Z>T_e59kE|>u-(7>Skf{AFVvh$pK%@Vmb3jcQeyiN9U^X-~a2^jXeQm7GaM?ec!*QKhD{3^o+xv019}5j`9HZvp)A}xyw?K zUcpwOVXM@le`d7#uy)txwY3z(no$E zdej|K7u)*Wu`*Lmr#oGUa?QLO9zIjxl)r|-eINRcptjXJ)C>e*m7mouqIn$ z@a4Q_da>88nOd^ixxB6OHWhwVbQ@|agnO&h7O833%a8KjEb2*Z=^9P)y3}f>^g3KB zmZ#T~VJTuZ@*A&Poyi%li+`crapwtRLrZS@%IeR;xEJ5pf=&g8%BWuO-i+kNgzi7# z7F%chD>~`3xKrIs=P={OwO`|*1JiCsZEt!i^ta|#l?lJTZ(g7+=~#a{umOK(X>&8Q zWMbvlGR3Nqci-k-)35+d(if4Rfj_Av8hu5HTx_QR`in|uqVK0rNstK${r-k>!QbCd zeu?}H=^M%qMssVC^Z&oUrd;rUd`-FF|M;46!R@ap7yQ4zrd;rhprC-*f4`=DK#Sae zKx+^DP{0o*{Om0p(E20qqk>{z-%@wC>F8CNnG3IJr^tAg1Qg2RIPWM?vfbC;wO909 z&0g8g{jRsN8}p_KTERc%u8W*H`1yA1MrTQOLjH2Tc3YZW-gIFvGgZ-U>_Ye8E**A? zA}V4^S)|8lNl}>wx@Nc)PE#*rLJJ2Y5L>F$gX&ehLlR~Hhl`Z=#WzBxcIoiwB*R3 z?jX%Fmkfuc6t@;4wKh9lCxh6#Eo!4zOqk`!uFEqcJK!LbL} zi+Rn7BOX5n*k-@&ARG(U(xO%<XFHi;X@ zlZ2C&8S~Z4dY=F5kp~_f_}VmPR4Ig1IfD(J9lkAo^sP4UF8-wcXazp|GgfC*mfCkV z=U;zx9-H=;IDDJ9*J}S`=Ln6o!jRA`=B0924_PZL(DC+_-Q%l2x?fY4q9yX#3s?!L z{{qZG6mb_;>JvOrEvK=#DAIG?NDk80(0Pr!NvURBC>h=9M;Z(2ze7C4^6j0l5 zfL0_$-q`WZmED~5`2#5)<5(XJk^?5hi*PE~SZWGGkcSaN@w=22jwC@|cxLDiOr2fjoOX@Ti^GsVll3VRhaY`$ZFXIQwg;NPC(4)sHh9)}4ZDHLwCEFy3 zDMS#6SGsP2h$Y0ioLbWMu-)T-O-uu+fSe<{B$CAOIlUx$foR0Nz&r(Nh17oW;kTZx z>zco(Txz<$Kjmyzk9rv`PSKn*DtRL>%$4IE`VI%a8`+ajd0xGV{#(!kk7%3|AR%P1 z4iZ`RcG_snJX1vE%n^3P?!<7o>~i(w-L=g@lPJWT+nrMyGb6i!eH1{i7A0zIHw;R1 zaY>zFO(8hNO*6a87e-aLy%_lJI4oMrEjI`)NnkW34TmluWPlI zFgN(01v29k5mRbXQrx6^v41Zxbtt-;d|T8_TTP?JGr#0{*6_Ng>IsaE_!M2=|2Xa$ zeonqD5*K8U5hf&EQYAXD0V*UmOhF7tXgyrBkd30wAd8u8$bFc70xeWhxbf(`)v6R?43YY`h-5M&3@JWW zA3@v+%G5eLG33#Cfdm_Z5daeUVsSt!pnzqN0BqNVRlHcXO#=Jq}jKw>^>|53_-N=1$z<05lFsG;ud8E8yHP~ z;5pBDJRm9XjH(p_jUOsR6S30)4w!L$oIfrkMKU7malQ3=Yde9(Um?r1tzMF! zLYL}Ba-t-%ABIZ63I?p4S-pt|q>TbB)yu@6&wbOw0Ov#;C0pwyUq(J*4K_d;aw}Lv zExVY-HV0%{TNxlGvHzR>9fYtJ#{k}b`u&Q}+7LyUJmS%r*sm;~30enx%#1uZ`B1A> zvKQWh?tmh4C;Q3J(1|i400+)up6(#1A^uYM?fH=m<>dMtV4C38s574yV?3Lv05%la z>0fwcyMnO;Vvr#tTHR5YZ2R3^tn!L77k%52LrZ*>DJ$Q00I31*vFfMm_DEDelB)y9 zZ#;^dXd+Tit2g++eKPtY@%zvoVCZhdR3Qu@tV7W`0%Gv-q&SVVmBs3vR*%k$7gx3^ zQx71sL)^6g2Q(w&VJl%8H$jNgU@TUw{T28?mc&5lmAQmA7!cONGF~8q{lH^F-!TEc z$>KLii!Kl0GPI4*Aub>_`IOjsb$bDoC6)zyUl19jVv+`Dw%4?68H21q#Qj;-(Lh9M zkP59R5J+G*LJlyat+SrEGE5AGAOTEUvD{u3TI>H@765YfUfA5W_O!A!VJkyQ1qT3D zk%Iu2HbTa|fp4HNT$V6xMV>n=f~^07>XxVhFoy|e(D-J2`GR&*KgcQ~7;fTo;R+0p z=7w~>V%U`xS3D9UQu_xSN_p<8llHR=*f{j`=F#EEs0wk8z12sRuuV_lW_*N`&q{ z8sh2g=B*M%iQ8nW=*XzPVe^6a2?=}Y&5&&p&CJ9dNf?t4LxZXlcn;r=#uqwh-s+R& z+N$sWr8~p}$6FFf%9+uokWmr%1f0-()!ZGTH?IlS9?c69+&-6A0Fr<+%Plt=XD$*} zpbNkRpl%)V(a>69{a_(d7R<{)t8n{AW`LIUE(4z8$5EL9;VZD#r9Yzs^yxQTGHg-8 zh&U{>(+dIPCT{7;*j?fbMy@O}7Oerfh9>(T_tNUOO5o6NsEq`($YBJ2Kd|!0jWob1 zF0L+#SVp1lZbQ;KV>LAFyuU16`j_8Gv|APbyB&Eah#~4|pHE)*n>;#?91q+)p;P;F z`;iiW5Mh@8R$jmZ+}!G0)ckahod^Gkq$B`x$gtt|54>)0%>3WK1ttkPN-gRlQ{^!c zrn>_E18zp*k%!ITgNV7!MZ|Yx62w7b0Ufc!x20$TT>3scrN+7&B28A3&outGL72rs z4={}Bp=oO?G6#J25TL|r#9|uy8b4V8>yc>yGZ5=%=MRt#T&v+WiQ-9Pg}4V`v_auy z8o3TYJs5-e;Fj=?Xrv@4=F#V%-v(b~sK^%oW>}*(s(tqsfiuZR2j6UcoCkaZFf%?W zutN2mlUB&cwE>T?hLo%h$vfIg>~ueZO~FeZ&vY{KRz%M1$POKj_}1A|5NSnfgH7QQ z(UnL|VF86Fo4f}m_T^AvH7;&+qDO>|2rb1-Jda$TZ^TwEY^^;l95DC8HVZ4(*9I-u zmbOL*wmumBYWT`HBN4i#ljyx6EyXf$lNK|?x*mjj)r$02>wV-`VeJXAEA^iUY_Z53 zW}F$~OUB~-*PoZqX?uMXE1zT8@)|DFiek0RanaN`3^Zz5j9CY##hJQ-8Bs||zHQKY zWJh%3Cy?~sf!U?b*wq?|AiL6NqbQcE2Vpt_7gy(BLbS}2_cr{p6+gZg>6haqjEHzi z?cpq+Gh|5R1{}gQsO-B>5i&m&p9o74n)W?N7 zNWm_H4|r$e@f(TGp?Sf$#=+rQ?il>Rx}70^`&4(3e|pLD8e;)DumZ!G9R6S)ZjYmN zY4@s`s)kF3wmGh(vE#M0&^GqQ7&=KYJ);BPy<)c_JCf-?uEv5>zw5HyRbPTQVar|z zttw0CYJf{B3;@{D?((JpkPCdux0>zRt?RiW=#JZP#}XQb0^9b(61#^W>P;;G>~6KCmvu61vvaFE0KUu0(hM478H~9-lG^|(v`cU>&onhz9IPo6Ztm# zi!(=i9W@_y1=!dn^^|zs5MmhmU3#4c|L_aWhMC~WSby21Q?Jh#hndvKs-4m>mCgF3N}a5`ZZ-M%|n1GP7Gpqg8wIde2$Z!XpzMNZIjUI zhtLF6_R4On>fcw>aKHuz|F#WQtKaOUCSi2C7t}m68o)!NDA$xyhyxL-bU&YGL7^Lv zHBkYmu)PB?l`!`T2_jpu*>yztk(-tpb~d`j;HX1@kV?%{2)K;{S|vmzfM)RbW4Cu< zTl@hJpJ0`6@-;*)sVVeGgW=}^ga5>Hm>zVY?-WeI8BaRGgZ)C+!d~Dgh(dRRVJt6wGpdGQ&OlIIABCc!dV!dIr&#g8HZ{ee2zk_YtKEI` z;O`@o)jEyehms*+BT!UR_WdxJC!7|fyL?2GV3K)yJRP7u{S>}h5N2<@WDL8O3&}6} zc9zA_E7hNg>yQv|!r~_Uf5*cQoKEWT6FKNXTCsAtF>{XwHU7qN13Uraa4Q#W3!Weyjx5xsz%l6`h+iL0;X~j?!2kD%Y`jmPsWm6&k)jLi) z^aMrcA1H`L6o;7k(`pP3?~uemZb%^hip|!e6>AqBlO9aI|fcrMH&58Xe{smLpINP4JYB{%WJ1-#uBilR=#aM6)3iE+HF-|7c!YH`2 zb@CHpA?}+Cc~ONZ(0~L(V1$zm0$}3iMV;$qaR}FwT0$&1xb}@(-NI@Pc6EU(|1kXqbq3oV6 zkJvk8);bx9ID?LSgD0rVzYiVvml4}oJA8wbI?|Y_^tjNDvJ84C($QxJNkA{NnMR`f zxc3iaijyJ_#s$R$#b6LstPkyW<52tH71&k@l;KIF*6Yv}HtzBE$}G1P7g4vHd_ ziZt1ObM2pcN1xggD4y`CEsn#C(}8!BkQvlM$avMiZhxo$Gtm{6O-Cztj}e%D;aY;-|r!R%5FN>{`Vk<7j*e_HPv* zXPgZ@MOni*$RS&_8n+G-5}39|X6gJZL^qa7gN1ZjCDuyWh22^qxL@f1iuHnv%hh>u zEV=&!0k@%e{PNZ26Di~(Wq+pZao;r!%&1RMWcqtRR!~0({YlXzpso3)lIEiyoU6y#Jpbw_PJjqDkIQ~k|LxA9tnBZSNZ44kMVZ3$m^ z(-W#C{T&{UI^IUVMqWR;47Y$%9PxMOqhDhAu6M}ay5K8Oe(Skn68rNHh+;QWD;4p^6<+D#cM1NF4w7dp1DAx|J zvsM)v6JEwckiV#*ILrsq^Don-l9w#qm!l2oJ3Q$&2$@%Sp~RJWtLyw)X$_>`&#UKX zL;g$%UYLu*(#|UoiaZlR1sU|hEnc>}!)jpl0MnL_Uxg}Yv%2lh=#f2+My1 zauZOJha~96tt0;ub+E4~h5aRozyARucOe+`WXCs$>qkmuha?s^GRuV^99b7I%iOIc zuluLGGG=lP11Aa;1k%o;*QX<9L5}6-ZV0`Zw*I{*A0sCjNSB8<-Yr3aC7Ja-(0p9y zd5a~?iG6dg%ljaRjYCBPc#(+lmC(<$^?i0lVgqwJd%^Kmei%$7H9@q|-ECXVX3u!| zc25pvub=#&Fz>FyYx|3+1K)YuelJFbAjYfS=@y>VLu?o|Pe=}LWW%1uxIML|{2^5jgt^@&NEkpneP6RaT$v z+uKVeaU0!NEU~5#51Ukn$i(sX8P(5BFKMcE;icFU^Fi3s{{U@A|Qk{HOYUY(a*T03N`R zHb>bdhue*8v%|X~)2sMzFvsc*o?r%pRwFymLZEE63D1eXyP^cofwqsj#f7Td0{*P= z^wXBX?(Ll&Z^MMOJEa->SRuql37$!OsyzfQr|d!hMs+m7YVYTTa19jnpBeAkyHWJc zf@^jdp8{ve1EV2*d%Bj7o3mK&=g2tY$=!y)h8mIs3NGkb$J?(D-h84Xxp`XnE#T9j zHA-n6PP)!Di>&BqHApRJf4jOs+L^R7C&z6n!Q%b9O1cNk8oZ30U}TbY)r$JQiDVt6 znYri>fjOlLihoy!?W|FN(illxK|!=8cZZmcMw%0X&8{7}TT4 zPyYhX*$gi?*UjZ5z=_|sTTpd;sB4MIy$s#Ob)+!V5HfAJ&j>agDlV|J(dFh)GORb~ zL62e&R970NlA=){we7>9JlrFUQM$RYvpcS1Xu3EERorl7_KP<9xv|00^k;3+#mV^k~o z?QY1IDgGy09Y+fR8=kyD@*<3K<=c)cuwy%;59~mufw?dGU@zp(yX{&eUv@s^*f2pp+HOZ_PM?{yO@WHhJ$>ll+fDJ0ShLbbf^ z#g(If{0v0}E>H^GDnTiCmdRah+n+~~fmP50F5Xr=M-E{c^76rvMi`2ez^fiMn~$N= z8_V><-FvR0?`~FAy$GkW1}jP`67G4*#p`7n1+esu^c;F7lLA;nn&g5O&nr}ehRWxE zYJY(I23`913AF4!P!i*n?lG#P|$-+45^^H2c_%4*yC~1V-8xAN2Sh=GL!$ZwI6tk z?||8)nRTaW2GQP@MGUwMLA_YzO`2xl0!X6=Mo2b?ZQ)%6#qS^)Kyjq;*jun_i1s8} zc-8w>ht^s@lmj0nwCgPiZ+(&)dZLKrH6{go6swZv6G`E?C4sU7#Z7P65D;U#7Rm+K zfZzm3f+a1l$25XR22uP5i|capNAj9WBYYG{S=*3y;R$PCG59c6P_MTV74U)OObEiMm;p3C+I}Wa&)?$XQMft-eRcZ`X%0aJD zsUNZW`lF4`nQCtE;DALWuDL+wyklq&Fb8QEN}OY$nZLb)>#bi2kcM}Z2D^J45`{F< zjaN2BNhK%*Tes&j+Uj=JYAjxz|YVFsQCjFAB>o!$|^f9oXdnd&Tmkl`rT5ot#tS%N!=TqwaD^lLNfHW#tiad`TvD{Bu@a>Z!~wU zB#FkT76pvo_Ot#6x}F>_!$=JqD0s$!iDc)Ht^zr5l{217_N(|8NYNWMUB?7rm2ZQrAv{Q`ry;1v01MA|gWm+9J^|G} z+xDdB&3op;m%ft(5uDqov&e%7c!Sy{W)kq!WiHyNJ#=D?)uZd(Q#!q`5*&WBxwn?( zQ+4J(xOdXs7@@m|MO9(BRajHR@aEd6kFM|<^)FB7))Ot)S|?v5PNx1)Y0*xYla;(XT-xsDfAhVe{O7WrY4`FIdM&=GnyPEi#eCCScK;70w8R0+{bqAl6 z@{GZsh6`4Wp%ea2;RCZe80Q^-6dEp{Kf{0MTjS#5#U;bxC*3Tr)R^>_uhlPyp6)Fa zOHDb;n%ckaHKqkwAkU}S4^e))pd1sua=diIufo&*)I8%>LG`Y*{vKM!6ptAP%jCp{ zan+^%8OMp|H&)kkd}XML(@K&W1!l}Pb$w-)e7dl)=StW6;5MCMiyJ>@ErzbRAG&x!hY5p7lQ^t*swQ#zjsJ zuKEp3hXh9+(kkoe($Og6ha`A%;zrIb?=UEb705H_L0bE%M__O+PSJ@R$<{r604)?9 z$0bBX*5t<)6kn&VLgeV9u{jw7fg)E$NAEyzQ#AGD!0dY0?Ma2ha1rnB08YB+i0ZLg zRTtMB+vp7ODH4WEh&fzF3wNLCG{*GKbzrkA*T`&ui&Ng02A_||TR$7Ou~@&lR1UHX z`EZ(-H9btUb;luNe#D~mHrVw)()z{8=tgw0B)wvcZ@_d;apEA=K&a6Yib)6hX{@C7nHP{Z-lVA8k=_yUE9e#3xjTK;$p zFTb0jJ~hKU)<^zOIt8Z)b*gOVwyCws@$89*f$GEz!fhxRcQXbIi}Uk92H);D z%`Pb*h61FkwUwF9d33Qf=s4--D|n#iijK)E{W99vRH+tcpGag~-$tr|T$x zKq@l9mDX|qlmoHQ?`Vft2JHmX&E0Q8UknLQq#@eCU; z8;~odg*t7;5TTGOghB>J?*bw8ly%@;GuwID&W8HK?NPLYY`tH14g&~n(+37ohsvKe z{vYa!32vPoAe-U`<>kTxtzOF=q8MY{YF#&5e^IL(i1fAcsb21ft;%o6FWISr zyssu0Ic*0gGzyZBf`Bi^Y&Lz|^%n9Mn2hmK zF65P^o}Sh$i(I-E?7_7ZqhpVqLhWc2qeo%c1Pfm2@5{N+Y65bjpyyROZAP&!;)P~g zG1SgEk;aPed3-Zx2;{SiW!xm_l<=pokZz|c65Md;gaT=5in}iS*LALgVCc{MM$HO< z3)(X2uX$QbH4 zNOMEW?%l|N0tzUf!-XnTss}!xb=Mv3sRoUBTB%bONv>5kH?&d{S|j3PUp{BDH04#U z&-xbAgY=YiWf>&n5k|Y}!rRo2Ns`3r3W1UTy>6BU)QRVgSP58@I`mZaxH;;TqWd=b zodU9gpjYv)i@Lv>k&%e;s(S&9b0x&ykM(GI)?EKllQw-NZehPTYYLW`>6WnBZZ91@PEN3{{DXRtE`dSI{%~ zuz)1(6AjOHnasq&yGa%LM^~;VMuU<@J`fk#m5Oh2dk>&aKYlZpnb4bYcbFHC73mDq_pt13)+VtHr=3!irA)D zCsdJOtqq27JsE~)%l8K_0E`M^`3tm3V^M)zXo2U;joVFDU2G8>Z^z9FvHzdiB z0n;lzfzIoXFzCHQ9k9T8RHzdsQ9x%k_ZA=)!`2_*&rSm5z>=ws7$HgkeWs8B5ML`Z zhbbOL@b^?Rpq+d$d-!`Jm0qxsLuUTupz{bkVa0(`tT2>Tt7ryzAX=^akm;aG(bL2j z%^dcQBg6p{#!IUT*Blvk%^C-Q#WD1}cZT3avgK^ndQ;L$r z$tL11bQRK;?eYMY`+0q>iACp&;BRaj2yNuvQq6W}*0xvA^_8n0@CU<-t8M;gS{srM zRE_#0-NpuHhaJS;TK+WKnV$Ib8d)71toz&ZkWz3mT4pzMe4S8b5zHl^CCJiPvf;uX z-A5Ta=>Uq6vq0oO$@1hiBv{GnR$_*C9u%MdnJe9Td6vIosP+rJbMOXuI;bLubjV;S zn?0MK>c_yWL#of{!}WN&`3g*{l@dk)5p)>)3Gq`qsO&_}9kYnd=PWi&jfcLmBa|G^ z49>loTm@PWR0mR5Gq8ln0^T?1O78jkA{;a?U*mA-)0;TiD+|CX4}n0jJefn&g1ed{ zy@*QC2#^6Kb?j+!ZzHOJvBr=o2mVmJEEOb4lm;(9PiHy){QNv(G^tBs6NDH|lIgDZ zZV9TyCUfWFkXysx53@%iD+L!<-9b50hq9~xK)@#f)BRpNQwwSFATqv>_?C{mj2@WH zKYKV7v-beeL-i35J?J3N$0L2HtGEsmDZ?{6h@$B z_5_~=iGC6<#BaIKp@UYU;i(4!H@a@=iKx;>3$~I=0wj*nZ0=)mGU0(2eW3%-wy#5XV)j~Cw03G3qy^gk{Qii2v0W^=0_qM@e+ zthlMCE(k-JITguVqh2~N?smX4xzpSFBWbvRh9~Ui44 z4;AynesOmEwEuu?_9hQ2#YPK}-zwT@?b%Q?HK->BzVF1fonVwtrfq&wpq-raHbRW9@yna0led5!_+K{rs0=fj|dm#t8GzuWBI?@sAX5e;}(FXGlUMN#z zG#fqhl@>E6MsI@pLQg5!$+Q&L&dOX^d-czYc9+WGyCeo1dDmd+>KJ4p7)1|5QC;^O zgaGDEoL!aWVBwjybJT$Hx*`DkmsNAl=SsDP>wIbGRAi?r+LM}cI1broDbYR1(iK$G zbaO&)4{Fo}Uez8Pg^C;~&DBw)&q5n6x-8v=fFS4EN~Y!50c;B$JKvpw0)FNmZ!8jR z$95_QSCma;ETJ3xj!QVWQ+6x>DYTxgU{zst$ZSdaIz=!uF>Hy0BZU-eTQWTMF3Sq% zcvsIXf&0)d3(Za7&V@f{k+FnI9#2vEkekHhVDE^?#x#y3%vxpZqA)@X$GRkDZES=j zjj9v2(pEBquTNhrgO&gl47*irUjn|s0@qGtH&c9c!EnNPb6NdlaGL88vOqM4R2;P?cq>7$V# z`KIgF)ZlXq$WPxA{v<7~2XhW6bk*(w1aF<~xVDqzXWJ!BCL!pl2+j>X1fsOz_sb?~ zlVo?Tklkg?LZGvmgG|Z5EZl}n0I&@;UEvlJumi*0LJM3?@+q01vliF%DXe!=86t-ai(^CevOUzq5g5T^ z%JOJL*fv6k0tJY+LF)k|lQ8RG)ZjttG6KIE$>=Vi6M(Bi7X#j6!o5l5(F!gVqCdz1 z%ADb;7FRIfHc_XbPK(^|Bx`q4vkq<-Plf6Ubb&JrlSzVyfi#<2pJj;#%E36?<(cB1 zc#<`y2OlIs+V=?uC}{eC)&u3T@AR-eYuxba!-pV{J)a6X1)sLqYV9%Mu^zMeqzWIy z8DpKeMh+ef|9b7=IB+sSAvn8ab)uLV^xi#{e^zVW(NZr-yUqsi2J!_#V@9B0&JUq% zIj#x0zR$z2OY)tuvyIjH(BD*|uPU+t5hB1`eEy>FH&tj-B1jO%%oC!i-vHb-T!Ch1 zvz=geb8g!}zm{=dGII1EDKGmAjc0DAUnY5n-8ol;@Xt*w#jIT0S$h-)skTCcD1eoD z4%bkCm&u$4w@2H6P~>BB`OdHeanw$OUw6)x=GCy9x|m7Ia(mQ+WIKgXgVISNsYT*m zxSXvW;9;~3aq!TLF*pMtVN`Vod(k3mZ&8)bu!9HAaEkai*s^pVMc z>Rqiatj4*GtzE-)L;=~IkMkEr7H&?)s`Y(dus@}#F@Y-;uH^_x0qWPyF9Dg}C?lI0 ziyH4WHBOQ2%73r&`a)>woriZ%k~+6=2QwA~S(Vg7O}~f-?+RUU8rTfzDEMmi&=>?P z7X-I+x&9@zJA%CFubVqTZ`Ze>`$)V(pwuuPKM7IkRBS!;9hrhzXf5wzA~hv(%K+ek zV?_zF3qd^YPa!7@!5!BCHw0mkHt?AS)DQ!4G17Bz4GNcgv6t}K8E|j%M_*zYc)JWp zenPB|@f~E+M}+}Nd4Xe6g=3_7Ix+-wKSLupSjK0|y>D*JLL2IK6gDoDy=|XqK+l2C zkYIT;Dtro;2k^d%)dE2&P#Rnv<~STjbNd#v76$oq{9{n?i65|uV3tpBH@KkuYujoJ zqrZ{Z#-|}2nu^nDr5dMzUn?xB~Wragf9@+N@YR=#tp^pRM zg(UogcL;Jw29XC(4@0Sd#s3gEZNf-+l&F8jX4XK{d@ke$RoNkPYv_+)k@Uo&d}v&* zqd^%%_!xE(68hsRr3J6GaxqV1MJ^T&jYxJQvE3hb z$+trggf8&;23E94$a>h7Jr&SymC!>$6tXN!wsnt5pVtDnUmG4nkAf@5yp1cMZyp5m z&$`%dLy~HEyfXg`kD}nyvmV|A0R@cTOMHz-02~ja^^jUP!4NF5G#w#z z&Mo`11fDD75JcGbUp&vf1C{FgE1`bySw!^V62V-r3`~~Ml&mDN`*}FIwQmNi=d8se zF9_7-2UUMr`Y%04ictB28&noR0PrRRdHVE=vcgT^GPvlzn>Hnn^{b!-KjHuI_U7?W zeShG8kx(H!SwkTq6_KrEZ;`B7vu|U|zTOtHlNKr>`);gbH^LwivKvdtzV8e(^E+4X z&-eHHJs!Wme~)@xXU;w6b=G_D>-l=U?hLR^MdhX>_;A9vB;SPR&4;@8fU0p7yiJ1K zD|iD0NizT6n&tpjKMibr@ZIBZ*u$=xXOSaV`kZm!vxx2E>&(4GrVqp=QyE3{t-T-uqoij^sL#*C2ltTn@1kDmOii+`M+mY?~gOlYM$M< zet<0tOyS_NIQSwB9CAPSj<1dE_Uy*&O~nH_@LH&gBe0PDQu91^S6qYrM!*?wTFO{N z^RCI6JrMSlTY-OO+CFI@L;_sKP$f{fV87)LIAjepuqEzy((x_Tas>RsDku-O=3aXM zcpnfb7H~-At=51RV4*qIMvh?~Bn_RT4QINfNv<&sE5Es4eEdhKsDZp zN4xr`l(9e@{O|^k+kX?-b9W+LeqtH8C}I6Vdg#^<5K#%cwX0RB(a-mTn?yl?8So~@ zk{P{*J)+BhprQ2ljN5AUO7^hJOZWVaQ@$6tO#*_4_rmf0Yi$+2fi;x3QU7`fbTM$* zAK&$k@KR4f=!`TlxLd;dyF}6TT=4J8qAWGG={czJ9k|Yb8VvgGwLb$pqt4*?V7pcc zF!mlhC+#D1Bca^LEB>8pSM9)itM<_=VBLiNpF6@Ut}N>5?_CfR$JBiq9t`|%_vl+u zz+%AuuXiZ1`y+C2cvv!*6RL=!ELiDVf!3NQ&^zb&*d&u!TL<8p*T8g8-Bcbfyuv1T(1wFldj~@~Oe~orSwvM9R;4Aw3o)>$9xtl`3M(*`<} zvchjo0Obj`nd=@8_*yRfT$nyO1A!?5W;aRl143FPtOAgO=bOz*Gky@l- z0hB#MxSL8`8*eQJY{9ZNZL}z!XANH9v?QMnNW2dLG=8-q_si<|lTv@v85}p*Bz@~0 zW+%b<4xqaDN)OqCCkxPjpMKx0Rdd`)^gQ1owc-Mv4F6g4fib9d%o&cgLwpl`(zJJM z7=hKTxj#W)D+EOo-ZMt_QUha(>j((i`m!v&Sdhm3@3jml{e2hhhx#tNkdD(Wb|Lq9 z8FgTbBg`}*KD(d~*Sf68CYoddlAC0N;IKOw?7sTLu3lh3s!S?<5C9&H&qcs;Qv+8r z95j}sN$f>JJ2lW|7qOOr8-xyPk_)0Xm+)QkL>uCi*Tmi)aifN~izey>;-MIH9-2@( z!BbDOc<41>y9mDQ@2d$h0ev)vlqZfsJ4+D$0Bwr*!N>An~XM$3adM4czmp zOPs*tve1WFXb3Xt?n-&F3wpQaag>F|>jmNorg)s3lHn@kZ#02bdnm6PNYq0Uu<{%7 zhl9{o7CLZgEBS~9+Q}l~krPB4^r1!|F(kl>(2d^4V{$DPh_?0J(A?5N$i8|74nN-} zx|4jg1s#YIFv$cQp6FlS01@N=(hv-B72QzXJSg7$uQ=TvApke;xU~l5Z8|T#l9&2O zSOPtQa9HNq!Q>XV>Q zD0J;hUUr zutKwMP9#UmK+wFYFVQ@oiWuu(Kny_6a&6wPLu-ion=TOcpbX+`(**hTwIkvbaXlk| zkaM`#-$^|3n?vI`Ft$5~#*1?{Tgm-Te$mV(6F;K2&_~AYzj0puzxPac<@eFp`n}FC z0doR@gc@ic+QQyP5LW&Yj&2dxi9NV6joy~8%TV(7B+(VFov)e%pWF=&OJ1d|ybu~GnD|v5iCH`H7lrJ>Fx%6@M7akZxYB-e-4gp>~c(JkHuR{qF$T-NWClPuYW0RB&c?V4G z94&+zrgkO&TDvhar;%~gyJM{HMbP%WlA-e5DkEb2JMK_ur&YJGS?>T`fC0mKtqsJ_ z1o>*CX&doOLmb*_4cbJSi_VJ@r@%E=0pXWS2{XiXX5#9^(JpZx!lMuJz~wxF|6vL) zS9-4!)=!< z)+Xeh&z@1yU8@}@u4OG2F1iiY@(4b^bpJag-+JSNx~`v}Z;yH43S;CC(>GSIfq1oP z8~F%1n`ZK80Tl>xm49L9xrHByIXX-1_LA&I(}*uEvA!jmcGmQB-|A%u#1$GU_+rON zo5HiPyY~Ja+0L!y7xPG*TQiJ>C~f(#=Zc@UZ}sbZ`tY9gxJJj~IyNkc!I%7g*mLh4 zXF*NhJo5yG_}>NeuNX8wm6fmv_MCZiOIxs~S7qjr;CNLdbT zjYlwDvZ6%(d#HFnG~LXxpqaexoU{-_vg6BsjoN#}B9q@!4}XM+GtsZD%jC17yzh;g zeeG$M_Ml#x6&@#Z)&F^Q{F0Nt^z)54ktW~XFt1dW0dGSiWwrq$4I?tHf&3>jewO+Z zk{hS6W@EQ3ap@*!8!T}M-H!U$g zE7*bj_R!<)j2pTDlXaC#*U>`I@}S#tN%IQlGPM@?EvG+*4kcGQkP$y(O8nJxGk&&j zPJCB9|CB=Q&CF4|!r^B#lA^1lG`;WQtR@d1Y86?1@5;0??r20xtx&%UCS2_O-C~uJ z*ILF-@>HKS6Pl^(P?(FdQ#)Vc(wTW_wL|%uxNyWhiPaXntS2Qs-R1@t!VzWJpLB1# z{@Ap&Oe4dTjnJePf07t}dYN7`4Q-R7zgMb%(2Y-wyYGnxKjk^LX7j^kug37?V4cWp zd3-*}O1)b(`j2TbUG?GK)#S~&egC}bn@YkHw@7OUw=YXjvxg!fq4l?THV z{#nBv%6bEKR_P_K%o-hnZ;B9QKdI%+>Jt8bvuZ6Txi*RKi}yue5hn zYQ4)Uqfb@z8m?N%@2*XZRrw!PAMjzz_j_H*)uMSa{Ii}H14`TAJYw(KSxi?Ry$0>VMy++Y-;WoFgwPWA+QyX*?nOZt0=mzyS=Tf+Z8k67{T!tV{r;9KK&j0+r#&+_N&6hI_`TehV`0z zp%)w{{q7nS37h3Ik3#bfqU7i%RHUes?Umq`qvz*E9q&JV{~FKqp6u_l_~AIWkgF_d z7M=s9khkIQZ|uuDpH{dD`_;lrn$+eD=dwa;Tn$Gu*^jP#Dx}?8LDgyv>xW(ARFv3# z;TTrhcKv|Ifgs8jpj%-@Xu19Jq;N^Gp5uMvxTw_A4?e|4HFr5KyelcjS|~;%EG-@H zbH-C4nbqA=fyPFT#tube>V$>5 zmp@ud_SLnn+e{8EA0_*FDQfhh8GmEypMOy~Kbzco<)lT7^gx}mg#Xmg!3)G_LhHy{ zTT1}s*Nn&bFX$7wheMlVD$)AsZuuwQA^y@NtrE;Reez$wN2E)_=^yV}ry37OD4?8g zJ;{(;5c+EO_qnn)ryi62-^K4P4(l&Pe=KW_4!rv2eQ?`G{(3y=EA&u+pYDFgsqd!C zfs&q=tjx%7WAPY+0InrD(X)Fi!>gj66Hw9$ZIBXSt`hy{kRyiMWhUnEY+x}xZ5Dwn z;IAlC?w7+M$`j`OlS9J#1W$fZn4V9%8K z@J%^(FtEMaoRu7j8e)tO-n!2ogW00Dm3_s#t+#BACCwUccNz75)4*KT%D5pV5DuB6 ztfZ!jXAmkf70c71`!bJ|#0+U$%}|8T z1%j{l&pp$57%@DsIP??c-WqLFwvc@{r&+J4{|;aMD;>+QXNKAgrC&Q-zpO|`vuV89 zk3uAzzbl?;e#1~Ix(R`28=j1&NPPfdEKr`jgZ5RqJe7uwHNztc@NkkoGgJ(ZP#NZZ zO%H9@V-#22A(c>q&P3mG_%t%Qlsn^ie=9<(U`YSVgkb-Zu8hf>k3ciwdZ5mGodVrW zVXB0r)K9{NI_0?@cHaJ4M%EFa_`1mjrt27M6d|C%>xK5!{_sUTaXBcxT>fo%;Y_)K zSfut|wY}F%ZA3+Q69VfwYHhfoG5kX#(M@16EjmOC6vqrk*%#bN-xq#baP5J*zv+@S z52u8nz08xx)G3mkC`^JlkKl$IR+pEIEqZD&%aOmnekMVJCW!&PT0h(Kek$JdZu;Xg z&$5+fOmY5%=MiC6>HI=+D<+!(gP0ue#9gSEMn5anJ#-|3&}NZd*I_@pd~Tfz0SaA4Zy zKvXnxB0u;pHqh&qkgXjSsaz^@&hg&!$1>K^8#(#0r_#>(mO?v?w%D&J!zVql^;tI^ z=6YmqYa{l5P7Q5*u9&{EO%_YG)b-I<@@Xeig5NIfAqgnP~rczheyIbaRfwv?=$iHdy+ksu$RFI?VsP);d z1qmoKPdJ7}^LwM@&jD)^9fnC6TSE;)PR(!8p~X#}lE2=sYb!|0I(KkXV*6xUTU5`#)Fk0PW;kwqb?igC1o9^n5*(TY2|ddRSGn0{5M zaug||eqYkJ@uMRRcH}ji#Tw3C_Gf3h7F;wY?b{o%a}Dk#CRAmtkGVgGz~u(yj9D9?M)&+-G=ofR32 zw;y_a5u7SY(T!ZzYnpv7R$@wJc#6daC5xzeZ%W0s-qIE*j^OuQw?yL_VgznMTN(jJ zDICW&a!6 zQPt60k{8GOZp>I`WneWm&hlI}*d0p2T6pyJzVf~~yj$5jU93zKR|9cyI=71QM`_t$ zkQh_suYyL|I-xJ38jf1 z863H98AY2$m^yD!5Y`bkw6gXh;S~Pc z`NN0}p?R~dYt8cF+tBnv<`{d;aAWLt?J(kDjP|H?#0fX-(f#H1J0As_IlQs{IFZ2a zl9jjlttr7tw-X9XZKT7OrtUVQ0%{^u)O^{j`C>XuoBD65iC8t9st$pNINoMhALr_bpu$FO#o$Z@rPn zGWU_%(Z6#siwW3YI`ZXnM9GfV{v1FfE9ZkP!g`H&?3-vyn3F6X(Tq9Vu3iuBl2JIw zjTQ-DRIxSnz6QxQVUQ7pfs>uRGor+-OaOBsnFl(fhrS9_hW=?*fjW38<*w{brlr5d z>!z+!BBhK+#`N#R#4Zf|eX0{JtGct;rQ!ReZb5zIKoMC_$LTlHWNZH|a(nR^c6u`> ztm0uz-i8;3mLxYoRY@RQc>Ek?f6@YDN(%UeAq%sXI_O>aX7-ox^}HwS#wr|dgoFB~ zC@y)l=A{`;>brhkF^IM?DlT4dEgvpi9O@ic4Zu(a_)0s`Q}YvYoC1{ucFx3y-}{{> zgylqWEHXwK)BRE-Zn{``OdURo*Uge_Psgb>-za4%B%mJaYptt>P09skf)E#R{k7t@&sA{nX^-7HEto^ z9QtdZG+!t^e(s{n^Vv5F%)EK8k5)Q$*z)ZM@rQ8k}A+pnYXKx zRCxT}drR&XHeKgFEN+Xs!Z8=Krf#IewCeo5_cc)6(8G?=HWU~*O)eId}*fXb&p%CmIkr3jMDsT7lC zFZ@^B^@A_hNd{xM#Nz7vm02TjT4Bu`svX&2 z&_d9!ctjea{=#4ztFUZR!7`&S&h=fQ3vZaAv@#K@%dkD}`r;d<_O&KU>Bmm#LB zVe(l5;c7biOU+ZV8zC1kWMTPIoE=T&p~aMR6nV~-Z5cZGK-?ee-$o`)PM4-Ozd*dM zK2&?JRNEZJdS=A^+c-BzJi#3XuUg&VP-&J?Q~Sp79!L@x-*hvUseBdKNbyQR?jHu6Ghx92G9dUsDWc_A*y998*?1G;2Y_<6ppXQVJN zTi`8y&GZZHOVMno-5qKB(de}l4l_8eQHiL52eEe@arlYpM-fTqBlEM_5xKLGta66ZN2!@-bzV< z-!Io;CRc>K2)5lN2odqMjw{}A@=97I!XZl}{H z&=Rv{U0(a}No(FS(Zzi+*~)JQqXcwN@5Pk*GLmK~SWn4GrIK9ea_4PND|U#?{@PM6 zpIUTbsXsK=LFPoXz>o1U+MNoQHCoK*&#4RJ-+v65xQ6SvD^^Lbrn%PYG9La3Rq$CBG!4C?H)_SJzFbVw zHMLVr;b+Y-H_e%d5pob!FuC!$x^q#yiuoeaSW$cp^U?9*Ye{ALR}pXT9<3=KzKW=! zSDt*suM#={Uu8f}JkxW5#1I=1r$1`#p4dw#ZcjfrA`9U`fo^daK?%^W!n~$7j)#tZyAGq^Etm3d=sm(!O zX^wh$SF*Ym#i4PjHsDTN+Rq>nLoVTgCGYHRTBtB_|y-?!#EfJg}bAnKH zU-e0_YLW(x{R={))YlrYT$j6N${U91oltcFb|e{>*kzAZHRp=NhF=qVo+Ff_M*+_9 zNvi^~Dd1)$g8edBfaMS<+6fZDp8lm`pyxi!RM~_iF-B3b^G^cZucUzI2P&Kod*vM> zPqoAmoAdhpe;H1whtStFhMd!eu4O^mbp_r-5<8_&mW3zTDQ{sjb;$=Rqt>k(7zsL{V8RMxPV1M{{Gd|4QAC1ojbMrCN+0th zSNH_~q0XX8)~BN@J0%YMA1#DROuuTk;ceEZJFW1`To7*8!r#BGI*@QSaBD|i;Vt?0Rt??K8;Q$TxPGlqUg3(?E{RxOZr~EZO*V*6T;QLO?CjoNZG{OI3Q z=r0Y87I9U$b)Loi>S$|K*eH%HtG)BJ)<59tW3GYOc8GAiwA= zSI17PIRPr}%ZlO_?@W8h_ZGi6{K9@biDXW#EwKDaugnOO!}v|oVWh787Zt47HBhKP zrf4r{Sx*Qg&-1u!2fcGVi_OgRVHi49Vp`C5Ge#k^p`ZT0B=~iRFDhmx+=u=2JS6vb z^BVC20{iC>!*TdUN(Ue{>8&Ja5u(h3(~o6}tgwx!oPhBy3KyVqXHxriHDNGPKv-v= z(wa|pRi(AUZr)3z0(G7|yP>|D_l_h%v&8fx!_anL zv}m+GL^+H+^4>MK|G}(M1I8okF%xmmLV+6LYyXqEwFl1GnT>euq(J@2&%TRUW&XI# zd_EW4uwB6)a?^Yvvg!s`>)})7unK z=9}aVb<|9Q^6~iD1c#C8XAlPVTXXMZA>KpAZFS|{yf|OH56?+natYz`!z~6fP#quh zzR1du`jeqOZqAMoh!WnxZv{~)!#Vi59Bw$rgSf>|L=H_AlJNYTt1#l*AlM(%u#rysg<1=Lo8p zUxBOGTm5~(N?9DqevS8Y9N56SLg@?FOH40f;$!h=7QTalstQ|!;Tc>9Z9VzIdI<|o zKK%kth7G_cf5RtV-LmLFfkr(NV@cW4zutKM?DYo^WopFR)n7v;!ZC+;d1QGZ@P|&0 z7aU3C;p3(}sACirQbM9!`1hU~39sJC)WnyuttHBO?6!1}# zl6TNGl{+}r;g06d&1d&_(gcFc{*Gud^vLLIja@n8!csNMh>?yo5{+o&QZ5Wr>^aXn zs0F3|35|6S)68!MT{>iJ{{~j-u>uB6$fgk310S5gB&RG#fPr1Ih@hA+)$!r2g5%z&tiz0X}9<=EB3tqdOMD#YKryJ%Sa>PsOJh`PJz7aHXx5jr3Fm9 zPDq;nyI7$POXnHfz=I3zrHbg~7b0 zc*lX}gDb$i3XFjLt?=FXk7*}MPa_cvtf{b zJXPjdZU`g?4ON%-ndolR2RBDLUlf}*RQzk{bE?+h zSQGE9jSUOWZ&{(!5B-!MH=nqU?PS!e3W1Wt=U7o!`ZL*Dn#GmGqOeK!j9H!J<*IjF zE$(FFwR}yYC{xCY3;f#hCEI0Vb&Xc21+`@)F7+jaW{eC!N(>U(eQpy9>~vpyT@wm8 z9^WsgZF_z`QAoY&Ju73#!gRT$$OBf#=+-ii?-MJT$OE5H^IKS2$yP==VE7dIa}5gU zwBlCsaraT0cgT<`^ze}F*;;&_aT_yGIFdcY_4U4Mp-{M>g6WdC$7d(QX?2moL7cmy z+?|Q&?!nuI{k#4zG}%*-V|s_`6afXIt-bR!9D{>L>YRgvzHW&}pM`08wB_wE9)|wk zt;5dOO@k*6J#2kUsC@QAMxC zn1U>ro`3Ha&%0eN&LJi}=vrMr>zpJfJ4nn~z>O3}C#(h|Wl3;fpf)Qgkg?)4&(SKc zBV)iDr=cVp$$~#Gc+x$U_8D~<6IW#9=c&<+c`95>3Mi&?;l8!MT7ry|5v};#kd@Cg zi^X$~hJG;J=ue4bi`_9#~n9_)BkAilAVp2x;x*Y>8$oj7joW z>XH)n7=d-?_Kk^b>~IY`4PABTY)!&t&*Jl$WP2Wb>6EK-Qk+qL-q0mqy{z9dvoDuD z*T3~kkclrcI9nL*;1Kh6ZS{m$OSpv`Tis={&%&#`vdBWOca`Q#dgt|)yIV1U@{Hht z#!Rny_CkY4iAI{U^nw19*RU6yTaISKA)in6Oey!dl4wroEvUN71jc*3SI2Z!Gisnm zs^@)n{LRy&6;-&RvO=qB^Q2Z)4CCwludfY7vvf-5@>*}NPU;`rz#qQ+ZcE zaE3(_$YST`v+~3J#&RlugQU&7@K?hXSXb`v&~+Cx+{$yAu6;vR&$(P9IgXm)fd)I& zB^TaedK79t*tbyN(@R5k+H2G5(HBmZ8t31X&+j>BqyT=r^@=3v?C(8|e^8-KxR)9Wm%}@8$6}4-A2gO9pGm+v`4-(0%g(rw6knM>7+pFM6~V9YtsjD~}!KAZZ!N>z+O)2iHtqKcAC z=wu5kY9thR%)+8CmJ204&+z;lHy>(q8~PS0J)rCQNw~4r4h*bS*LuhQg!gh;w^*46 zhG4rCezw$hx^wQcl29)l$2~*64>n8%Q_WWmTt~YHHZDFKrO7ca{w)0J2vqJadD(%W z&3ka){ljch+FXD4OoBx#J9awM{{@rtxOIe|8Fd%=x`VjCljy*ZlnmFmmISd1sG=ny zmgbM%bKIy&<$T$OCq>{3`YpGb={K1%dct_+TyhCFAGs5|-FB@bV#azK4uWwPml*$+9P(!410G)PTjh!MyP8x#Ai7q>7= z*Ryj)u7a5jU!vH`(w7(Ne?rj|>foeG-?uUOIJbKRH#)vL@8&n%`3W0g{9L??yg}G>D6oY z*Fi-1n#dN0B0~>y2|FQkqz%}?^@ChGBoEh#J;DV!Q%3puFG)1eiy4Q9K=4QCVHf!w z%lgbNy&Z>g8Lktnb#YyKN{Yqch><9cTSBex29xwi>OGa7%?sz9%}bh+ zact+-$)Zor44lryDz7d76U!<9PhG3aF+X%9~5TiiNRTOpm2q$lr&U?iU%5>fd} z`pjlR;HnqKv}fyNuEi}w#Q;+Z^sCm@g}`7kA1G~fOgsSGZ8_s5)MqOEmQ8>;)o4W1 zIws0lg;p-^6~`rnHE?=QhB@p?h^Z-O_@&ZTt-DVR11`&2KXD8e6=<=s&|3ZCxy z!Z?^F9x-rL#-NmETU;@~20RS^_?KB@wro3}r^>b}&7<_|G|F}>DL9(NMqWJ|lkB%`LkMB(<_%u{e_2k=< z!^_f3qlg+Qt~)(D<#*c2AG?o9tQV~~iZcSYjuf3!NkIih=UZ8j1)mYZ&(MJk1-3XS z;!+q?h$Ug0BNb>@mDFwQM9~E@4kQLkqVnu$I@>yFHvL?wWmz46@)KMfkDt20rU_E<8xiJ)r4760;|~6^DYqpr3V` zqGuztwleY#8VCG`9SEBCgdg^VyQDRI2t)#o?;S50wVD7lj4EOH31A|6e{5X+o!z`IIKJPh7bNun z0NYeiKM4E?J}aLW5WaY*qZUACM|vi`jAx|Qetd)kfE8#X!TQ;8Wz;mN{0=V6)dm6n zOjbN|kwj1|vN7h4eb?QT`_HW4CSIk2QvBb}SfYJj6~oE5XW?YSzq)dhRxzqOiGVRL z?Wp-Tjzk1I0+#RN-=NGAec~6*&wy54kxIHoFz-MGJ8C62&uvVmCI)>xP8QFY%TpS{ z@QmYw`N8_SpX{hI4VR-!MX0F}Qv#8X`7R!Qv^j$36B0>j9RcrTE&#oze(itHytI zbdL=npw4#~?J2$jhCPFrf?Sf|_J{cM;n{d&c?ac^N$^~S$?IU1>FEtzc=-_K87;3fMh@>3QJw>rCZ zNTm@*9&2#o2`?|1gou`$q*Re>81%ll0xaTr4M5}Ewbx-9x6YIc6WIq;dG~7IwH-D0 zl+Uo?1mu~?!?KP#1%$xlfx#Mk+AIs1!3%u6^gUW+EP~H=Z;~pX`6R3K5~kC4>2hI76wPfXx8NL1=zlr2a8C9x5|;MG{O=1NxL7oR#C|Q1vkh{pvOtakaKs+x zJhA{SnzJ3#?{*)55B(ww1lo<8!IXLwFzUhZ)?q6E0uIYKXEzE8uRylhX>z@%#lk z0x*47$kHFM??s&?fZCupjW(b+2byqi4wB*CaEgJc3k-gD3YPYzvF+tU!ym{I^_NkE z)3QBG6HF!b$eJec1P+wf*T$P@1Xv^}9PRq=LT zn9tK6PG2++r1m+^S4U0 zo_uFXjodyGtz5cnii;<_vmQ3ie<*cXjA&W8-1du8`SvfVozUL{%8B1vSo3+@u^h-p zy?3mnS6%zFqto_HHe~u;XD9O3oIZ&RB2S*cYz8=RVKi(}?} z%Bj-6b^^MF$eio2w2BXyb({Z;(;>}WkYq#QETbT3DU4?I>r0l=nwqpl2ab@J;kj7P zAbfZ(^1yaw+_Bzx?}rcgKqVvZSzACOb5|g@UgG@a9VZo^0PYeU?SM`V4n`gF&ysPP z+5wJJVk(**Zx?7olk^f+mZQy4Ov8ZgcWCU0JrKXbUg2E7wci^MV?z9KwR&Di?jxot zV3JZn(*ql^`|~$5H7R2a-dNJCqUUjVuj};Ml-BTao}8k@AT1cFCbFAQ;NvMS-Mi!IxA0aUNC@WMl0od6y)H2is!Cl%73ZFl?yPk9 zRrJGVEJlYhW>}(j*gbpvXqB_o!*Eox>87-CW-jmM$>kKJ2K~(%F3l_E+&4XyfzCc~ zHJXJYYR19f$=$shYD(vV-tcxVRtq}~Jq7%2c6N-Zq90L+otpYNTP^GlS)kg;1){qh zH(oyiI<-(ylHNUsRq%P`*36)IQ0Rfsqtb#VTGAAu@!CEro_lJV zoL>!GxAU}wKzDU}svx5ZS??{+u>q)LrFvyNdJ8C{DOeoR#i-(IE9k(eALpQBtBd>C z0Ack?A$H_@W$F@Y3Ybwa2`ShqgMz7Q;llo0FdTydFvh}u=4vNH*tjy`Sco+Va`L0C zUI8=EA`6hd+kfLChFpQ!HOMJ~%62$fRE|}X7OEB&$xqTlO8Y(qCYu$>k$y+Geau4U z>*amzrfqR~cCBTm$bvibAk^X97;2K{;h^LFZ+GO4qnq3xjH&=r2Gvay*-Q&umO|=u zq(-n}E3GM4Saj3c1S4Sd0N$P+v@_prl($E|(8DVtrNMrpe78MK-I(Y&YFdMU$u7G1 zq_CUu!fNW-u;?+~14p}yzww^qs_x5yL?=VB^h4^J*!iI`*6rGn(|hJ-qy6N2Q!2yo zac}}0M_iMq7WBR>vxP-ZG23AMrD^58hgIDf(7M=JEJkv&K6YN9{*)u%?K9We8A676 z62}2gPceHMrly5T6H$sPP*{|+VXDPBHr+()2yq)Yf8s2bjzdXC8yh#@MgcJE4`(6v z_M<^ZT1^Cu!4>_Wnq57O6Zr7vwK;|q&)^K_xDE>gV9lNI3}V6MOo@24xlVYx6uh$Y z2y()breM{%-LXs*V{qWw80u7ewOa&Zmfb5M$i?Du@no^0N>07u0x%xzHfXL|nqz|R zVlco%E7xCqPHdz38pa8=PZrZzLEm*sYczAoOi)r{LZnYwNl?#Gn|&oWDjYz1Ap7A8 zAF9tn!6!Q^d~92B)V+1})nhisz54fIhsBDmpC06caG53l<@&fGat*Hls*1m?g-Gb) zX}P8y@zE5U{XZtnSI9F&i)oT3U;EJ}vVZ8@A2nAxx2kmWc_z*3j;Raok4aFb&A}g& z(Pj9EcJCnH`?VPQy>9(SslSV;?wis87o_Rj%4nkDBT~u#E)}by@CXWxYfk@3wf&JMi)6OHkh9C}kCA zfCRQoOW2Z_#SbWp&iPHf^|)NS%NUAEW!~W-d+UvDJzAUrCJXu^R_P_BP*KoJTkXgJ zu6t3C-hbQSfxQAgIJg~OLIuQnU|ll+J&&6Pm)=!i)LcCWa$acwKo=e>miJ8sPogIr zDcHu?GIr8?Pz>l%#7jokT00uoaEHq>T}6|cY1{(?R7&j521of60i6=uAbDH)B2=h! zH+*yc6X^Y}YY?@0!eF-MiQ0Hx_qVbfDae&o3J%K%VDgNLp|$!^sb$X~jGUI_z7{lW@`c7QEa?W-8dmYx*t5JYDxuaP2cIK3~ z`vav5qj}z(9BzFAPm?=~Dy`Z^}y#_w>AI+&uBnqEc7RaQtTkXK1^$!gNx4z(!LEb7+Q zgromfRR-BsP|g$xAv35<3e!)Q^vF9w{i=#H)p<$7M*O+&94iu~6j1v2y6|+QU}4g_ zOm&xS1xERqGo_72<*=tpPOT*1S`c{;{M7$(MC&U4&k=3^GX4KJqIX@!GE)JXUP@P=e);OGa_$q|bc5a= ztvo>t@J2uEpU(;VICYgWXVrJRkMn-Cb~5pcfdW@Q?O1Fxd^(GyGbV$Rb~Jcl|O zQ7sI5Ae=G5;FF-I8eqkKEw{2Bt)-hvv9NPd+=@-M9HE5(F3;R7YnS8N@3i3BlwZv^ z^ZFVdi5=+J2WC~42=6$s@am`lA9s}Y(*oEHDlHG3u(1XwufV7-A(cU zY9|$A#$^yQ$s|8+wA)2Yah7Xo4aq;8LqmUVnG&a`{Ee#J&E!S?e{+Qw_r=$Sr8`a~ zKo9>~MCABv-S%-f9IBN=p<<$te}z5fsP-)G-KV`1NDq9l zY5>(=3IXy;|90!KE`UG)^MXUvmT1VAWT)Y;UNF|JoA=JQZLkDgO-jIzzV(c*4LGv< zfU{keM)Bpb^Ia}%o0|z>4?rW|=Cek!z$S1%fNr6O4j|lb3p)^H0sBqW(px7R0_ji) zLlEJh=Fj(Btq<$Tv*F7Kj%F=Xh&J0Pzi6Bc;*l&S9a;InhZZ^OX|~GewnX8W{|Z) zQnMRatN0?;e}# zYj}^qi$R~{`6E#0cTg5EO8DYf0r~^WjBN4BaobZYV07^3v1ovZIlh3ng+OzBca)RX zgH9>H$G`XBW3y6AJ4*I|@d*#izK?zYGSq$mvue8Q^(W7!1;0fy40+=Oj!9DW0gT*F zge*W1$IGa!j_bRhk8LY5594D=*fch*^5J;wi$0$~lVPnig@5%_4PZBT;|&0g?=s*9 z0CWci^Etxv=6wU+c_@BhD3F5B|K|DtD%jcpq=bH~!^|F=1S9(-jO?cZVaPt}0@fHf zf`W~K0~j}6zY2~Juz3br5CoPF#&!W1ZeM*D7>-lXORanz3y#-8HXn9mw;I4g1EOc>+`Fxtr&f3t&$P4u_p zc5mm9ivZ2-?RJ~25;?fs zk36t{K2L@u*Awp@Oz+7bA=d~CuP zaVN&lkp$mATeyZycBC|6B`~cTLD#vqA8Sy4qiJGGsN77A9;z@EJl%SzLtU#k++r_> zegcZO96YUE-LHTSKc)}ycCYP!bl+ZFtBrTx@1NK*36IRE89KS9BOyC?@R4L~372@a z3(2s5%V_PUF3}kMuHD--8NYX=?pwIIQy$ob+`dmdtcuwD%pE6kCbL|iN%LzpOq%PE-n#E z%Lj>x-?$+scgD^Axs{pY8SjyP{rfRkiSzY)dh@>(P7g#jhj4b!>Lm2ryc@kEkI2&(i&X{0cLVa~5&Z6N-?BDdvg>ct9ecE@E522y4U%{-{|ZE7;74Ea*%aHX1( zq0r9%UP?%fVcIQYvF@7G%{PTjhyA|aLl>ZrIgUM(WEy<_*ZlLOA07n{4shP-=kw1G z(~N&umwfQ}O>#WW&FpjOB_1Km)t~xOagsZ^Y*^v%6D7RnPy0?ghm}5lAMX+yRD;S1 z9i^HRN^{_O8JYU~>+tUuzQCfAU^mh;qh(R$iaSrPXOUGWjoQ}ea@nPcx0VdO(Doxe z1#t#fkDG{voC3cBm0IzL^pjt|xXJ0~;9IfzQXKA3Z~R@f`LcgL$?gPOLZ)&T;$hu} z7lVh*hz0{bl!U5p^$!VYsokvdujdqnL8)lz8Rnc*tgh=%Ji83YPJX=kp?ZAJcP)%j zutq#1!**`~;oNf0w)3X3<$Njmy*z%M?k`Uu3*C`>u6)YLv?7#TnolkK!ykrgm@sgG z?|yl3f7-WfRWI_xQ>xQR4i|rwt7;hdr#YcB!>8*_V^7}W(2*rOc}0v)-Rr#3u2HMU zLrr75aGrN3PHgtgR7RX9BcF>=@@in+uSoe!5mVj&abd*#p0tRB@QRd&>yukMQe1E2 zv`nDx%965j2N^2aKlxDD(otDT$ELa}C(~m?*`Th zdPVe6sa#9LE%{s6Y@PNS)QmczPkn(~K55`bZ!J%Q@(;9>Fs(?6Whg92Lbw|}IrQ2@ z-CE?WlbRU*sI;p$+uWi@NQBt~5-BdQnI@ zeeKRoVSsZA`Om-B&<`g-fS3E`iU!l%W()4sBYJzFX6$7z3uV5fyW9wDJNO7cpFn$I zFX(1hl6Cf9yv2@;wC@6>e`f0>T_s%HJ>0&#|L~2tBwImkkM(VJI>Bu>!KXZCWcfx# zNsT-K?xO3p%NG|Y+WehQI*;J+KBIexahz?La}$^-445`pDe1n!F}4&I;fOl0Q2ybEQ;;`9GV7civ^M|T zO$w-noG`J!OB?4N55}hBPo$OM$gA@t(mrt-_>SoDWPsSg@(4vteQV-D_<5DF)rDl} zWs_Hfp>QN#`CT+?;V4Py&ahqbDX4$wmhGP7|0&pqNo&)R-nqW#m? z7gDH%n|Z8l1|t%zdZ7p^fio=eBF6**UK?+sl44F)NnyhP$gv=oRaI`WOR1j@g(Qu{ z7)wvR>U^3I3#*(A>KF2Hp^Tmino2@WXHJi&L}zSJx9GR%9@H2OXigtwD}GAHNC)D+ zn=2cGT(FLbfK~7FL<*rPaz{Ex;fbY7ZzvnHk4XlOVfZSy!Y0bvj?1Bf)vyLjW+9~a zqipSN?5a;zIY!npF0iW1?|w^V|2v2CZ`LMK(0S|zeS7#VNog8ya`5}Ca`|djY|;7b zzU-|_5b?OdI%>V}`|29z68nFY%>XEF6sV_Nr4xB`M`=*IK%Ho;^r6B(;G(Q-gu+_< zXnuU11(OQwn=T`u}uTwb#+P2yy@Z zPo66MPPlx4tS?pTbwr5t4o&Kw^$zX~T-7V^>FIgw);-Y^+5@B>nZmAF3!wIA-@t>| z8ScsRv&kd3onp6s|<+q`f{RjV~ib1rmfstUCL*<)wfdlBRH%P_7gFT)*WJ9w{BesUXrqKYY*N zgJ~}1_swfWOs!sj6m%+@tLJYL^Ar})3M>-s-}bHMt3m36{)C$`*K-EpvXeJbAn_!) zorDz{dU`n5k{L+O{DhugieV(5d=)T^x|=Iq+V>`qo} z>?`d&;tgODUbmw60ltrMK-)&f?SRYr`G%A9qa)NE(^S(3;~g5->S7w>NZoaQ%k6y_ zma3&CEVLyScB$gd$0x1>-;nhcd_S5146YRUjPrx9bA$w;uMN7rO z4H`_RX6J~dmahA8!h_#N9)5!Xa%2#*Cs5;%BwUvxC~^lk0u)w)CSFq)c@y`^ZXs$9 zNtQbMkk`nJyGLUt1*to2O40Z!+`tWkt6b9#t59r*IMBs^Qi3AOBw*agpmV~xn*9c& zzU*W3i6K(t#>gerlb(hV+(UogM9J+_fq00yP8agKI z#-$|OWELUj8PKPsAv7K+Doubp7~Q)4={2qb7`cdkeyndtxVv-Jap%lrR&(p2liPnkHWAQczq1#i z`yO}90y$#J%~_& zPp2z4$dwKIMPY^{!nU)xJW;KUueY>tqPG-t^Vz)tM&hFo5=1^t5fq-ns|bN6r=J1p zZ;7R6QmE|7UQir#E2V2`fp*1aIMv^^BaPi$iUfPJ6nLSm0!puwW18Z9?@@%{xymlc=an{ydaMOVJTVgBWSQm)D63`ZSVIhiC0Ra@jzx;g!>30$gx3!V(m>>YjyCv4- z$H%nA4=8m;=C<#-sLSt-ou0idEuZ++2*or+!nC)BJVstrYmtlOvTJ7hc|yoe0!odL zt;Zyx0C$n5fg8i$ud>q=TMmJ)4mDIffk-v0M47HR zL7X234k^q(AY-d`%NS3sHaF)gfVBivM9Mx(H1+5?2KWkv$VrddMt5LXrg6airD%jV zPX?g=bFy}d?(ug@!p*42;HF=wv}cFBExB}Fw1f=@ifn3*X^P=pqQa3}TIeu64AJ24Q>V{-`Ha*)ULwHE90#)9`y(an-rJy3B zTwW6M%N{FY{7@qU8LDWZO!|#zu@pd=enRRwEgy%{%dsUAI?^tfMCRbl#AeX-Nf;W$_UtC~$I!emyQznkKvlsf$t29*y%7ZAYIhWDEa%hFoi_4itov1+Bu z;lPB$Ln+YWYo+_4lu@@W0=bhrn8PvXApM4DiGn6eaYt-hf3#6+H=Y}Zzz-6}4oem? z#8!TOZ z(?5?}P@jJ1b3ueBJ9h1$Om%@^^iMPQyWRjPHY8*|ph5z9<1XCF9+)>qr|Aj%Br(G{ z+)bJ0in8ylJu-H$mZjKUA^8IGLxP?+05rooS%z!AWr#Oi(BaoG~mY)py0h^8Fn$6$Xl{0>3G~O)4Z{ z5;0N(dSp&!5|9uP5--VglTX6{Z^=|s2`PyJHo?VWN9HqPWGb=fF8=rmne0y=2MQN) zi0hOD_d3}o%HgR;(=J^rOa6vrXKBE-@0P=WhapTMqJ^Z^j2&H2!(FXS#s)~pkqoB7 zyu;F@%rQ@Lh+hfj=*cZiKXO9AdtbFvt<{Bjc^n@3hYk$pytIX{2OI2ox^?Jm4U3L| zMZ6vvO+VFRv{|2dS~Z*gYj#m+4W|88tNr(Oo{UB83K@iaH`)zqFfAPL*l_U*!#h>3 zDTKq?rVygDA<942-p>v^)?AR(;ze+(P33uO;1I}AnaQv`WhT)Oh&ak>S3AtLAZ9G> zmF?-_^lzbmAd&gv@8sy+UUu!rd0&FxXIK z*o@gbsPrJTKU4B~yM5bQcNEVRy={6x9F{K?Qftuc^!?iV`1+gyh}dpEU-fQ`wdJwW z6_$Ixx?fy;2aiXU%2yawL?x}RZzEBu8Jy>_@e@ZRQBsF!e%BBZBr4X|bN_Q*h%snoPAi#(rS0Z&n1Vk1e3br_i#p1dn)_M)%%+qAo1WfDFr9xWh;N;_b0v zo?PcH!`AbDI``Pn9kh?gZ421hu((p3?(UoA;#wG_)Cz}O6_+_RBr!9Ybf217II5}0 z+;fS_%x8~0>S4CkeRtB&;Y*|@HHn1@v^XC$j7<^HsB{})>TkFyn`{IGk7y8)SyNb! z)RTyasp;t|D}_q2)$0?(11-)P9#AJ<7uXZJzMq2Ygu1lv$!CPeqK4dq#AFvms`x%% zqe#5Sz7W#_X|Z_2MVwbY_xoO+BbX@&iuBV%5idd*R~b)tcu$g#ptc$}2RQIT`K?j|?+9SVSeJPlmD<#+U)QFHNu}s}IY^WUU*relD0J3l zIQkAK?Dqm3)F=r`;icfKJ%FL2*Ay(Mq|0ge@*L~A=*oeOiMwt#z%4W>(z!jqT2uwf|e+Dr^c?8CkBUb=e2}p z3sJZ(4otBIS6+=~r!sCdLo*On7Lp9s6oDUHa=%42rR-xhaTn=Mnaeugy8lYRqL3E# z)j~3^BgoZw{8-_4hy@Wg1b>pECW+NdgNR27NeWG*NHN#lRR3rMw-KC?M`E8?BZ*`P zB9>=;)GPx86sO@}_BCa%oZKL+OPwx_jRH!j3G0=L$`fS~G>ov;fll5_US9T=8#Rtx zdJ%2D8$sBU!nQ;RI<|yp(32uuQbVD%Z|q9kP*VHe)cU13^N#B(2*ToV-=r)l>Pvk* zq$ro_JIYNmW#$FDIy0*x(6;0%Vx-p9vg5dm^JIb3bWZ&tae;~w0{CSp3#=w|+PQ$a z?zqzKt48JCNSU0;+S`1q>XE4t&sdeEa`zNZ85sRyE!3$haAjfJm9h2JybgDZZV_rgV%YRUulP1qsLtymm&B`aPPh0T2NRhjFvsffAcM zjtju#t=0!kj5n=+{cO>#>>8=fZ+EMs@ZBRK4kG&!`DNLO$fS^-+|22+&4rD`X2P%Q zGV2O`N%s90TFgJSzm$6M9^BL@!Ju7dS8I$F*H{i!oFXv|N@NO)f^iqO2L_jyhS)E= zxftlG?#;c--I|)c(|vg(JC;tY-Z1epAwU4_Ho43S&5|VOY!6P{&CdqO!(!=>>5oOU zOB8qh)%C@~9A*toy}l_E;z9W}L}FX!hMF?(;B^0LO$L7#AS6 zHnF&Qd}^|w|D^m$!qsnMZsF>r71A}i<@R8S*J77w2+!H#AY*0IQGO6ah#68m7pSng zwBHeVTFu2%Xp+DuVikfZdJ677DRXIYyJ|br+|u^Lg28!EFecT@IIUiZqQ^S4X`P}xgzRIrpbdL1Rb9Ixx!+sQG|B$-5H6+}5qg_E$ z$oozH%8UzFyab<%s%PHA@!gJa2=?OPh!_P&|yS;+wR_It&GV{_%7N5=5-`L_v z=dt@{eNjd%5&K@eRh&Zl3`dFOdebG>F_Gr;ll!hL<=k5VPW#9U5C2S@ zzU32@BNEQ*yH)6(cshDH_3MnVbE_ykl!->IC0$>rKU$PSxt;$dL4^hEEN(fR8mJh# zNbjG}OXxR*!nik~@LZS}M)+CWZ(Z6z8r@bRaY>H+JKzu+Lip z{aTD?>(37Zei43rI#=^r_wMdOhjg>Fg=)40{N0Pg`q}wb$tfMui$xRC0!Bt(izhqs zp`|s-Yl^o+S(573CHxzZ@0tkdX8a|z#xRe-{}2d2%}vCI6TMq4gD?p8l*6}F|8<0- z#S4obp>xeTIz$k}o@s4!YKtA%92#A1&JpxFGUVC?-beddSSj0~v7v!f>erO2$lSx& z)`0oMg2dM`M{TJpV3|H>vK*w|dGt6YJ;HYPeUnjnycg*Y?Gr8#{TNVFn`5@dk0l$& zxjT42na9e_Foo`h{1N|ROvG+*4os%@O<{ZH_N^Bjt32ISg1>5=Lau8Fy2!s@1}i;W zi*}X}wUfHZQ?K=kX8Zu=`7=mMD3fj08m}s~9v(W{E77U7d`X0$LuBv%{rKd_f zEqO$QB_qukN-v&06y%7j$SQ`0Va-^rt0#Y4oVu`S_RY{jVBQ9d@H+b1y@?QtEmv?; zycL|OKxd+K($^L#5IK&Z?M*(iIpI^RoVKY-G_tiR1e$<`vWvm=nzF@hoBh_M-pYYn zgP?|2U#(MTTy5Dm=%&W6*c3v2S-Lw(?N=jt`aqzvd+AVO`?IgV;x<3{DEW*2eHOmv zspq+LL^gjq|MPIe##WM?k*$}p z5sh@wtxF`>5I4~7Lh>xO=3KCXBr+0 z2zxZb8?UaPP;*mz;d{K)Ioh;-8ac5)`r6=*D)ezmKhE8G$<3sDYVh`cow!ik_Bmv< zS0s!sJnLym{qu3Znto}a2;}|Q`*eLh)Zl90R@nL#*|SVFv+xUO2Tl{;%4s!I@-eVK zYCW)r+36GS5{c%OFk223FU58Gx#>w#U1s3XK)VVSOtLC%A9+K^tS zgX}N2e|=bboBHFSpA7ILBe^c;7Ld8PH0-y9+^}mDfiCXm%R)H;$~%B{|L=LO-ALHJ zLXUtt-{$1e@Kz}*n(aCQ-jUlu=^W!)(fZRpWsQ3_={L}aIPtW&N zpgXT)VA6Gf>LoMb8^iAIXAE~4-PnF2Wx%(7s+Tu5d2vN0QV~!XHT;&GU#*_!IX`w@ zp+80}o{pC;?#}Rf-BOjQ(MVTE2I*cdPcN>n3<#S^F4N;{WR-5`mbo+lpH?sLm)!kQ zyV3B-dkjJC__r37UoniKcJeuAgY0U-z#6lA*1c9}EODV`-P5NCkx=cvzUbE5lTTI4 z-etv;k6usyWyR6I!RWGL+2^B=zZw22#i2s)_+xGIduV)a8V0TBsZVJU?`k#pYeL-0pe1IDOT{SXt1OEZ9!QX2dc7s8+jrJY5}8$n@rTqwa~N z`<@9ao*wo0wWDF=MOO9^p>h@H7rX%}TMVm6#l2f}j$DjWnRx^w7A{@Zud~!t0$OX; zEmPW*U9{?@JwD3-DjG`bhiQD0q!f6dk*SrwZ*ia z+!S6;Zh1Fo_H#C5;}e9qnb24TQn7(=(Q6K5T#gFAxnBd*R}79}dRRrZ!Dz>Xko&&I z6KQ(rXvNVlvIAEN3mUB`t+CL|f~foV^EjI6FC2$n45?u=s}dCDElr=F_c~xasf2}U z@nVLuR0SR2W%*&A>0)JkXI*b>-}l=fvQDOg`Gur2@NN^gOh2Cq`(tf4GrV1-sS#?MD08dAXp&iyKNq1AR*oysg{decvCqQg6uG{~POkDrb zr$BSCa}l%tON|>zL9+ZONc|J4$YVGMALugvn$Z=7O!cW2W(3jhgChQ~r&9IT;Smxm zKEDAREbRZ2n#|VHirr{M{im&&l?CD0`4d4ZE8|)k3jvBW(n61@qCBw1AIA6@T_gn}ow1-3rW_qbu>Z^Gv%3S{_c6r+Mznl#(2PY?LG`tf@cxcnr1zp(3|L=?lvbRTl*vv|AQ{NzYawV*zXzEQV1rlg=}n?XYAR!_ake7}6@!sxwD zX!x^IieSUIPIUinCKuRpI9o+T9Oe+tC2Jwnbm#Us{}C{=l1T1EJgpqF5DnvKLNWlo zxX6B+a0oX^$F87q=w@$-9Ulx`OMPGtjKz401$whDan~YrH8Lg7>Qft;IWaF79Qy-UmhyLUZ$Fb(z9yD7-$P1`%8oyHvK}lm($%4 zp?eh2>{WpJ({l~C2>EFEGrFr@k|Z&RV-1<`ra!xcA75&>_WBfm&FbfdI`U80 z3=wl^6l2@A7MA(-+);RSrY$iH7GW)|L~%ol#;}%^?_YUL0AXqKKj8}@9Apn0F={Ji z9`hZhQWlUN@`kQgE4>pi+z8EH`T#pqV%7Z5%mznRtR4zo>p%&i7Zcrp`a&lzQIdAS zE`~3;SKVLErQ6N8S%Zej4mh)9D4<{Z`WkEOvIVu2Ng(C*3$i!>Clu!mxW*o$B9isMl`PSk{mVHGpL$2N29k849kb@L-@%&jX=Z_!GfnCh17|=F_P`oh$NY%t715In1h8d1pdk=O@~3~ zN)6k9M4^qxU>aCKCQ`7v?uPgE@5v--ZwFBA=peU~z~hh~nI9OZX91_nrW+AR8sQYa zuUF4hQzHu<3te*%5IV^S)Y-xnRW;2bz*HvqCt!*2G)k6By^?ak-l}s|iD$CJ&;C@m zm<);AAu!V+7HY#ky!r^v=)KD+r$H9OymGC#T>eYr)@H-I7Kf@<1HYFADu!=|7NFu6 zfY%C?;$B!f)&#TGWgjtR{ybsad;4f;`YflYx#_%p5{s>o8JIBy*!{s}HfE>!(ar?y zKMY5>xNH_h*AKx^ZsQf9D%n21ZF#8&L$9VrCRd)=m=Lx_Iqj+;x(}vd*B&z$+F@a8 zO*;4Sldx?>O36+?CFl$%N`A-qXTTCZq|3ssK0JXJ4*w>!2|#MEvGsNm;~SAwWrL4-dXo__}}%u-RqhFMIw#t z&%Xj{XvJ~xHg@FzpCgn_xT;s(!ku#<Icy8YKm%H8``C#y;p+_ST@dYKWb7tL7)77BV5%ur__8$NMX zL2lI*LLy!Q?2kEg&YZ*d7{JZP8PV3g>Fag_!539PYSy?J=4VJ5?&dSQ9PuZ%kkeVP zpu2#PWkDyTu>Oculv9{L;&_Vwq%VZ$#sSP8hZ=j7gaT zw}w`i+ZNqp2+{<%x+25Q!8?{9u{*uH(D@fB61zf-BbIc`5A8w5!;&G%I{`Dy-94M< z>LF^MIT*YK91@XxXFw~;m_QM}DIyN`T)RZOw{08~-NW|e@Ami^WGdaUp?Cc`?%7!- zh3|#jJEb2cg2{FhG$Z1$APf7$*EHOX?HLb_{{~KszBJVdRyoB-L4w89k zN2#iEyS+TQ7d5Nr;%oyt{;Loaht~*s88qcoOX}g{*QWASN&s>^8T$9e8NI<7{gYF0 z$ia+wI7w>e&tR$kr^NM;@?xHH>$E67TRp9@rPDr|11DcwUF84*Uy((dn#}%rw9cCR z)C%#F_u7*5nP?oFgf_#9RHq+Hbz(Omf^kFgD~5)DdBgmwUAMQ1#H7l|K%>r^Cja z2I+yOPh-CxB08QbJ1(ZqbmbVhUl_QrT=WYy>SOn?3jx;5h!s4Rk-Yw@MRf*lx(|Z_ zZI3BRz20;ij>!@i*6BW8S1CH~9OdLF>+fZFG3ohQItU3NWF7f#sMGxrwYEL!8X=6P zJ3ImDRhf>*lgS?HOT9K&qtV7eZyXSd`zkk6Oq6H0BXrV3Ou#dfojy|*oSB{J|CTG8 z*`*?-fI@+B@%#tf2Ec)`{|DTfrdr&Br{f-(B9>s6>oYyZ8(_9k6U72`j6%L*#9d;_-UWPbY}yMx9=uOM?Ej$hw=x)o=J$w`>Xkn_$Bm6rka;oDKJSkyr6!czYN%&lO zq+TQ5(C9>cC9d2#8@=)8HzS9e!j`%xcqefDbPV#iCO4JdAx3?9zn6;=zsO%us|?;I zh>X5TEkbYbw&0+Nsa2owc%X$Xqo45R;6Nub97?n?Y*UZMKN--k<$Q2ZXxIHSSOcMv z)9hWk<{s@6BGZhLqneT~-(MnMD_8nM;6s$_T<76O_9aZ+FBcc<>jql@kHFW<-|gJo z(}ywsk1HwTC%qL=}5!Q++Y@L0w+C^ z(c8aNe`wZ1dequ<-*a9+&-Y}%)uX^MHT--#=%XG-4smebH z6qZZeKW?h|%LP7Z=P?R*OmqkxfH=;jmqznHFb!5YHO_O2{p?d41o&T_>5sW_OKr!1 z;h&GZs1uD;Q^)uYdMhjQg{ATrz_9}Y?RB~=f$JnVZL_({M zO9qc06;$i?pnt}WuVCEV!P0#nK7V(hX)e5d3)qbA&Db(Pd5=nrX8S#<2xQp&itZHr z_ZEK>B*pae#?!+|;KB4Q5?^6>$vWq!UzNBI#2kw&W|j zQ^2AlFp!SAU{u!j2i@N-@?Z1Q1M3lwYb{^*S-x-zDlhXbU$?rlRW&{}-TceNcfnUn zp-1g5-Irajm%2T4GgbX>_d7o^LmUJqDMz#%Lp}#pEG{w)>;Z!=uaDcNp#Fu6j;EUK zP7i>ui?#G+xn-f@3P|(yx%m{o;uY%e`#4q$U_Ik272hVL_sUkLA8US*5184yLJQEF zrD@d&gnT?Q06M$8EuUhwFDd-*&+!m!KA+l8Ht~L4L+^%KH|}7MYxO)A-FNL+Yrva{ z3vPPwPmaO$0}nqYj&rG7=szg-Ov+dl1;fV~%DyFA z)t_soQ=L7!*r%T9H+{=Gk7r}EcsslcPxrjW{wy`8JU)x#WTV{9O%K(imKTx{*V*zDo0K`>1ZV$d~0x+y^_cCGxiI4ir z(c$iD8F2P90+}0 zZ@Nn&k*^+=ImEUa`oHFU9p!$$ELA~XsWy3U3)x@ZB#zEaeSw2KmZzkEVt{co|G$8o zi~aux$bJ8%4F3y|^RRRLPe5L*Z5zAZiu$=_u*)&4t!y~ywHYC8T_7LW!ywH=O0lohxdeNmN_nRl~-VW6;+anuk$2!>uSjFVS99|M)A-VYRbrHkt< z^Jw8XkdkGTX_g!(Y0BEZMba1-v$#C{8nr)rD6_)X396^XwTJ=>tcdUdTNBixWfa*r z-~Z!C+G~SCPA02K&kWNT6^(-RnyNR4!Bbf$HGfR??Syo!zzuq#;uu!T-(K4x${DVk zk?`iir0#M<%7yOJjgJe|;vQIEx~D^X-E67pbzf{7L)KZ|e1-hh#n*!xTt6{BXgo+3 znQ<$XhgBx5Y6#BaPmc8lwT@ed9c&_ulS^iMBmem$mp8#N0VN3Jix;>L`g?GS7br~vIoel7vOxTv*RU3 zFr`k={&llltvBp1q$_Ta$`2ZIs3tBuM+krBbR0G&h|^o}YwqGy{*7;k_(D4QSWu=7_L4OO?!M7j!>AKX z5nlv1)-e<^2Ahp=fO#^PtX)BsSu$SmAj;FPxPe8+M2w-AC6L9BKn{UMk4^R%DA~uF0(})Mu|P& z&%@A8FFRY>P%5cTTgfqm9IulFq-V9(eA_Oj-)2wvlS7@RTEE%Do|-D;X1guqTne|W z8u>1qp6$B*g$#kLmc==%kSk`So0e@25)iAvc@=AGTFweDS^J7xw%WGe<9d4bQl{y# z*>)NispzI<@^VUUEp#Ob!zv=-&MNIbIVzw0eq^s0_Q{kt?OR07Qcn+{Y(-Fbe;zC< z(g@a-YWj@&f(FQUW)g0>CwZ#5r^Dd;Jzas^LIvS)!eLUlZ}MZnnUV}1SUiiT0Q z%W!TT*FMeeYs5eb3yH3v^hECL=qgGfv`{x$kE%0@t$fWEtdy`|H%}WC%|iMprM^zN z-LcgukFkThGSRP}AB@%zniC*i0d(@6Ezan<=>cl9d{KGjD+7f5_BoppkABVvoHu%` zT@q@Yf|S>w%<`FZ7P7=HN3xW%;UjMqQvL$j&z$F#lb(}{d-NgJabNt5PhNg~6|6$N-Za{K>O z2LXEW;P~HzT>=JEVAbq=2vG1#Pb8->z$cjmcP1WL2c8>m6FMAX&dA0fms=iGEY=~= z{IQB^nx@S$sJEpDOJiH49Xh)hw51jA!?vTu>>j)R6u{>4IvZr|r;jSlgn3|?0@Wdb)_jn!x zQu$c&c;tO{u*KgY>Xdb&WkZx%&^|h>T1|9(EKv74(C8}Lt!|w5@=Fz%L^rWX zlXT)hCy9U&|8OyYm;>8WiWQlT;5y*a5My*`J8&!zhdCE#8`Z@VmOIL`_38$}k{f}m z5#+DMo&teqG@g2ftYugp2QBre-9aUPmbJm5RA%cZ6mwqr=ZcZiAc4Ge4uI)VBJlIo zZ$z5UQq+=iSfun+w5XPBiFg?Fn^|Sm#)o!ULMgC7%FPTrO!aJnT13cW&^nwW3_uWC zh>`~qFxjM|?od=Cp~jol`HQ-skd?*ou)~-|{A(fLcfFfteU7Ax{t>?a42^Xs){lAw z*8n~1cfKql&;b5JI*IfLC6FjR>)%7T*x&=@lIH?4{#};iNF^_)8QfC%@+>cB43v87 zf;!#FIeM6Ig6)krrPR^VaPnaS0V-}XzyphK4nL6tfA6(n-R1O5s{&Ncf_JCRJTIBG zp-pfQQTQzWrxj7xY5`>M2D02M$xloC~qjZ`z~VZ>j_y-+*4E0-lweaWYLF zhZi$dQaiK)uQ`O%-b0k+)+}n*;0e$_#2I~ft@y@unxoilQN%Q9s19w|Q%+jFP?N29 z6RH#hVRUkp$#7+pYLmpMlgd1PI}*RJlmAU~b6F|0h_Ij1sN6)(K>n1F9VQm#K5NvA z-5h0#`ZOG$nzveT9?+c{BV3F$7Z!*G|FKu6u);y;O|N)yrkOJWigo>Lh6gTDeh@aS zz%FZY?L~TwewQ4*Dy#=-Gu|)IibZow{C5l=WbFKHl;02Py*uV~48Ql*e%vjm1Kg(f z`m9#43A%QVPo*Q2K#XjK<~yCwW-<;hK z2YwItLJWfS?O)?dh+Ds+nc+*iuvuQO$_mzx5m^{fhk;84lRvDl16cO-6w%MSUlQ4fIv-nNLnJDXW%p7LG5c zyzOesr-AFucRkqsMKIy6f^g>?8{msZk%zu z&a+T-j0x(MkM~ntEOU`ng%Mvt{5GYf4O=t(jU~~|i!&t++@FjDie~E}>)8>e4$h0| zqMIoyfmMRG;%JK(fQ6mw@mqv-XDlgC9rXvn7bPE_L*r^+Z9>|JGtM|VMg=+dgW4u( zyG&r&(RPba_pX?l0!8WL#|c8e+QxBrdQ8^#(%p~dtj7-Cs zFHUC#fgAfVaD{*;f1N_=q-$*ZtH*D1S0S zeBwz5tNxt!)DT;eHmO`wZok78A5y;K3h*CK--+*KiX~Su;7OoIbZ%QMCY>xe=ZY#E z9l)Tt$LroEeW_0x7OB5@v%?#YPXQNvQ2zdtG(%)B^fprAB)E{Ve&MFvRPTK>!@L@0d9dD*%S9aO;+_8eJ^>eAJ{MlSEPj-~4YvcR81;B!B&jXQ z$#0{=mVMXb@HUWb-J+VLUe^Mgm{bKFkYwQm?&Avh%Wx5`VIzq;`8cbpjnCW;*^x^& zv+3^H8I6J~I`A-xUz7`KnV)EpBrXbVu=i0Gd#2!O>s8UP)a z2Kx;Xg1mc+18EO6ef~3R-JoRiL%mlF8Iy|xexNXv@?%rgeZ%y((Sur7?sG%=nX`aH zRYyh%peY;V9MxmHK=9W*E8}AvX4oq2sgtoB#h@%u8Wk>Hq=(eMGmTdwFj$}i8Eb12Q-pg?}ShS}RJxC15uG2@vtIZ(|Bn7`Z zMaQcf&}~~aqbJOj0V@L$P)h=eXPj;KEO2d(m>y#hHdHtorqE)G;h4xxWK2kt&FCp0 z7*#yi*ouRs^r8d2I3G0wv+Avrlyz)?+JJHF*Mi!IdH^y@0tecfH|c&c7rMnp?|sQI zct4)IA*3uTy5rAE2=^P>;gbXWT}d zWAv@!WIT$UQ@0Yyhijn$dnepy&1)V&3}sJNir!&grmZpr7n!>&t&lYcqRT0?p1rMS z{o-@}kEMc4LXC5NUhi5ZgsGgT4)WU)gq})*&G>!kX(H1BEQHTfsm9QmpMkyH&3$Xw9+_Rq83{Ho#KxiuXLTV$fn zu)PJ1_k0F}V5Q{EoaXKiW4Uyg&-rj~-M+xI`hwv`9?$a=ZZpO#>wdFpBgps{6uhgd zSf11+NW-E~MzBtktM@UP!h!~n|L}1pmxNb7LObf(|7QtWMzT&pll7ws5ImcM3&1eB zE7sRS;zg(2O8;?4^UX}I);=}xBf}L5pXCH4%nFTbhMm&1@vs)tf!kD(R!^ylUnIK9 zlBW!QUiUmm3tp@9zVQa$;-t3t=3_qZq?e3-*+*Iyzm_e!8G9{);w%$Em0X{^yMK<# zUfHtfe{ppVQJMtWvM$@UZFbqV?do!u?Z0f>wr#V^wr$(5&$*L(-zcZKRt|DU>>Xd6 zUkjS24CSsccWr_LFguO99D5*3f(v$?Q0}U`OidL)-XPDfHZUC>rgctHjZdFnz~|lTFUbl8hUKe(@>hii|QoCC1vZz`w+B$g>cj)j2FieZ_Fw zEX^_;w^~*J3!A?P%OYF2o;z^D>kZR-AxO=!U}L*TbOfoVVuyD<7H!Mw(}7K)zz0b$ z{&9OaWplmXz&3q2>vT{oZQgBqZIyfHKtbB)4IL<)WeV^HwKy15KMp8V#d55#IYNhmOsX(eZgp*aHXWmm&W8JWLgO(4ChG%QD5H-Rm9fRKUDHkMQK*52 zkAa}v+hUE1xU6ku!U*KDAM*QmJ$z3<)cUCDrh^eL8fp$;l7lT1_yl88|2kK{A+<^l z1`W5g{kq_0z+)VwOSm8naoSS{!+AeG(Ljthg`wnaPP0gT0&}F;>-%0*)fwFasv`lowRPVA8ARqDGYIM6s82B3th)x*#N4Wc&HRcFT-^ zBU*XF|3-Y`Wa6hN+*WF)OcP*q?!~HL8=}NBlvOq66ge^opBZz4QFxv`QkK`wu|j z5zvF-(0}?TET#uzK8~Y9TtD>i;f*GNyjE<0i>^iyQ*fV6Us1!HPihNfnzo+5w#p_q zrCbbIn%L(WL=;9-!C^&2a~%s=&%9Pl7wH|RsBxFT;!x*yA6aq21@in)5UAcktxaRz zBfAhifR8I!fXjiVmUY#bLDC0)fq4}GYKm|Y-!@_tdbIFPlX6toi==>M=odabzqPET zP|q0?!9?@wEpeTu>oN-G1k6AtbCbx^9Z*<)IT&`@s%aeAX86J`DPu~=Rs!}oJFFzV!YnxBr zL{v#?4|UCidGd%Jr4H+Ht5Yljl}I<^J|lD^J1m0a^$+Xyi38i{5vuCPkD!W^<5 zVXO;Bat)tYrHg>>iK_h5Y!VvaEUyJE*KZNJ16*l20BTeF5PZaPG~{|lG~ce9SqSr* zXJ`ahZki|cK$E}z+?I#U+OqK5whceP@`qA(oP2Pr?@P7qUE(IwZ?SpcTEfZ|!(;zNv|sawG9tPgH40>oX}}oV8J$ z3}#y)`oye4Z{bN(VFGy);dd>!x0=Hc)Nxr2K}bUk8P!OG?CZE**Pz4#J%~d5zZ@aW zC?XbkbTKr4(Xk#vDc3&CgNmh=HKp3jM1G+eqD$Y3dpOM~=B_ee-CSrsEWo1`?5X|4 zf*B|s2s9Ley2}5KMPaKRd-BBckc=AR^SrE{2E-F5^_C~2;Rq97S4|>8;yV3ME8M`c zXlwDKtZ&E%P(%e2-X)i~8xUG0VRyj?ClT6z<8teD{(+c9LyJJ@@4~sb-N2ohHTI>S}@qRry1i^5hf}huRyxHHROLn%WLdLX3SQon)@k*tIM!7 ztMlh`#=Bhs?4Q|1eJ5@|-Y#s2QuQ3aFdD7Z39D*q z4l1p#dUk?4fqn+`aIWUbUK+jKcmr?EKf9-A7jI(ac*vgIiJKxhi*n}35)d&GzPx~ZhkrhJ zsZoC(eLti+VL=5D@8f!~!F|zg>e6z-xMtox2}krfo(|5S357nQIiaH5E~irqYNb6R zyY7k(_mny0Bog_rL@w029}V8GMUX@R@SF!PCsy8-73#;IaxLJFb1A~_*Mv9Tme8PG zvVTd_V@-|^iZiuM3#i|H(mZR??H=Ra=dOXM*EL&|yDv#Ex>ZNx)9Xlvh#V#FlBuZBc8>*ENt8(cJAy-`!C>rT(COMM{nVj6rOU zDw#bV$qC|{`)#!pXq_K7>gN>m*O};)YP!1~ zi(h)iJwV=GCP<_ol8T{)@0#~s1QI;72=*KPaq$WhvJj(zP@-?)1T2Zkh&=5kq=~GuI0<2 z&^v9mBJNS5)UIQ(P}o=+eDW_y8rBs2WWM}1_+WcE<#pFdIGcNoW(hiq6~x4Nm>sIL>c6diP)_U8U-I2X`PH$bDt4(?395T~S9n?@rPe(c_nRY~la|}0 ztG_^gAH-z#3OQo~KsuC$xLRGKm(pyDebKPw&mDO@nDc^K^_bYP!aqvasbeF_3wp%{ z$IGsz_DQAnFoVHW5o?Gl_aqvgw|R%1UsyGb6oS)mAPm=)l)B6nF#Z<1H{a|?cSwzs z{n%Gnr5XY<^>t>=K2(-C@V!=dn-x;=NZ#;$p~@kx_9Zw0;Dhx@YR-WLS*%YWH@_7I zRW%&(P+;S}tV+#y@w%*JHO7@0jRSX)XyaO6=X>xJR{%NTggV$bG&&uV5QK*^DwBbL zL$az~6eg&1R*4JRKHai#mIy7N!vT?!uC$$~pveW3nI?50P@5yH5ATN$j90Bon(v-S z{Q5YkcCO|GgfvI1;1;4A6+`J z3Jx_WSKvY`LtZvu8=2vGj$xaRc)iS;cVF*`yeAmXCGJvHvCLXyEve%|5a(F!5`ISC z(+~#dFQ3S)#DZ7CyD%9JpvJ)@h)ImW$cum@-C|||o{-k2Gy$$%t-I9;!*AMSVANsy zZ@fvEpvto2bz=j+ZRlx8Lm(J|ssYejNfiiNrAQHKKyad^iI4GGyoCeae0?e7~ zpQ|4+LQQ(<7^bbBD(&}&3@X;$5Yy2-7zb+qN%?XZ9CUd5L9JsLqv&h$J4$;T3)X|Z zt(vTtQX9743F1*HMc)RcyI?{gAai@Sixy$2o(CMR-Td;KP2C$yW{1&J{yI;ziD2$u zGF8-LnZV2aDzfnrhA_!dJpbitaUx8oG}QlcYnB`VH5x)sg)iz!2}06$c2Pi@6A;IN zf$3ks{;{u^C}CyIwq7=d!@MRWCEqfyZ}KN#*h9&nTETw#^tOb5rBGCUAnUpk?bYRO zfE~&n0Ws}g-4Ix_6bQm(DMF|D_NXhMUxuv$^}Zd+VqEk|jR+C-S(fuh(`kF8^L!oj z;V%iIpfb$V%Hff3%i6po7djFED~G7D@D=aYnAsIPHfwlFK#ABr_QR9`HLD zJOC0z{R81mo|+J6DHgn3@S{(R1nK*GN+1ZtrliRIyjg^gfHbF|y&*O}+=Y=ehZfy! zi#nJO-M_X32!>NSZjxk2d~N-=UdYAWBE34t-}%%6#_{*3$=Wx@#Ym=@&($IxVMX7H z<{`_=VWk6Fk}vNR-}m(S*n(L=Z2hk1o>k%Q4;Bnhku(EiLP6 zQ#VCIEUBAR4NX{2uu_EHbp3Q`qS8}HoP_Yb@-7t~4OVCm)GvD3M1|Z4JVMRE=*@!l zl8p=q22*3%Pb3(uHK(lr*S~QkK8|Vr5(H>VJX5i6fPptus_i$Rx+&6lkd@P{^-e*) zZMuoIo6w)?9ERDpXO%(jvFI^f1SS|)Co5_A$JotNcGAG@1^ZNr(2HV4G`38G>v9C# z5Rt}c^VO?IAiB$oJh8CPR~xq~lePF|^kqnQ2+6Q{)0#W%2Kmzie($O&acQabMPEOQph;1Edqp~^ zai;IB_w0hrW7mH8$wdJVNd5@gJSu4KR5VGz0;iw; zHhF56;>By$W+-VVCn#DQWXfh#R$*J_#@2KL`IQcfAugM2862ghH?H+JkAIL=>K~ZQ zvq7FuOSZh&pValQ0fmb_e8!Pxs-0%_I1C{jcfr_7KD*?mRX6gwJ3OW2_?&E#mw^kP zVLEO4x~ktXK(R8=VBUvEgQuF-T}R`#WsF;;mDP4@(m_VwN`p({#d%J!z(8Q8wdm58 zFc`C2?yva{tblryeNQzvpPQJvYjVrxlXhLVzE|bjb>wD&F8`VzV{XOTPd!J3o6+gX zvUugtK*r|GFs7EkCgA|l3@}kVrj>gUxGf%b3$j=bV9X?=QlQi`Gf1#}gB6G4? z0)l1&L8V&IpL>G=+1w_fCpF?BEE5~&ci=E33bJc~zw`CZwq#L1-t4TmuL;E=a(qXf z7BPbZG^j!c-e=hhu;YbA>iQ42+5EpQ@pjz0q^Lf0)^8^{q{#{i zyOMckfYRyG{^tUauTAL#Yo_<30GsvGnh;TB&;{GGZUg!1u=@l&q<+MK!+GSJKIKw{ z()le2`w)3?eFhRc1E%Ih7YUC*oB`#W6q{Gn)ij8^#m-s$pD1h6EVS#p>eFETaOunHaD_)2pFz}iV}M;EZqvv!Z)tkV>u2bkkAZe)>z z^IbqT)!Y7HYL8(#Bf;vyEp&cSvzxMwvG3uU*hJs*woIK$<@7cnUeUV54;)gXWVXO6 zy+6O+Hq$USBa2xEVO?G03nSZiMKgmM$^qO1arkj==pruc&bC)>3Eb=HO>9uGe6S9tA~mj|hEl#cs9qvz>@nIn2qw>G3{%PcnHMJ2_5XQ8;_Zq}@*R(y#^K z5`z~ndp5onfH{j+%E$g*k^5qRDitt6p^S zy-CI0lUsiZ%^JV^vFj{gUUP_S*#Dk}69PFu2mrlXl{EXJg>0l}ML6ZKhI@`Guu=$C zEW#gTt3fvlpw^c2BP6wvN#G~|ENs924{|jdYb|E8?T*i2u8%(r zWD_U6L;GK>ktgQ~j9~Cj?A||VyNc48i7jP)aeHZ9_tWE2j@XHhD^%G3Z_PhUvn0mA zProk)*6XfxDi)u*SD~v)Pvjf&^UTEGtD~!T5~-$n?9tJ-LAOs9H6Ofeqz^!g?0h$% z(FgzO`8e4>+Iq`zMjkavH+^rjOgAyYFmIxTb*YOgY*1bCXINsB?}ks2%Bfs`YQf3A zf!OzQ$)?|@qAO$(m!C6+Zb(FT^4QzxKC{86b0H|7J1ARP&0HsjTp%J*Z#{PVK4)>iMq^q)Ku%mUEt@^y?~$#EbkxaVHbY(z86mcQc-r8f+gUuu5gh;=v( z#+c_)Xl!xB7C~jLA2skSYlcH zE;BoHRrIT;7NHcld0oZ;Bo@`w8V(S8S*Qx%Gh8Tod*{|e zm<}@7zY_I~I}(lbkG~Ymr_y{N=4_`sSx|;=;$pMMG~o0s!L23Au-SMgqGex z$|(5n;;a|pA*9DZJ7*Qg+?XH-ubUe<^K$cVfV6F%9 z<4BAh@t9kEva+L2y{#ZV8OMiF7jd^#7ry8_RQROKYMBIy)*$@E$K-LLtPdpn7Tc&5 zDi0(QloJbv%kamURYTstgF;0b$=_f|0A`0K& zI(c4bimGe|4Xj1The79OI$oI|qQdrWV4x|pbVz4YbPu$=*w0z7J1?0BLFyx2l1@w@ z3D7V6Kt?4F+&x}c;(i52s$htIoQB0QY4)UiwneLR|AhNp1E6*I3|r9rUrbMPM-C*o zWsQKcJ3Q#3@7R5UCQ$@W44S&wFR;|HBg4)1E890qmS|kU^pFJR?2_D&czD<;_l_C)#m;sm=(nm0-%h{+=u2pwLe9$_c1=y|0VZ&*H?~p{{_Gl(-k1AO= z8rbZ_245~n#HI*%&1fkevC<(~&#w^Ljy7W|2R0Z&) zOTN~ROi|zuOpWTG4lXGl-I#rX)=0GN>1Wm^?j%~DiRESe~YZf5+ zeT<7}RSu$ETWsk_2Y7W$p&!7NMGuUI2lRT9sV0TMdYr2n*p5vbA-?zy&m{S3LW{s+ z!T=x9WPgUaF}0-h6Y9kS$~B;4sfuSc2t_U7f@$SstRg_yv^+Fu>gQ{0zK7geYkWLm z0}uiJ_jGU3MWr*uTK&f%XDXQ3p!QbII7Y-bJ#QngDvd8_u|BvAyVKWXd?T}yQYdA* zmXy(ZV*q|){37zE#~tjA2}+O)Vnjpb54Q(mI(ZK-Z+9F?-Mz0ifD{1uk>G}Ag6c#q z+fu*>Mco|sgb)gy)6j<-R5#+BE~J|nhw}dH^pD#grCW=w4Gbc??PeNvZodn=&~cKS z|9Nn^+S*uoodw#~+j84f{?)Rr3_j;xxP5c>98EU=bFSO%0hlVYnSp2Yn=$AzIM*Ci ziswJ7d7PT6WGr)hA_hdH+HHesX%7jHkShb8E$NlF4gyF`wjlUF!1Smf8S<25 z%-HY4MrcvID;BgI4qw-uQ}th4P?sh0(rBeZ`kSt@lE9&u1E82 z!{1E<6c8L+c)zT6LNR%_A9M92Xw1))&Z{$dq&X*C7$LIkI-xXm43v%FZ72En$-iIW z5s5tpKY9=kr9|M$9&g{H;IkU;O%gFfk1rt!YHwWU_cNejTo@_2yaMu%rXOHjfk>n# zbP!~W^@1u|)Ih;$K3N`S4j2J%sF~jYf&Z>4nAs8?2FL*{|EFWcMp?&hfeFp`MB^1Y zhJ1fGmGka5BrOPVCtExw_YZTZWtYU|wJt$6N*WC|WJ{gR2k@3Ft7&F|n>C?SQX?dE!O ztR~EAA#5uQqNe||S?p;I_LsyUvp4ag#cOM8zbkzVF{g=2`(sP9o@1hIZnu8$nfuX{ z`iD}M=zP||)Y8i$$`7PjR5skC<`a$mz7MjyHKJZ(_AU1t8jRV*NB{G4-!IKWN`B!C z9XOo>H-~!<2A`li`$>GpHC0=<7%A6ZDIf$C5icqi1=yow8-y2%wL4#+Tu9S||NVlj ztf_Mn|0Z%S=KsBEs@C3c+z?0c*{L-=>IbfzoZGZ_T3Svan{dFJaG+AF86Skgi?5UP z0~TD{tlhaj!`4SrG`plvg$>Ms^*>`RRp4NI{X+zS_Z=?u&oWGCq$5OwW%7pnDb2iC zd)hrzWBIF@L*{Ak!+{jxz!#T5ZVBLS%lSl>;{SYjpW5B`1jGp|QqIaacI;-=#Zg?>pmmTR6xX4!2)WIB`<>_55Z}c0lGis7o5@ zOFxz*-U}Z*NpcL?)ifnysgdh_!u1f%tiOM{q~eJS$)f6^iUD|GZM;oc zF4^8Dj%P|P>xXI~UT*jDj~(P?xdu;?FU$=U zzWtk&*jz5l!J6C}oBqdS&T?Z}?2G^r?$*rBB`}(oyB2doO+#I!!63s}UA;vM5f%SU zZQ5$X`E>qlvYUlHKctJsCEZcBAV|QMhtpC0xsZil88e)CRmM;{jkbxek}tFYa_t zt~X=OqP!-shf7P_cn0T|lqikvELQ7_gk5NUbUszqwMHxHY%MyN-$f#zmvs^-7f}C} zctMbYGnWn7G1*`pOAq?-Wcs!}DM^3EV8OF{WZFkULgMc1e%h7s6^o@bHduT-tB)i| zRri=Vu`6gX9DO4MO_BG~(reM(^Ev0nD(uwXLA_9E|9XPdaR$I`1LeM%SVnlUHvb^t z8pXVT5XnBQdi7_kq+9Oxvr$e5Wt!Vd^)r^7nN6b&z7cOE?qW(aqkmLuXB5BrO)Ej? zeCJD(bh6pYk@A9A;&|w=24PlFRu*(+f8;E@4ARBQpB)c|IPSg331)YGK>aNe`n@gz z?44I*hN~UyAIPO z_8_j6jPQrKw4+Da2LsWdjbn*UYZD}abUV-bHreCxoqll|e@$gj8crh59J zM3-n`T_M$-$KVy(>kWxyGe=a=@<&~))r#&3GT;I_R1BcEWzP@~|0hh36xvw;_uQhp zsx#eYB1JaahIx@Vr|oglE_Ic%uwk$gBIZ+-VX`YXt=KSpva50jj@*!87be9mACELa z&pHQWJ2uKrj$IEMYGZ*o2yFwBET6Sx!LR7VM*#>YjJ5xzKi#Cevc1IMk|KZ)Ag=^8 zG#s4-Z3xKqQD>D>v?9R(=E@%Cq+JNwrz5}_m>6w%!e1SJx=yD#PqZUm+?+fGKOxK~=cQ zM}RjKTUl1ehmqN5;PjjrnYLaMraPsqK@+tpX$9=g>e!nQ;ML6zQ*sI(fnbyp;CI`t zfRDs#@zo;ZF0g~3l|4Se1O=Xu^}fo>0%EQI;A3LAO3llkZ`x41uetGr``OKfBCV#1 z7Afq}n{gwURLy^jrJ-1XHl`Uu%n%PL0m+cbJZyqiIibipi4{mYamsQ?Ul_NLqUOIO zya7hE_<9LDY>1?tTA0wasMYeoj40uv2Ax{*sepso`iSXVp=1nCD;pjHu-=grO7foz zK7)K45|INap7XeX>csf!og_>gnyk9}VhY~|&V6k_5Y#(jwe4{VAZxv}0$2r8Zs!!y zE?r{h=@Q3O_~l(CDY-^Q2i`RO^-(0rxB(vpd8H_)>T5t+pe)@!?VRNk(enOW`m4vc z40-Ubty(7G(hB@d^j^D2yfO?iF%c28B`(6Vm4tgDZq)V-)OC4~C)eO#7 zZ`fRkLv&zKteSX|`T9(P3E6$rEA4)H*q~>!%V5Z_>A_cKPesMJ(u=bZDyNWqO@Q~H zlEXMnKs1{FXfP{SW*`Zb!gH2mR9ctK=ZBFvIHGqGD;i|($Ts$Ago_bh;%ArK2=Re; z^EuA!X^-7xj-4eUL+l}}yuCkI$9AXS(BIRn5$X!Rr}@v7`Lf{j*A({Z-^Mu-=5fFq zA(Lox<-Kqt;G2GmTv)boH%8RAO#q&;xb0N6xm6^HSs)(m)n!(2xU3`wmi!uO^@r(h zC4nKwVNphh%TL`|vQ<|*zwA*9l)tbGqP$atS{Mm5#G*GeZKR%d@%rSXZO7@K-iwOm zh9v*S4cs{JDW7J(4ieZNg6u*-`??gY1kU5AO=Dk>HmoF49m&A&sw1i}YyiQiN#P)5 zG;1RSx+M)xBamB?6G%qj+vW!7(F6TaAU5ZRpYdwH)MgV*FGOxTOt8sEWB)Ye1PnC_#9Xn@6fFcbw40tq%V z2iFS!2%D!^0FuMiI^>&78TfgvB<0}38%;S0jTJ<$D=PV^JI-4)g! zb;NmXST+_>$N>6F3oodV`WqWT^;#Jk9%L^vuW#>(>1G(5{$nt@7E@f>*lHztrEwW&GgqLp=LRVBvO0N{uL$UcdXuS7l; zk|}RuOdJ?o7BU<}GILn^xd>yZh{l{`jq%f)+2N3RVxiCpr2kE*=SN2wDU5X4AOs_w zl@mtWlulzUz6lr+stK7eHeQn@d+z*%Rb{i!t8Kp;P5xF&5=cIsoR47mK}~BF z9)LtB?Iic`RPG=tS((#jr6)KVMCU4ly=)+>?}#VsocoJFY~L|Y9Tsk!>A5|Z6^tpJ zh^Wa^Og+3=rR^oyWTj!}RiusBNj0UFMcywavZ`uqn9B2x0tkAJy8c&9XLXXAepdEd zS!1Vz!s6ZS=I<{zZ768$DdMC~0!biRmdp*$qZL8DV}AWU^{5h&)i83`TMOgV7H%pq z$`%^wjqlQ#R&G;Wu$3Of55%6z5_+EtK}d_+(gzgZqqYhob~@9%WUGbQyjbpUCqx8V z+H-eUnQA=zCcvUU?&1aNY!b`Hyx&LC9>NW#vd>>ySwLX9>t6=Z(u^3S+N)!cmZ!4y>Re7AZv z+lFkMe)uOY$s&qcex7~aB&EM&H9qqiN+^a%ktiX-g6E^`iZ};GO=0Rzcg7Wa{>FWf zP}JaA$#6CuHSNT-c9=ZsL++;~~r zzt7As|79qE+)hf`t7#1i{*^eu{My#ud4(20KJjj?1AfSfzZ;*N`m$aEzFKi7Ap9(K z$76X$)vHPHG8#YYl=)qOQQ5uAOH>^Qe7e%g*cEZc4a;qm*%#-53wg&dBm@m=OV2;u z;Rca9)tg&0u8%-*m%2V-!?bXjW0&h79ePZSQJ0r8f5`15uPvMtBN&=|BZ^W(7n z?nEGd(*t9*A>gG%m4;>jKA_ux_Dqk=d~nvY%r-^YYpEFroj<9a4fVUykX=G8IMu$dYDP6Hq>dgl&#SPCrc{HO#oCv zli8J%wR_h8ia`%ror2lDE*8Rv-nhJOXZ#~9?Wrw?^FDwh;X_ZhScSd6L{fh%YB#>$nf0$2ZLTtOtk-t5Ywoz=JSNp zVrM-aAmN8~TtMV6Sk_kS{`EbLb|CF>`+_YC$V(pivJ8q5svj|MIyKE{MB__2lzkUq z<3V~+!!f6%52H?x<`wdyuZh1JTO;L!((Xx_SHhzR>#(iMLV<`CnPb#`Qn4 zj_v>8Ba8nd>p1@->tS?&lXC7<@gm2$%b;X$gC2E(j^P3gazi(Dn7Ba`~D%}$z=wb@T zrnW?_ki}7pMYG5f0hwzz{bO@1KW3#8+{!{e5*qlrM|wMlur*!R=jGA?B~4e4v6&o+ zk~s0jkIpzXMU}k0YraM4e-%xPD9+NA#Ak*~NDx>#&X-g(i0mdjm3p%X%Bc_-f@#V6 zle5=`2Qa>$18?ye&V9{%j($p%i~DEq0~jb?IprGiYRr3{0ou1u;|2oYG)ZTr)V3~Z z5G!Imf9)_+a0w?`W-v`N-AwfymgZd_NMCGNFu0c!N$Ik~U%xK2A}w#bIy?3T8gkZ3 z_V2r^=~8Mx&CGS2h-Sz`>y571SNXi%y@adO!VCL{ncmCxCQM00Ll*}PoFsJndPVysSCzJBj@BACp5XG#c)OvNp*{*wnQIlbeend2v6MO z%UNC{R>44W85VZGIeTqlw-RGiE5y)j8IxrPW&biQpBv_piBqB4`6+YQm}gp|L6~f? z!E7hUC9=J?1`1jQL~j3rU*6owfq!Cb+j%oqTFxf?1WY4R2nJz;l0*h%wjX)ALejW+ zeB8on-_@u7vh$*Q=WFe|1jkMtH&tVM_A0`9`IgafIg}g^5{hi7hM91yEMc(TxKC=k z886-n2gfEKFez_6E6+ZOCC`t6@Tsew!Y6~#F5?p77@Tl*5=722i}l z3G|nia33J#hXS=XPbv?q%LXI}%&f0$yrcaGOU?D@ROzZXzR1UKcW zrGunm5n17%b>UqbyUlwsMKH@*vN@w{dyZ{Sr{Ko&?B4Cr_^>oo=VXHn z!NJs5J)JcPxfOmQwLy<>aqJjx_A62MffWvKpyS-@7&&IWT|gEKbzmfz_M8Gc0W9$i zO>B1mZoAq|QG8pPLxSokyPGp@M&Op)cK@-#6qy|SN zGC{81J@GX)vU_^3bM`mrd`E%23t(fx2~Ms<64!xGu}4A4;v5ubn%$>U2p`A~W$U<} zSRCRH(%$gJPh)5jQzKD~fqy_QR8uB8KBnvLARK* zw3KZMe*r?jbf?G%H~hXh<#{>(D{pH&Hs^$P-+qOS;F<4MVZDVxy7r_wMZdhzKBR5? z!LzMZc&YP=q{C(Kr0Y7ho$z&9D?pgKp0T?C0T@RVYNDVLNBB67m``Jo8-phN7qS8_ zwuP8UMBFDU4&N`jMrQxNB!I@^xnA!#7I1DceY(@)o>d(f58Qfv7lsr*e1ow|C_-HS z)xlFk8-!t4Xry)t{X-v)ozq|N{ZnM{#Lpcs;0C{Q+DU1qLwf=j@@)^D>2}yHzS_-; zk-ac7#OZMVpz5L)^y>4{8;J*^-33`&%;(kYQo6>@RAYERI@3uR6$7GBX`GRkS%k1o zkPxg+R`OmOC|ERR>>r=(fJ7x0Fu46=%0cb^Tg-}125l?jFU zj-T67k__=f0!Jv=D1hTdL*sC3R%IOq=1Q4R0M-MRhzSm^&nHzZH1{FpB?POtTx2S@ zw}6O?T{c5C%E7g znoFt=!QnFt95n`#E^MsVftSupN%RlaESEAvfqtu$29g?WQ~-R4;@)F#;?OZ%hMgxh z=F6xcIJxtBf1Yc+&Gy&yXXOq`2@#&XT9*7|oPGdp7S-+0EnJ8IOq4GgKgz@Mln76) z#x~@qGij>pY6yM^TG#_#MSIbT$&DYeZiHm;$tq%N-3)qeK;uNCo32^sRghO&7*h&q ziv|qZMUm6H3Sc(oR!AcP!Z0S?3$8gjx@v( z=o=G(@7)yl0mbjTEc=!q4uPr64jhUeG+nL|Zi^{ai#UjYjxE&0oA}j4L>XuZ+II*k z_0iVkD?r*S0TiA488(&em<^fueMy>1LC-7jk0kVd%<~dXOp1 zJ*({%GHP)7s!EzPgqDm8u9gh^A1xUBTO%|IajIDDgty=_V(A8Q9vv7t_m=Oj< zC*|oEKA16USQ}?s3sEO_>IzG=ZQBVD1{`)Dik&~W8*ZJqz$KR^Q*3G@0iBNGZKeY5 zCjbdgT*xl8UZuh1)B0xGWP15-2AU(CxJ-(wm5Nok823p01b$eU&Mf#;qopD!`)O2T zR3pC#5Mc!2pe9wHv4xK}Dw`IeDihn>vlUcN_iRKb69x~Q?ir6McDBI~@{5Ek%swqY zgML|Oo|_d;lMQ|a{^&{;*tpLW)ip(?6rdF+2SglfqgxXr)sw`4F8*~iwJ0jI!+UG9 zjc^VrQ#plkjW;gh2!z$3dlbV{UQmOXv@5+HMQzRxE)lpQWHh@R>06tSicNrw7z)`d zQq$p7Ch(W_cWbcs{AcRY#SA{*utf>JRbkTXSu9)E&of;Bduy+r%%SM0ix=hiJD}|c zFMZ$Meiw)QQ#ZA@g6-&2O(?szacd8WWUc89E+ryUQkt(NK|f>KPL8Mi5P`eJNyjRG zGbQ6w)_a>-+L_dT1KQ0}?^nu03;y*(itudWr`#>opl+95t1YTC? zv2U2-#>GfY=wWp3CF-ohsB_&X1awu(CNWkofbELzmL_OPZIbm_=ycf33W#0av-4^M zu81Y(xX_{}Lt(T;_~{m+L(NCCQ|s1CN;#bD-XJdl72AWI?P$#`6q|3-KO5-}^>kQy zw@nrK!R!LK>2K|DJxD1K{%Rae#-cNBq&k(5l&V5lwdoNEr0~uG^@FPhrDm$#}>K zo*m~FHHzVQRCn2_%fZrz)tIjQlsaUZSe?B{y4Y>}OBNED88}07kgW=ub}=XQJjeOt z$kPOqaKeag9fc^3`ouSX`U3n3i-A^yB#_rh3-DrD>=cn^7e$m z9}e4(S9d*%7-`*mv=U@nR`zEM;f}PalyyVjmohDOuYmb#B-T`RU3Ed-n?vhEGuzJ{ z)VyGGjpKf{b9I&UFP>l2orHOH8TI^FKnvri;5N$fRw8K;fE$UP?-w}&8=lgP*Z*puot<6)?-R! zpm9l3=?+J6%H>RUa3!6+-yNZe0J&GP5CMK>W8)^%^6Wzyi&vf9#}n#8i2 z%nHZr?<;4D>S%dvUOBuk?q*)&9_Hw6#f=5kGOEhFf`!xUKLj7-aEcCiJ_B0o^QhuE zA@4S1`T~-2+Ji&(Rx2KR zPk(0iq{qlsc2E^jAi`EJljF?9Go!6D~N_=Tl;F=Rs+`Q6H*6vUR6(HVy2 zoMT7;VPhG=g2#zbq#|xgVvz*mA9LiCZN z`;DzwMimb7)lnMo)a*SA%oYn7=C`Sz5CEM{@+;NA>rR#j8?Tj1O4ce3u92Mak8wMG zIW~aJ6H_(0I$k%`A|JoS$kS@S;V;f}xGlfycGcI}p_u`8jYC<%T{L>eplO|=zo{3Y zLf~NKFf1jrBJq`j7uaq_L@ya+ifEz?s!yWxnRr$N;)d^xrqF4+6@Q+VyOp; zc3no~p9WG}OrPb<)}A*K6-&W(WL6G^i-n2RnWr1tssoWix|alur%ct(dQ zYNJSXHg#G&1k-#Qt?LoCicy=R7aU0{@!mbX#2*1^Q|`HfOXj^=$WYMLM8>xMK0Zf9 z6gi62J#_bDld0wv{$=i%`sv!MoueP1yA(y)m5E}R1wkpWSiO@gso)gN!v(W3ygdL! zT{P~E+YRN9re~vwz6Az;3K?$i@Dsr%Od5&-HTMJ*QbVWM7e}y!CJ+LgPvS%v`a?oY zzJS3FqBIA`f)i!#{krSn4E2>T71;gr=rkqBbMe;m?k_7aG`Xt)s`TIiLT~$i4h4Ei z8RX8Lxp1CM;)fCNY)x;Y>T(|64QGHnrXn5?cgwCD+r$h^PO2|XH7olsTt!kw0_{Ai zXX%nCCWc+i!jd;r!6%Hy1jZjx#knVz;sw+i$Fq6_P2#OgsD9(N$SI^aT(738rnEsM z#1NFv{sAV}ib~dxOED0x7x$ph{Oum7_E#8%;%9j(Ui|ljy}(Rg`fIRqkYfN~w89Dg z)vTxp|HiM-Z_{V+0%b~O7QGK`el=+c`n}Fu2o+g@x!%c~^QRe(KJaQB9~*&-YEl-4 zNUvKn7=1WN>!$RSsVox|Iw~(d(ajoz0)EbRuhF`KB zmZ(Pl+mg1@a}pw_N{TyK;}<}U)yjlyKs`HGl{ocDclUj>38Eg(3?XZuo5z4oei8#@ zM1n3Ko>+4&MGH-7+NItfCHrgUqoW40Z=F9xcvbWSACF+P0Ik&e(Ky!oa%fG_c(B$; zBN78<0j=Se*bf5G>&{7drKPlU1IfL&7>#*8q`K=(W>X$o)E{-Wzuf_!aIH80qzopT zg;H3yb&}Ygr`%zcS9kY)*akn(xfiA|Bx}YEb(J)y+6|2O5k!GipbTz(W#l_4FSKw) z6p)_smNn#*AwtY>`Cjq677dpqS&e08p|B1HK|wH>6xeF*`E6;u$U;ifrdS_?Lp z?##_Uo#+VDtxn<-+6~AC8xGpIslw{%O&SS;s@kA3$+$F?J%IPNYfQBwjru*&mz%+Bi+=& zM7A@;d;0si%mbjrt12s9wN(l4CwG#0*`?G+#o#SIJ|1>Xv}_k8r5nJV2-z;k%@n8#2+peM2^yD#ym^{YKf^;Ps6 zNz2OTT8>th|LQzKC37H=#F*fr5riU6*|sHI-(1;yN6a8xuu2Iho&YTQda+*wn$SJjj6`A!XVqRGcX4Slue&%)B7gJ2P0q z9J)K0(V7oAC=hIUWj<$(&yD)y+W~|T`crSf8uw}KB&spm2#kND%|H}EkW4d5Ok5W8 zaIuBbGtO|{5}OjYCtlavfjxb-T*?QtKgg|yzrz833|%{duS-udT5(RdCX z5KVF)VUw5oH303}!@^MC4=-77u;QXgln~w~7w^GF%ECG+#tJJ8)UawuWd#QA2LvTT zhk^OSq((S-GK!Z3!J81yd9>+a$~Smd7<610J}ZMFt0CkWHrWqBB^&CL><%1Jxp?e# z*#fY_v?<+V<6N3}kxHJz6EbDzWZ=UAslRDtDR+gBPfje6^|cN5uk!VZE8+IFE_|5zS2` z%~M$kQ!$&H475edP^vUX_6v(?#I$}p=EH@alsyaRzRJoDkoSP82GkKp*(omruKHkH zvqKZRz)i%E>wbZC2J*5v`)X8B=CNhi=a!QO-d)EFLO5&qQ4>=mBBu|q`XXVV1ux<4 zVpMR5lNgukr|C{Q zv~Y<@5r57kQ|ucLo70!>r49{*XT6w|AXY%mw)KC^9Bq5HI~=WS^Qtjli>Wn<{tkB$ zjzYvt2W>;LVur=kqd2W<8Pp9Tz*b#ToI|?QXB0kbLUIef7<4n4gsL_G%)VhAiMtls zqMv>ZRJ^!=8t_beipIlB%r4%3E}1gN1mDG#@ViPk!RH(D3Hne4=*3azh8S`TB!l>K zv*A41L-Zm85RbzSHP+w*+|oFX^jDbrZ=5)|<%Z7TPzV}Tv zuu_Xz4xo)g>*}XD!y=UbxxkfcT0)X^+1K$K}@iaXLO`hbf2)(EF`>Kai6ld5Ihk5Jaw1f^L{?Pm`-}$9G z4IL6ZD6{$W;AYj2EDtVEF%BPn`FVL%y7yI2NN+$n!|Qy=!%LVCa6i1;bDynaG-ST% zo-zLt=m~aaz5lGu=Dr3%l8tzxdZ@qXpB=+{gose0U}gvb9ZHpj%)@_U?|8fkxxbDG z`;ru=+K}uIkIXOyz87o+Xyh)W>3m+H3_&wK=hRjPXv1FihIUNTsmA2*a%HdF3(;a! zWD~IE3PL@;Zq}-?UJ?z0Jl@nR^f%CjIK+(E{+`@6`&T!^Y=0R?29hNZ1p0;QxX=sn zkv`l12^3`BuD<+_d;{f5Hcq1iuyJtz9|P<^D7?%6K;a7&ah;Dt_F_pAGqd9kxIN@^ zb8J7dI#<4gR2xP@$S{+f_dlMtM}k_+RO7PZ#zcEiNg8Ia1-j=hr{t!&KO?niEh`)8 zo10A_5&H-JUcLJI@%X&0OtV_V&NokGXDY>9WTs62!*pCa-`$*A^-cbDz0m%sIS#=T_-^FmZI9G$H3`(TUkn*49BKH;T~y zUAw#C|E9{99vLGrsv$Op4%!9?5eBz zRq3-0;MB~SnpA!&v#z`~PhRzl)UUg$sH{2j!iFd8e9l_YX4>q5|J7YZyQ;t5d#{TT zMpJCz!aXRq$fGjQaAWo2? zZ`KJV=eISjC0|R|9q7BY^*R<0c6pJNbjcF|?3P^`VV-wbMJ+tNsNEGC&&^M^-r^e1 z5Ecq?p$EX~Jd{_?W>sU1-nv@Oo-LWdP9@RHxnV|DugS(r!q%~Zm@zRggiQQKVeZ;# zow8W`8?q-`q2F_Eq^%!5+N?D|h3huhwSvZqW-iQWQ0FH2OF#9+LAbaM zut@+}4>EsI7JkiI&wK8yuAO3Rgr~o&YU^S6;>7|03;YeJ7xahxIU_va)oS=#f|=2b zyU3$auE=6>#b9jDzTPv!x!q>NhxX(t2(Fw*iZ>oqlf}gP{8Jpv&}_zKh@DEmP0vH>m#k~PgK>7nUnwcenQ z{ys02qab6uh3RX{#hPJJ@ccl> zEu1WoZeVN72y)YPMt~Q^UO~gRs=ny4=!{8^Yy4nZ9*-rM+}%BTaI^OrKN~O5@ZiM< ztq#8UHi5|xPDizH>W&hwFsQyp=v4Et@8W;qZ!oNoZU~yuFh7iJIQ-&>i$ts-@&Mxm zHR(Mh0(67lW7726?4EPxb=5xv7-@&!&qa&|PMub~?lYKJ@rw)(gr?_9^%~C=*4NeCjYZZ=!Jy3XngcjL5 zp00{R(;6mJ2LV?dGRKA_Jj@ULYD1QFS37$c(vp>uCz;8gQV<6{_%n^DMXh0xg^Ds-Wbjuf9rRPmBhePUH}*zzC2KrQST`5vp?9P}dk+ z7>6o|huX)5#FbcgG$RQ;nX;Tins2v{kA6H)xY>p!1bl&D%mC+RFxV)*TmoV^=A9PF zJn5}G?d%TkF$3u3`z+Z2A!a77FDLa@b>vwU-ey;R#BX4yZf-RwtOcATUwEZ*CUW6`2Fn9z6@ zJLdyBT5qlvBBm)D9B+kKAdxq70&Z~b$~F}Jxc)jR=Fs(W z+4+<}IP%jnoSYf}G2gn_IzLtWmEZ}4W-DN6w>(g#lz!0~WyJ5x5lu!6@Dd_OnwE|_ zbwI`2>9N#jgOceQRDntO1~U6pQ0w+Kq-#)x!ySoj4du4t`3d* zM+~8-!^Ts@fqg(MHej#QgGPWM(_FjZ``H8fb8cSf-;wLJ*u{hov($62`-49o&b8zM z3#`6qwtfmw^$42E)%r+ry=O&oKlh7>fAA>XSWO5Y&mCs_yG=*btdXBl37oKq$93ZY zpbR81a0}%2#LR_2-(5NM=(q@kwNltz(GxTQTf1Lc9OlAn$mn;_@FE-~2@h3N+T-2I zas{`1I%(z@s78Y7N5@g6HPxs(Nyr*HK{gY<1K$Ur#tI?E(U{ZvV5G^!?a42L?x_z2 z{iTHSZVd69Oa4pG`y3*OA|V@s%IPn*)H^xR-r)s3iTCQe`U~sjG3~_gmLgNc7&?yI z6Gu43OLz-_o$XIRiV7tlvQM<PpnA=tAq7QYkOTpA_V>5d`67L)LGmUTWmovvc6eQU0_fB$ zO=Q;fLx$BV$2rI!-K1A?X8L%jh%4Ej)U8$Cc*UW`WTC_9kEtxKY-I(yyxh?V>X zMRx8q=lC^4C!r-2=d|}oHt_-)|M-Q^!HLGN6^uIi`-*)hkdHA=!zZ~TW8qWTf>4vf zR6V3_iY{^_7wZuJ{RYNMcbW@)JW&Ii|1z_OG~jAiMysDSpW`6y=ds+0#Y_QIzA?_r z|5!3yv$(_YpBPuHx*xsRO%GHRd{Nkwtg#O4;rZD0WP9ns)gE~{GG|pnXr*J~ z-a!Vnz6q0J{T&{EbQCOqeoqg`sA+EFdq=F;nDh}k)%~R(ZA7TpTTCV{<{MpXV|KoD z%A=n#th;?O!8)*AIDt>*AK2^z9cYZhy|;-|#E>%CLK;?~6vrj4SkLb|oG8 zt-<@PU7cW}i0Jxm{G}P2(|*z9VDa@sfg;GA~{7i5K z14@*Xxf6p?xS^I$T@ENfoeE8t8Nt5V?p%xgdgx^54I+?%v!~!a)MXjvNQQFE=?Cx( zlS5BCsKBF+zOZ`}Lfa_x5l*0R-Nu)!fL{hz?D!$l`NJ8FdRu<8rs5H0Naq_veewPe z1$~mdMV`G9_lKiTsQE?&|Lrr}WTyZ3b5t}a0WUvAYfL8KVEqpOg&oXP+Fixy8O2Q= zQFciE?dGZ0R&v1V+fkpLx(=hHBQw&USZ!V?Va*{5D8WBsX5I;xE4{?UUIFbR%`hM- z;Gx#z{-t?hg9mzk?r(7FTWWgBUQ^r_5iT^`rzY?$Onf- ziV>bKrt*;t7mWJYrfSQC5(c1<0PY@etN+Q5Z-r_+#`76O5M<2AR~p~ zE~IAxK`WnM?U*T-WY)-W=fZ>%UiqFzN!)UodAbEI5l zk)f8Ar|=VCj2?N1A6c}$AOS=XzXtA6$w910@kYPfVU(CBV6({ZagQXw^`$f{&kLHd zXft1yR)=ec@Lpesl!tQZ&PxUQBPckJ6~@jlPB?(K!43dJl$6nd(#TC6o>gV+TnH?8WE5duevVt@7fxkCoJ~EyzrbH^!~wd`ayEJT7LA=tht1F|8a_VVbVFd zIh#UrU4Gg3l77Hc_^Ga>jhu+`y3s?x=s;~wEpgd2MiUNvi|_x$rWXd<{L_pW>Bc!Y z|7r=?{}2D7RQsP|@M%S}deoGa*l;mF98x z_w#5Z5nop;YDu1e+0qZ#>*M**-s>ro;aWY;OhVJH&%%U^zsq+c5LM($B6y5H-l7&LR?M6Bcz@=7=O1; zH!arYzzQ=L&y~;ap+CP1lp)vH*{e63*_z+$sGG9RD};r0n2dt@apc_U&_ktLAl1O- z<<$M>f+~N--!Pm>9`J)T)|29H(Fy%80+nvIdb8z9=qSXUpz6%gqd;krWI#8SnHOe$jYDKBI0OK@xcx@pQ_f(atj&bC()0n zZR6j1kXXWBZR&#c0HP+cm|0!m1RtHl@aw@E+~}tD;-WJ>#|Ix4D*OY5&oGc{`Etzt zdy4iS>s(>72PsLqnzwc`^ylp^wMm^x>rw7eS4LoA6U)yd|AdC-%fV%1-z`{uW&Rk` znV_fa*dhl#4vn_uoCju4{;-Jp6LC-9%|EYu7Ijtns6W084GLlVd5`wk~9>!M`~S883`Hb`&yFR=t$d#XUb8Qw=+O zkFj!7uwI$5P!iocqty*+f=2*jB4xQy)1i^xf_T2Kf`YiTP2=r-v=B!KyQt-tQ4>;Y z)r}qsV3COctz)c3=QF9@6rjg7WE#iYB@n4M?)ykooNhnFmN2}Ek63ni((OnYR8vH5 zFm$J0Pq-LfDPDcL448|3B>%wkK*pu^D1x82Ru2Y^6R{$61BQf-P?w>hY3fR478$Yl z$^4DspN5`q z3gN4>j_EuA6#9Auihe1vuQ``xOrq*`Ag~_s8Xm?<1`R?qvv941?b&A`)D$q-y~n#D zF|z_t9w?5wa#un<+v^c~pt@$!4P~n*R=K%nR%ZBiLH+?%5P#}I7eB1Lm-FpapJ8)N zzkv>}@Wml2WIC!C7fy~#3P)%3j%`RED5V#Klgv0fmKY9rgpvHP3n%pE4nN;SjU1|_ ziz#YAfwIE9xLlc6#aI2u3yKeZ^UlO%uh9dvaa-M+Gmq6&Y;9q-TEbFyxj)#^(|1o9 zcd-l`t0#uZx2k8W3!ZpLvPPLypwgM0_6?Tx-x(^L8$!Q9&cR!i#_xaeQ`$pv4Gm4H zjF>j7&uhC8>me52x8{o2TdqCoNUdAYn%VA6PZWTcNRli%^olkmYX&R)p+z3=K16~YPAHC8;1XOW_ zVsLNc-;Ua+kOBL`Yjse$a;p=;tIZRf9o848d6u5K4yPp=c)R?8*^KgIUh|tKsCQad zn;QqEgzmAlZL&r9mE7G8t-wp#L!C}7Cc<7Rf>>lZh|5ZfVvGf3bW6xz(6Rt4WKqhB zmSYtv{Gd9tiJB&_BU@_ylyPJ(plYZbS(F*jU~k^l&XSf{1s} zr6^>G%+R zc8mkN&T;q}W!Qf~7J@gby*EG>J88SooQ<+tN=hO}rfO5r@j3$)xXz?yFpLd{tK6Fh zNsGDo0@tp+hAS(N|JaYiH+A*z>oWPVB#re)bdurza>{$jo9M4%Fv)(Y3j?(*raV15 z%JrW_P{fVqFB~VeP=y#em$EgvP4|+>S`^fVE(_lK^!!;_)OT+A>RteONy|B()4^RZ zQ3+G46gFB`PY@T+F8#3JBM|>SPZ+}1$^m?y+#NF5FB}hd=%CS`2D4H%9&+rGqC1h3K>XixuNbs^3eQ#Lch#yA)4V7&;(aO9fA_}j zoRg73n?w#Ad83(B(cLXFp0W#+fHCjT`JMTC=HC_vF57PemhZlS=_=JhgC)Ksgai={ zzVmMsAbbJW2Y6(iC^WKMSp155jVHqqG41&0_>$!_6V#kOzr_G^>#!Z|lrQkT;UBS~ zY+L9z@R&Wsi7y;pf@!D07yn3gjo{<19>EShQDm^+19{Z7=2K5a6PjjpTD|oDa+rPR zd#Ke8XALD^GLEbh=~r%875{=Y80~dy6Sf2>8K2SRG68z)c4@yB9ZszS*^sgGr93^V zTXUg#nHjXw?m+;&H+N_^o=ri&H!DGc1Tb-f97(wcURS}09!lUlT74k&#wN-T+@{@R zbAtf;V#Y*|$O}Ioge2#9)$X}bDH>1!n?=KzkarrP<+_U2HVB-avR9h1pg zdPbSsCsR*JDbb&cIQ5+OJUxNOD)oW?zZc~Iu?MAR3Saz@=P8u3?cp8KXO0gZ^817l11-0NyB!Xvb_jMCZuw&vSB{**^KIZf zpT;|^FW6Dfp7AY^6uwx<3j!5?hOrLB%E342175{?-9>@+rjxq?Z#9V+@a zO4B|QCM$ZlaxXNIf3P_p0552WdCl0W3=j9t%lYow=% zv`vg>X||2Naz5CkbM{7m`@-2=|z~F@`FLCN!R%Uu?PE!cz z+z|m-9Eh;mrnjx+VA>GvK@J)UtDeD1$>I@A)KnB8%+E}Ce2O9$TY9K>b3tg_v*Med zCuVuIY1(&8&YRk8S_IGV7d{HiWMPXC?%e35eCj3_FfLcU`@hzru6^GUW>>w+!5j=O z{ajfRcxj*NU;l0y5{q2$UT}zX4d4cG49e@Rk_Z^9`a12Rv=E|3^943btAZNL+jz=D z=b{gJD)QH_N{cEPJx(({#Sn=M%dOKILdpUFK7yYo{1K_&KP|_u6`lC&eLobPK5}S( z{xypye|UZQR~7_Y;cJnS-WY&@0m}X#fH^nM|H~ig#&2?B`R^J6+b0LKFvV5Ux5LF3 z|zR@bW{rs&bDH$N~BoX9k+@c@=yeO=pMM7?VS)q>|w zVbSd8H+Pf8?aS=Q>as&Gs{INNR#xXuUw6;Dbc1GkSP^mCs+A%24t`RNCS=ECvJA&z zCoEHxfq4qdo@mS4b#HJU+C;rd2flxG>a@_(r6(FJoBlDcyb>!7+MzQnX(vzX4A@Yw zvg>TS_#++9D*-ScDhr$b527E5p^w;g}PFzDW>;%@mm~b8r*c zfyJrBy4H)Adt1E|ZgUYDbpBIO-yDjY;1fHKS9RA?p8%8k-J4@!Cc=0kB*a$vV*6cr z(bnA45o@cqR;b<^=&nxPX0&6^@*|mF9b~LkEj+8%742?Zt?_d;1Ca`%{n_nLad|&# z8MctzTKVanH!w2b>Gc=YMMc3IPUkM2>LBAcymO;Yr?Mt093;JU-KILAOIf#KACQ&| zZ`=JgH2~#}JD`YSU^UrtJ{(`avp*{91b`noOZ0F*cZV*KwyKW8FD~94GOB@z?=ds0 zm32?mXLAUP2NteW+uH-xtnH@97GIL*>_aQ_gbad3&!W9CT5e0WtRyqa_?0WcHS&!? zKL!fwvQxE#LD{$41Z_H-e9Fe7;}6Qq?45onwE+mLKCB_kokl_}-Uqkk3^_%Bw2$ zD^c~tHeK%gN#~%%VviGENt2e`!G5y z#ILP0sPPsbb1y~ApaA7yT!rw$y3{vJ)VXdVtYnoob&2}T_q7=4q@5@9jIR5?x98!a z94)P!bGZ(?{x3G0e~R0tMO(@5Ag;krYinIr;);vX%k#n@0*Q2nu{$zW~GvbCzNp2ot#GQummnCRgeJt744c4~f~So)V+A>wS1#@U+;p7GP5hMztqVZa_uL z9YLCUV#LX0mI6xs~pWrOsHioIp+^S*A`!xJ!1?^S5w(3BiBW@YV zkD-ll5dAdq!yHZ$jk@1aIJ`Asp3hf@EmdYfts74I$O3u?`Q;w)F!=43Z<{h zoM@d$^oTfz)aFtE?U>OGg$>e9j@<(9a8XA*_vhz!k9{07S(!kn8j+s731EW8DBuo+ zaAORf7RdZ$LY{P1DreqxD7k?d?^>_g%we^1hQ!~yjvQ?&QdtBg)ygIoRox<`eS5{q zn!#Fb0RO3!o0S`N3>V`|zoY58o^+v{R-6%>yYWWn{a8L3ILoVIAyHe+L#iU0Lo1GGN9IZ<|+2gv{I->VU>_qMUgCEEeFZ)NRn{#1N_tIc;j4?H=`{LNVm zAM&uMB)VhzqJ5?$9fGYGph9nnt2huv z61OwwNUsUTUR_>MuP!uV5zSLkIg2t#d^VUrW0kVFftHI#xcNjd0J!#KuMZ@e1bU}I zE7d>8Cv07~Og@~TkD4Ujogh&&i9%y+46M3T^HoQ5y}_Jyy0@UEIfh8_F8rLNQL6bO z3$2Mfg+qjDB0Vi>M>8Aqm(+HMY+2YIu))lC&6Y6ywdy4uH$pIjW~74_y)+9a@g&`U2u1aLOOly~>(fTrLfefCmZgK5!1!0NQXD^+<`g$|BQrqFahorpDI zs96}}5=R@scT7p>GUA3=;5Nb9pDpm5GXLSxKYAjXlka(@1YgX`?FsMash=+A<0Ciy zy33KP@(YfY@m_?uc2^i}+paY|++06Nx#J_jk>zY)yf}TC7cdiWYYiIMuUttp_K;$Z zaxzZh`h>aw<6;e?#*|RY4Z{6WJnA`6sOCDv!i+tt_Z?=iGh-%>&#%bTeE!1*qF}&> z*I3vhG7>1oREM(-E2B-?h$CF1zHrzqx@EmpckSflYw-&u;`*3#+u`UFM!fxjJ10t3DqvdQ* z8BQ;S``~xp;{uUrI0CaA`9|86I}z=8y0MJozEetI`A_b+v+3^Nh(Q$aFWyQtJ$vSl ztu|-QtaQcfX*N!K&kqP*YK!OdH1mwbto>_2X8>^07PXu~_IAoQ2c@ZZW`V}g zS-J*X$6#dm7s!g7V>>s!Ncu>410CgV@BVjlmI1Uh@|mUgRHq?lJB^BGGY;I>hksr? z9%k6+%mL*=&}cQV1WeF`@%$0#fxg0EXbP^6!Y&Ba!^z%mW{H2kfy#T@Tc1ic;~3EKR}<*D~&Wee47lYL8NkGTlhWHP#5sk8i{pK@=kh3?djI zFwmWGup>qrWCCS65X^0@Y22wU6~erUq?f+UTn}e+ZfbC}MxBYJW(X`VEYrMzunDpd z5zwqx>oQ`ylr@pTG>(EN@|$%o%|_TvmR{2uwOr>6qsA)m4|vXyUP3uhdCMtYc}dI! z$G4caOn^dDjCi7#D;Ubex*IPphLRNhR2FWsbaMvux>=!qP-p>SHUj&lRi|U**cn*v zs8@nK)CRd0$VS5iZ7#KBVW(M2S|g0p1OTM_5^hh2Q9G4wn4-Z%)WkjUH+(t>mug3v z?7ugZb&QjuT!prhF}RC(#UWGwvqy031UC>RVsMfY+y-p?{=WU7Vsjwt#0jJiMre_3 zMri@2fX~Ri2FG|u`tQS)W0}R9gPMubXrBD;IEocLaop1l&`*MNWGK}$Vl^&p0x%C4 zD;!zp+%6oXVCf&ICH~e<%Fd89GCXtMHpc`TYE@(!kO%JwGeEi>O|WGtoN2wB1k>#b z4MgnZGin{PsYHA{N^MhPokQ9UnhVosYXna z-n&ood0Z&6eWV>UVztm)$uH5&1PIUl;r9luqhGvubPnK}u4`fMqsuYSHcNLVH5+Ea z=4mXOCb(>PVO=9S0b2_*LTWka&2S>67h?p!SYQaSnRtTGph2J_fG`+`?C2b7JzOZF zJ4}M5h?ASsWJL&BuCV3mqx4CaMoou(`1izX;Wb{To{@zLGP^-7GqR)v0D6N`560U# z9UgJCn}V2%F$$%bzD}|Y=844t@{Mp>tr106LQ=YH})) zL0Oi{{L;^xY>-1om@M0T1X4%eO$$v`@XRknM9M!`8Rww+eKtQEG4?l-22 zXU)Hl*0V32Q*s7rP&tlcgn5F}10Syrk~#5fFEu!`D=!NF165c@+bZ3f)Jl{ddSin7 z@<&TUHR}M;BG^Ef7GoW3poB4zMQWg%7nV?KkFyc_K?chV8&MMspaBlRDBBaS5q*kR zEr#c!ulU9e^WEty3m19dBX&ThkaR&jzimB0RPGMUWH})lXOFg@z#iq4duWvHe(rQL z8O+%U`U!y$gx~hIws4+{*DGq+Lf=$sgtCVAN8Dm1aeXbK4XYq$+$8M{s2p9VtT6QU zlOf;53=rqs6!3Zt@OvE6zP)^xWb(jsh+>)^3fIpTZzDh;#~<<CLQBGA=jFK@49cgFk zexqF;DM7^pa%^Z{RfNKluJ{ntY=5ZgGS5=#j&>}au`4mS6-S{rHeN@%)zS~!RNbj4 zb1}xS!;{0)mJen#&2VelKZI9RC#bE&uCC7b6Md^t!l@F+aN+7@P`vJYlfq4zqYz-qnOqlzu|}Va;zUc{^i&G*q`IfgQEj<G~K4EQ_ZS#OrKU;3H z`m2e$VDhAmdIDQ|d5^zR8zJtsBEQUMF+XLawyfS6qb9CiCsQ<53bUvW?d#Epv^H)C zt-n|a&xk!d?4Ac)-=Cgt(i5(trA~NfAAODnrDjVx4*=e;wwAdzCa|}TFjK32fQx9N zR%I0$XDRwx;w4H8bMX(yatNb%xAk@UYfTiy!s_n!5 zYVDU@6kF{Mlv~Crgs5iAb{YcvsSXc!!zb^wnk?20at`eCkNT@;y~+gmAbzaxZ~bqr zo$NS71z=|9{@)R@(wu)%n>#IF_eJw{est94PT~5<7;BB)on`U#%q#%13?F_>gBD89 zz4c0l>fz!=sfSSKzR(scm}rw;n%L{{j+P~Q7u#-r`0v`#ZRmVmvqPg_SO_t&zx?x! zm>65IXBB>vr}k+7-~ksE$k?`Fx?a8i$LntN-%sv;^|E1l4Sg=XrblG9 zg+H%`)CKAYbR7f;!!S##NsO7j{d2?19~?Ue0>9h!1oAa(9n!mj2?~6*9ol(c|Bwc^4@|%Y!1i(1nT9RR z(LHjws8l!7$%*Fz7vPU0(UA5g5C(wnelu!UZz{2>q(Hfyv8`CY>bQUBD*x7H#}#hO zC9-tSH1@?|;KO$O!@xVg$uF|=?bh2L7kSN)Gu&}VAn%nm&5k?VF#mbg1GqKp=-cI= z`P1Tqa)48J{BL)J;I)bvAbi&_{NVXRtE!JSzCQ+8s7JA^tGCTGYUBe#Tg}c(r}Ida zPlG}3M2;9KH5cSzrDl=ro!#RE71wdLBXCP4HsT;%Tth2OeZ0k~GT*0~u zc+F9QnZJmO9NBmxWW&Ru0Y%Aa?uHrtIj@P(>d*V@7zSwr&X|R)bPfTD=PYw5h8Xbn zkEs&)vp!QeBxivHAS8j1?p6{4)*YWd`>!ryeDLGw9q`R<4rj|-$8K_rkwrsdt8!bV zCKzA4o;3@>gad-YBGLrPQfeF!?5;J5dT(g3e0A&GdjoReRSw|{LNZxV1|C7iuEtxT zwZQO~w&W6n9aZm17F2k?AJrLyb0IXql83hA)NT({&x3OiKx*~OHI$7oMx}gvID@!# zlyvcjwBzF{PY7<%1rBi*Y-T`pLie^JRTBTYL6fGE6w9>cppowROZHUvIvaAPtre~E zh$n83qMbRyjUKAw#*?1(2B%UT)N~QX8LOJ=N4?fD-a^H6Ek$w1M5PZUR^l`sueq~1 zj_@B5`H8;Y00w90$jZ9*B4-+^R=xeA#knt^OXA^ygFY#ONr+rtG+2_Y`!=bFAz3Zc zd9yL;Sh%(fap!1>41Ce9Fah#F>1bB0NO99rZAMA<>0-&o)gnCle>lF4s zQf9t%g}xYk+3{&08A{dG=mNT+d4Gz9a*~PT_MK~KS;a`V!r^Wn6P;d_ovx{1vXgI5 zp2~2&0EEKB=lmQpS4(%#@Ey#ZOS63nhO-k)Gp(JSWrYRF%qcbHY}QMGo*4yYZRhsx z)>gu~BkrK;Qu8bD#)S!$>pIPPI$h}Wd;9p(jPCLiEDP7d-K_YqlFiKq9Qf+Aq8e3X zsutu&QtqgBlW|97>l4f*Q;B*A(b5dV2ztU7fQH+n?!lQOJh<<1t8J^(K^{(o3jd>8 zYn-7bX<{eK&kS=~tr~(s27gkAd`poGx%d^fPP8~O%Wm4HPF&aqg+vQ;2TJ@w1`GKP z(@1HDCb$ZX#>uLTrKZU$1y(Lo_2&5|$4H`jCKl5!gI4SeX7ned_&4^9KuT88?Ga`>b=qqZSTL(=#N@V1k)$!Z<5elQm~gPFZ#XFO`5AWy)JM z%OSdoy5ls)K#eTat^FlIr5);&a$5CRz@Dm#DD@v9Lx*eEz+ZUIPUA7gp5{v@gVdX@ z2$m-Lhz`r92<8xE3$whosVu^Yp=V57dqeHDCvz*t1qmy7Z?q0$~4s_ZOK~ zTDvA83J_N3wUm^k*%AEXO&T0LQLS=s3B+o4a3>R*USTq(gnQ@Mo;6w4!*#An0*az- zFtcXli6%npf+W7@Pw91qHJ_@j>ZDg$anB@^qHWs`r6CtXYzB_Hyi1akbgE!sxqj4q zJaENdbvESw7WGj~?fOc9HvRaFfyPYdxSTY)#203CHg<+}Y0T1lnB0=#jLM!7(bFqj z3$~ziJi-HIG?5=PMtDxp3RreS2Vkk_=twWJ*q*f5aB9OzK?!c(Nlk6Q8(?D8(ngJ? z9iigbN+d+9VRrIe?8VniVLO!Kj?AdYcRUp&>z&bVO|k~*=Db5sX2*b4u`MU(rYt$j z@I)YGyHv4Mtb%np^^A^SA`r;?#KM!GKtCOB@PT1ZNIA2>C4PMNIBt9U0yGdNtqyTx z|EQ>2u@Razt*c;1vf@=r6#c`8yV7&SD%gN(-JUxs%Ggwz?+qzzUqJ419#+H0>_ z^{HuF?$VU8nXo7%kGg5R1N^;tC5p0x^yfZgGbYZEDUvfhdxeJy){G4 zHfS6_o#g)*kV7l{=(mvKWUxzMB_mqj zvi%|RlJRa$)-Z@gmQY|sKWYt}Ym2(cU{8-zQV)n3#Ev95$k`?sadaLtbN=wodL|k>EeYSzw68a*q zXr{v?$Xl)Hy^d6$Fh(2BPbH?Ax;5m3;*EHp&p+hvr0 zr{Jic)~e%ad#Y~UpKjT%+wWI)4@4tE1v>8i?7x(0tEzH@NW;(X_1_y{`K;Ufp$+~n zdApdSgyCc{F6jZGyVQb?T9e41g_H4ujfc=k1P_1%RaJiobVz3(2TX|9SeIrKht9ms zqBLik4B<`;xpKXCL4vR;N?*FShkoDh(IplD%T;uL{`cl6VD0F^0-%SS|7D#IteARt zedKwLI9YVyCV9Rv#{RxV<79OAHzY9h|6~mb{`4Qt6uJEKfw|RMPg*4-OcWNKE}hw+ zZx2X*78>$3@8m%SM(=W*3f3E%3>}%f^!>hBo%u#l#v84?Vfzx>p2HD1aQ8aia#Cm>I2|4D~Niur`?K&(&Tn+FLAkKJ^mc?blW(Z zvgTOPs!h8odNvIET0c=??Dw`WV1e<$>4d!SlYDAV2iM}@MB%i%ddyEhiQNr7@6QVd z$JosObQ>wy7>mf0F&mpA=2T*vzNgXusf*`7oJ;&t_5RYP?a9)uYE0?y;VmF4uL}U^ zHVRCF%y{(OG~)K=3|T7GD#AS#s_2Poo8))%I3VpZnQHF^{JI;Ma-1nQ2y<=SI3r3~ zzX`kEp*rZ!jxKG><*;+`XtcRu{B8j7UVjPf+iw`tj&|(}0tn&~MntWC`wbC)j?Qj7 z0JZ_K+3tT+UU0(6eWixlK^bX%RRO4+Nyoiy2b@a{%9#5|Ck~%~fqs=V)GzKhzw#7K zvo-9uAW8S@c9hb8wZ9sS&iwAOqdNBd$&O+FRX(#D-eT<4y!k^6CJe!2`^RTXXJ6i8 z*dg+&W8xRe%bdgTP5LVQf3bDWvAulJ+OKWfKDBMzI<;-K^|9#5+7>a{=+(JnBN^Xi?Jn}eGK5($S%P1I(DRjK+a)nq8x zfApqESL3I{MrS@`-`Z%;>OI1^(Ow=vP4*p{-TE z(PasQnKtW)%zwC{ZEyoaM(n}vILDBOrkNT?7R{ERVTdPFQ3EqpW(m|Dgf?1#nKOK- z$vG@+#lzEzOd1U5G^R_PR5oPwJO2Gl$W(zXe!z|Vof69( z?P7fzWcJx=rZkLPF2CUh&sZPn81?g_hyab>GB_P#jTEcH zxiT2i5S0npJWX~yXK7Voy%EFQDM%J$8ByF|vBroZ!9s+k3>0Glj3!rGup}P;60q7G z&oD((Pa!d1F|flMRyog2#^jshseaFFw!1+gqaHg2J|HY`F}F;SCRJgMeWl?;&SVTZM@(J9}~WFr6eeuEH%e zy5ja*Q<`l~MrsO>E}f1vOqI7IM*yql zJUW_u_XpTIqT*o&yvoo-+G<2KLY`(N(z5B-%7oyB>J)U#10wVWlNi^o-+;nMvw?KF zlq>@EKs51HMzJsq5q*`Ep>!o7%%~KBL8mH>mnmnz! zZuXXK(Aq@ct@!z2rI0l>8OY12c)#T{KOaj7EJwy5s2~WWk|q5PB~bYCA(n2fN=r|%=#t>l83AZ-Gocp4ms$`L|(CRqjB zR#n6_|I`rkMW}la9N~iicgIYc1zCsyl?HFs8$&$sK&gx72aF-3RF zK$3qVKl)ehLP-Mw@6$Htdm#sxcckRs=$c@E4}{b9(=fS>uRj*lUqCnpR*O%EGk3G5 zZA7|lrt;O*36!e@sB&ixy4&RHL6TMd{ww8J)S*jxuIpV+@Cu}W6%t2ykbrj+m+j?B zDs0t3g=t}mRUj(Y=puRKTdY2Fpmb7v9qpQbTq@@>^*Jo?72}AiJDpQ+$;V)@#ki~b zyu~|^KwNoNx}ZWR&*HB`B!dbgc`VOYgOpne$`0(e9R2Bp7)5C-$4D^KLy~OAd7*Be%=O4}SI!Ijh6NW!__5zkZm9--W8%jEiKg@3@}#exT{w{#WcvDy zV}~tDcR)Vb{xtK*kSER^CO!_-!tWC$_6^4sV`#w7?V;Cvt0G@U*ie zd^h@djQTE__3ilJAJ=hC!8?hN%E2kfLmA$yMYTFZ2sM=K_b1tSP@vHJn$|G4o-Cm# zUY+x-ytl6)oO+yReLwpYXfZD_e>Ol?9Empn~t`Cxfp(^zRmpZ zg6zg=%2GZbf3HSpUe7z`r&p&#n$Qs@DhMN2Qo+|xKOENog>%Z$+=xAFMfRQ1fbxsL z$xWqBBpD`p-{o9`2id51hjj3lMY8BvV;MM~|5Z`O=Qq|?7AdCNDZzq(0jo6pw}K{z zyE=DQ1_=`GYdGLIK%GKbuKrj5E%28B+)VE##7>un5Ds>UiGw$k5i%3D0|7OlCTQcc zS2)-1%lAEQ*S_r^pA=Hl7$a(2R;#dhBzD`cx(=_VBjpfmz6me;D2pca$zVXuzjNRz zZku;C+ut|$)lGD37nL5R8P{`(6(GO$)~bo$nXI{cp9B?pl|!ED_n3KCbx-2TF(q0g zc*k*VRkq`~ensNA=g#rLWrF_(K+z?jEfhdl5PPQM$H{$K>jidNAQ^7_^z3wdrT;Ys zOPo5gIcB?gqh?o%iq^{mw0! z&-##*1#t}x^q$BVCjwy20@a8>8Q~pKK4t&eE+y-+F)wx^#PKX_ZKQBZyxB% zZP@ZgGMQ0=&qJ0a>PE!O{`7MZ1>Z2dVDD_FOQG!JI9g&r5=gB6-thTQW2(}hG67|s zA#gFJjO2Zx<)AgYi3*(w5E9@1D0vLl_^R(iwt%*Ov9j&OA-@@a*5muURQo#7>+3hV zwq@2@_V;E$#JG2IMPEyG^?by$a|t=m)V)>W$vZa2_YJY5$;C1Kg^#{NPUExdV_iRq zaFG4vHAOe-rU~w1SuIh%!AU-(ip66b$A0RU4~R^IWaIllEce(hfDB`N_aJOs##tBJ zbI6}-BRxx!VgR_RjjGbkZ~94SiH3CWIZKm!gvUK95aKy&HJEY{MlrdYK2U>MIz6LgfjeRRxpjSyYrvyFSSS=` zSbPg~p|+O0+`)+(AQ6E?@<;+n?q!8THGAc0Of=6YCttyUmM03AB)07uGAh@+(??Wa$Ja2*>TTaR13EUycRpSVTK!r((*X;*>Xhf&&o!XWob9dsFG1P ziGrxdIoXzJ8n{SWw0~43JzY#H*PgFD*pX=Tv+XutQHTi^zOR zwuP%Uz$5JlFpT%i1n}6TXY^fbo_klS^WT$gZ=1fv6?T-qNCM^DjuUlS_>>3pi)r_Al*nAX4VV60rR0qI&Ydr4K;d`4Svo^$IJ~dIxWN-vH&i z4CMn;Ei4S!UmGBO_X=eD3e4l8-Q&=`kTd7a4BSNZzhL!tA5U)iWamgo!KgjOpZeng zu($XExl9Biz?MWDgGo>kK0XG)mfbdHFU5)`HQ}XCH)xvU9x(jtea^5q4s&WrNToG7 z3jJtOmFhI_HDrw=)wAwBOod;K zjxirRS^rZNc4^Fsu$uufSSNWx&+eQy>2HbwBjo?2V>Olr^p?d6Jsp6OuuJ{bO%@w0 z9mI@O0r8ri9=WS>>%4Q7K1Nlm$d()dCgXs;8hr0mB-l`Zf9F9epIxkEb-M@#V4mOt zilG3KPWFSQQkNQf02$x$#pKM+2tSBRK{jWtIdHh#HsBn5y}cVHtji~(P-cO%_W%bb znbT%)hDf$+tQ_V?u=AcCxDx2?9YVWhk;UZ`!-Bh&I9lC5hn^3Omv1-CF6Cb5O)_?4|VLGC>PZSNI>sx2-Z z39I}OoRgd+Yva8wiku^^Gl>O4f19R@h0S~iY|K^>xk5D$Dks?l!^&&|08X|V)Gr+a zT2L{=H!&C!V2L+La_)OeWcWz!6hM#})xxe*4{<&vPUU z)Kf{FR0F9FFRW-W1@L`ghXmC$8VP3pyqIP2@J2i@ym)p3r8N~O!*(!pqd{MW($56h zNLDRnzgSTi{Hth9Ai4g*k0=cBoP zNs`K8NYW-;ie<_=h;LUHz_DuOpOQ&wSTOHTrZ)w$&YNH(8vn8lGa-o#$(%3dK%TuX zbNK#vMf?UmPa}j+15O1-1^EG3x}RW@1G6Rx@!s$ZUdL77;W zKh<(~CDTHb%luZ-7TK00bJ|w^Tz*O8P&x@4ndzwK>Q2uNwK7RX)D>AO3#g61KbjV= z>-pwPMbsaRB99?9LPs-4HPUOWS~oH*-7QHNmVF8W>R%2=q^LzXN~Be1Z2)Yp1BWHj z5j?hLQt_HUrtOX{gA%eo{ZzS(qzg%-M%D`{t;Hu{I{G!Hm5uw1NbKVCw?Uz>7vOtT zBlV;PASF3LCT6K!FTq-X*O?x#HzjX1_ceG?gy)ReQBW8~X~l($V37~PfawF*xujy2 zBuDllu%+lvp=0vwG+K7MF|^z|u703Y=pY@%ui-#iC`| zG0Ba=Iat)7^Dy*6+R;)DZ1W9ZZaQ(Spuk`pq;$f#JoAY}&K&bNr07`w?5ueG66?@D zjF;KdLXTLr;gy&-ju%&=P@Ui6vfuW3{@`p4GF9oMZz>qwC%LB^yE6@>u0+Q4U zVjx!V-x3XaOX!R7wNQZ0M*?<8ff2Y8K?+{RpuI{C$EdBUhsG>%I_F8vD_~2+r@`TWg3eyx3+)+>{SWT#x!E{I4S>pNYk=$d~h1{?S=5q${PlgNx4MnvJfHT0? zh3K&s`V<6fv6`5$Yynu~H55`nXw!YFhD2rApjw8rkeFmLWIH;@bW9{8Y=-OM+=htb z!>bXlWRFNV4?;!^fp9|hSX78q#lS?6Eug&lLRbDQdO*z7Klmxekz(d}ao|#+_&)7D z$(TU0AmHi*v4^SR*fVT#>X>|B z7uf~5sJ@=09Z=L3wti=YnC2)1s$iWs|hK&K?Br3slR4hPj( z79pH@87BT4febxEeKP@n?#q1Q%l$p`@=SP*OX8j~^J|nX zHBC^MmWgA3A~;wJT47~E;?%R3gdfc-Sh)R*_8n#f?-8MVOrW`F&6IDEL~z5L-3IkPSA zN574pbfQ2%|Jv~|$EvktnIQ3Y`F=zBv-V~`MC@21{Gn#a%H7_g^p_)&QB#10{+#z2 z!^jee)W0+-uIDAz@sABJzRp)JyD>=i?7WZ9w10?w{=2k>M9r3Y-`W@pZ9RShuaB<^N$y|9e4Y)m$6s2` zuLXa)R`b>0g2f+rD?XD>cKXvvUPMeH`jl^*#;c6n4yQWNtR4=hPEVM%=;kfi-b{7t zmLIWQ1%4~|Mz}NYBWH&4!|-xm0Pgm`)x0!HVz~0>NBGjESH?Y;rRuk&8HK~fl*+*} z$ODXv710EKVOW+BNCt#@&<|hSl3gJ#J)GKFO5tJXop;`K2L^wsCNQp~g{FpM@7kNJ@%$7(kP-0&o*7u&zl) zu0V}kbIca@59-K=2sL$H^`oryd!8uE~)Z=_}OiXYO?hqLkGI+@OZ1egrC0LSUX1cgot zmdL{iDlHZFC5X)j4KeK}8w|n{JNro%WXnfo5kVNk;EkGc>o4+D5*uoYgvf#ZD&{{7 zF{&U$ii&d8eWTq7C%qjDQo}cw;@1z_@h%J(%sP)mGa$L!mlsWxMxG?v^p%{%vE3pm zHPmcEfR%(wf&Wbl1{m-ef~4%*mye>Uj&3%=l`TeAk_|};8$E=*6ekrMAUwu*^T4P(GuHtVmqf-V7_-^i*E{y01}~INMLdb2`$;7~7hEgK!$=mUjwv zOP#1lU@3sYRI*jz2J=VE5Tsx5nlp(844T`@CS{k=2^X3p0I1c93oFIa#lZ1bNoe$i zz}bxT4IdROFAtCzH>2Mf?Db~9DWf{{)OO@3oTGhx34|CaG){)678Ufe-{a!*yqNq_ zeC|67gy7yKLdZ-WQzI4PkxyRE8YYssHTz+pjbJ1iE)PbCiPcr4aMjm@ly_NNs6?|Q zslLGf2r(eP0J>OTk>5DMQw&vBnwry-p;8h^+!GoXZhL4&4OzYY9Y&Rxl9E z*lkoK5pz6bEd>~&jIikz;<|k-WSG!NF%X?y4M^jc`tBQ`%npG2MP(StOq9~)gm0xD zsrNW10inFa%7NAtl=ffFc!{Iwt|982r{Tv4A8^ooT*!$sI~lIebU!VT$ACEUXO z_VYHZB(xI$91@^VXZlq6+jWR(74E%&60$7^RLOvU6bQ2bdp0fkz4BJ%{l&7@dYwT zV26~nAR)`~2XrN7T>S3c$ z;VHf*H5`06%QKzty}PV=nJ{j(E27e%TDL^1L-f3Z#E?kpA#hmHOd!<%ik(Rc}5+QdrLzMhj3DzU`KQ_T)j#lraAxbTKRPN7lFwA|;$`|ocd z$d=bX2DDM7qbNK)Z1KpcguGvjkHyn&QGm^zz`B@caBG#hT_~{Rx6H_ql>@L|l(~5( zsbOhD!u(iAw6c*6@iiNq8V&v#(x3RPr=T|){Uy@M8KvG7rDp?zD{9Rd&+n{F7i6t@ z4%sM#pkRrQJ^v)7q$@ghzx*9<)jJ$JVT#T92-%ze(7naNl3EU`R8k>{f~ z85th2%G^Sz#9U*k1X`mP$y!6eTBt$bZBxyj7@W^i=<0*3&18}(3y_++&U%0E!4^$t zdG+4}H!1PX?J~ppj^sU$qU&&>(AR!i1MrWc12cP1)#GL)v-#mY%zHF$AuQviMWUn(P%Rp|qmr%A$)z?h1CfulF%Pr&dQ^ za~Eq7(+h`3QgdM4tN6eLAcvx;1=`5X$k7Q%-_t7TQYk$%i@qoG-)cz)%2jN z2bv{Y&~br9EMwY#GCK*6ANFP&kIa@y;g@)7FU^T@y~Z7)Pu0B%kYi$=x$NnGZ@8$H zG`%S(bBad4gQLPT#3)9vFDMoWjF+cQ;+H1BBlRRcbY)_;htJ zkB;~s*Hbw05W--;(4$fb5ZYqGt+k2QvXs8>*<|z1%=ure#P}hQiE%}PvwfoS@u7%O z$i9@>3y>8UtK|1gLs>7-NA^Cdi@MQ~uf`Jb3etpUO_B9hC8&wOG)8N-7_9n=G}mK5 z2eB8ft5iI8y$#8X0Whkf>ASJI90ii(M8CFreNYBj^Jbk2canAvG;cqX8|lzUdSF#D zC~45PVN2wWZR0iOdn#=2low*0(a;kyO0WC~S{hh3fzcaz${JX_hoQ?M zovSry3yy$AabQhLKckw>e)Fuqp;;CXRzyz-W3&B=|CLTq13=qXFKUa36ih5b;}I%! z3hPYASgEQme@;TVC~RNTz?tJ$C!L9RoyY(pX^4GAT5=E=wp zqcm3m?O{i_T4o*H!Q*qZ)P@?#L}tCrEwl0Hgt(1vW=p%LE3BWtonudF1ssvXuS7Q!cY!$%q8vlw0Y8m)91h(}P{ukD_BrNhS|$dzNQ z{zbi>95E{xGBxcWdrTH|V{2f6aX>s4Wnta~N@%fRYeQ;!sUc@du!<_;o$}g-*|mLY zsm6WfTJngR?e;(%R2;K0%U1LlbOYw~fG@Bj##Ds93^+b1tMih%Gg%dsLZQrppM~PE z_{B%2(3#|}z~U1+uS_t^U0v_u0wNquc2OnSgI-74S*J%EwDU@d)c3`0@FKQu2A?_` zi9MEAxHW^=p$5~;m zf1Gsk1)#}!;}H0sW%tOSU+D1qKJ;Y5@2yE{EJ=FU0xZq&Yvdh%6N#4U)K0pal3#A1TB$=xss7L#dk$hH8NbOB?5RN z)2i{|ml24a>CBDgD7*St+<2-wgtK#bImL@x1rU?5!t8&2LhgBIaC+6t4_Un|Y9BNjw8V69Rx52q=FDae$JhbH1D~V9h<&XosV&?sHJz z*=cb71%go4I!jVJIqSZE*tS?bT;9yOY2;LVPlOshvJt0SxAxzv_p^N3N3IztSGWlH z0DmemA0U=KsgY)h_R4v)nZC6oEhatk=2UK7@*zOpjOB@Z3&IrrvXy4&vab%c9nj$aQR7 zvBlzOnyFH38F)B5xt2Y~=|WHOZEFxM02i?{D62PMGkF%*2-Sn7*2j&B;(`q~jlUpf z#vC%RfiCm;HFp}0#Kf(yuTs+O6#O#k5K@1Za{ph*1JYLv4b*aYkK)x5n}%n29FM^e z!EWxXUZE;W0=5+2FT6_Wj-M0$*5T_H;Wes3kgr!+*1jQKr1j{b zu@urx*??Ks3s2|DV&ZqR+n$nT3c^{ze7#wECCDd*dTYDhKo}JB53Qg_Gs;SNUul&- zg)GABXXf2u+Y(;*9dt*;2_NCsJ7LnwChzfa&f1fD^%g9P6NFT;J6zH004%!a_&608 zju#`IIGPt8MvZ4oyn%+1?OZ-td6(!A<*Z+1tzT?>ynPyA!`d87-n;EghZ>8D-00BA zl6i{U%;%rVA@{Y{-l0piT;XVUZV4<0kZ3(&H%JL6+xhnQKrOeF+MPf(ZU(@e@h|#; z7jzV`Zh`ULo#ARN_pS?I0o&Y5prG3wxwJsP&9BL7SDnVrLrLlF>TDNJE}4k3kZ%w) zb1OKnk(A77uHp3$CVa}k z5&PRbrC^ZrS)~BpD~!Ux@*3|r4*nJ2n`gZ{X?<@0W%Z&{&BASo1F*N~EFDUI-XyUs z4Q-3$M^^mSY+L{s(Bq$oPZkeu4z!Ff4+z;wNQfYn;(BC}yj=TdidRa(w<31RDOFAt zh5j5)<%jLk^xpF|TDH!*tt&n9N)2BF_kF#d{Hf^U+;ZtYQ-lA$KAb;y^NYYP74z#3 z_Lk<|&cYGSuS9MX0dhhpPO`4or~G-gT5MI5<{k(G&*fOx0Z@Ta{N&pC(&66so>5|? z99=0%6ghB^Zy{Bj@&k5m-M)gI&eKV_`d6_v))k_8xmn#c(htz<0ZRLvavL>*Sz8xJ zxWTl;jeKU8wz?$8K{#Pk`#h`7`ZU-#E|HfJ&FXGLJ)rf8fDb4?_sg;!y!rsNw9;YW z_I8mL9wMr>wWxZ+tk%$8X|u1<;tptui}Ddr!fWYq<0pfg)wo-i^KJB)Yp3+ zf>F2d>uq!Cb-m}mi{@V)9kRa{xqmas%)6T=Y9vd)+}|+dEweGdKTP!6D6Bw9j8HEz zT_Dj*H@r`r0rm=5wP(#drCZfif5zR$#|6IPS^d-qMBD6owsM7W$GQDLhFndyPV#u! zVp<)FbV**zs}KKo!u@+B*Wa-0RljOgN}zl@HPmQ@FI{Ebp7mnjzNGLC>Z7e3YSY;K z7}|lEc-`Nw%L1H7uFi^m8^_r|eL6K&L=d3O-h{sZOA({pi26$0+n=Wvqtb*)sh*9s zm{D#L;F5|S!_sXn%4Qr+TZw_ujX-pdmK*0 zQ9RglK&|XadX_xP8^R~s z3D|2DYh7d)m&ftu4w|l)f@^y}(oJZEtT_XKe#KQe2GcTii|purie{bAaClaHs-sC1mGnA zo6+)4M&)In8u2Z@Q}MEm`9S6x{pOmsmQhi|3|Vtko$T&>5<3*4R$ZGpgXxGSp14Nb z+0Si*lnXHE*($i?9(k5TqGLFlD&x;*32%+-bU}Rnvue*25}yDL(%io!oH2K$kt}%A zLRb^7AkE-nCr$@3>j39`)T7wpNHHw{gJhis&wTHFe`FT1AEfrLmDi|1kYurj+R-SI zER4VZZcZm}^K)vWAY1cYeI`MZ$KeQETO$Yu1JBPb*UT>W9QIEL_HNY@YO)F+J6+Dk z4d1MG&hSG@52h#6#^FEgvq(41CR}OV1Ui5xtIX8zZkGt6JsmsI$|zb>bra>YfO@n*;D!?%joE9Vr#m)F%tv9#v?X1g7l$Dlo~o8P&P3 z4=vkxe48(wp9@S1v~(#56M$VPKCZZFvn^5;9M;uY@#b?3Tz}n~?E-;@i14Z@2R0Fr&z)Czb=cfpi|S76FGleavd4*U`)y|1^H(1S#Nc0^qo^W z?j_)rTD>F8@ffqs0@qUmcz+aF9@tz@JAE!ed<5TERkiV&*)`r6(0i86IcqInfh>Z=fMfLCRa-6$b%s(qK zqPGwa(Sn9-`4s#Mkk+s9jOxHa#ziUfOlWP)%CzB1T@>BE8V|2N`Jq&^K#tQ%Rl)U&s&q3J))Ixo4(U; z+wv$u;KgG!TT)nTwckyC#x+rWp%~hOw_r1=YU#-OwUQPxxQ)b-uHrfY>0>?lX?NSJ zq5p`Tv+YuXywH0qcO#?{A#KRzmG`QCOqZBxU5(v9;wL)bp@WX@vVT5yD+0`+U2iiw zON`G?=ZWvjPG+mv+8Zz>()Ji|A;ztHsk$_ZdFtYGU4=8Hx?!`L$FGUEik|07i<{A0 z1Gm0>_-FZ$>t9Rmt7cr|RYMJ>^@i1;!JSB_d?6iI)f4JAP5cJUr1#t*V^Z(;^LO<6 z!RZ+u0@no5iq_Kx;TK|OvC_oPKba=ZE>5O~w*Ot(8(G0{Ff#pDDKuhy4 zhlK_(GO_)?w#}4uxztN4gpiYNm^yzDXyR4zxQ;6Mt9tMAY8PkAr|8)oNQJx)5Z z2j@DZ*338`%?6RbhAsGVuT_MDvD$}J`yb~@Hh5;QR6%Ndgd_vrJVP|SSMl2~uF(&J zWP}si){nCU7ZBf?Wgk_c{H=hkhEZp6^|i*Ic1W&AH$KhLaDs3c z_p#kw(C_1WMfW{~y0;=Db95iGMeZN;uUN|RS%dX)*L`6lU*u^}e{L1u&*a8~G3}Ct zKj_>EXh!G=vWHCyCEavL@B?RJlF==L!n}T1_ShLJ!!43I_v?7B_&>HKWVHyYdX?Xo zN4(MDMG5AHOtok%B$gf)-FcQ&F}&=iax8(w?epB&N{ij1mGzhCqiBDxX(0Z}kxS6T*CY*hfggdCT`|Izq@jzIqt2@vP&jD}@`Y=RaL^#J{ak!y}mEdP~lz*GSscEM;$gUKk*7a9ir z$4f<210SS4$n3T#64h-Li_%v?6t9E@uY+~LYJ(+I8Bi`6qfJD!84eWVeE3w<{({3CWNR zV$Qfq;(sZ`+e!_f^e&PCD_IM)g2XQbD8dfL(BSBTx?1kVL8hz~W@8yO1UoO1IK*`- z@~q3l+d+oXgj=29el?zQhgL3m>MN|~0yazHB z4Zz}U6pIN99{|OmlVk+}EC232oclEcQY1ETk^e%sn@bK@mtPEuZgo_S5(VF#SSu*} zErv$EEgA=6Lm@gxq8*`qc#1YxRQQC`6~1mAL*ZPQtqr77g)G*5aazW%SSM;ohhxvr z(jNp7PrC`PmrNysHR$v}SrjNK{3{VX90tIP@U9g9=(mF>@oZ--R6XQG@E1liFOlhsydG^p;^q5oc*~05 zkKvobF&7+!vRjP@pyD|>*y;T|>Fsr9BwG}9N<6p$e7#-F0Jg%pT2MX@wCMTPZNpr);~e*6bTzkJ&$?yn+pG4j%le5TS<=@tPnOQq7tUAGhTkWr*y)K~ z`7(g|-xjsk&bh^3PKdF7>1~-4BfLeHR=E4#DT~{a<#}Vz%!zLhIKgGE2mEUcDhDrU zaXn({f+y%XzNNXA=FB~Z$E2+xOB%1|o#&Fqyreb6&*74lt2<%@T8Hh>a$CFgK6V~4Yvv*RP zya8!{r=MiwL;mQG|2ZiAs;s5mYyo-Mc3L6Kl_EUUoulsI`!{BB@0Qhzb1%R1IF$jA z5w&+pCjR{><8^cB{C54HHa93v5;u7+ww{*LrX_h*PIg<{S7!7*^dDefbKfp1D9>3u z)W3BTpUiL7`c@`bUV6?ib+XDb%*Zh{J|pnbUat2w-uXFuD|gz?t>ZOr%xif*|NPk+ zANBi&<+48#AU~0CegV;apL*VB0EC|%gpD1qXHMF0d_6zd%Klp|x!O6^Pj{xQ6WHoa zpPc-S@Oi=ehd^e4-Tt_m1={_+_^8$SGc)6S^0HyFid(;AdAi_GpJTL?Rbe^zQNV24 zb<_OxZmNB{qS=+9G*tH>>91@nQm3WD8sX^O1>ciddHZ(Aa>Nt&e2s6?6~J^w0~@Av zW0L#fMUpx9xvr*Ii39chXjYGbC+&SG#*@C|=E}Zre3Gfe9={xVhaJ@0HP5UtD~>ZJ z!&#(fWO9{#DK4Tb?&RSjox%FT^9i>J@t@Yt%m0 z<@jievT)rbbX(ZRRwtBw7T}6=fa}FE?s)y$YN->DbGH@shLiX3%3r_U#tazz(;vEI zdlGLY<@St!jqBvSzZ3KCVrb9v4aEH)cFEZT@ZE9asHkbDf@Y1}k?!Y$L+_3}UhjOF zibvG@v>v856nPtLu(R{leWkY%wLe$Eu`nN|3^l_#*{Yu zj>(z^0)|C}B|HbLCAy)c_m`fEtDdO77WXghSR@yPc$zR67B^stL7sz-LqWG=(t?^M zg8)4@Rlj}N&M~%IEUG^lD{x4WFd->|`}LI7iC^^2F5IVyB)M?5Jpx5JZZvN13fdTp zA>cy?s6p8ZQQD~8Bs>6pgw9kLSLDm4Pt~wq9}mpS!-wp)iB7WFA!ZqQmU48R#D~DmKko58 zpADn5`8k$3on)b-0+PdGX=JemRiZ}_bXhSK=tUBm4C#XCV+J3u7CWu}@wgkvDqf$;1c11i9oI2OG$oN2*wpCCqwOawmy z*Pqj?pfAznD535*L+ehtbr;mZ)@X+L8#AyS6w*Q%M6J+tzN`++8m(;hzf(4PL`)k8 zPVBLuE#Dy?nqEQZ?2F2RFQPxrP(@0rRTaw zmx2Pw*k=G(Ga~JC;8Ybha*RV*2n9(echG`y)Rfh@^oGrdC7dAxs!Q5CL7pww+#|sr zyy1caed`T1|Cq(k*PNW?q%3X+B#S;w;r@cCr}_r2e?@;DIdM0pnQ+Xu%+(|uIEpfY zc{Z=6a^7(e@GnMscR$J6%|bd+Gt!0Vv6nLneSPCQ$XFIkGgr)C6WY(r3Z~fH=wi(xzzB)tc zWzghX+(k;Zbndlc+(v=AVM|>;&cl^kr?r(;ag*)4e2ez#k=shgX!$x$3n8Xyl)On1 zYM%TXuGBOi{r?q~SpEx3ENSS_ShV1^Fj3)HY2wgWQh?*BCkOqP*Gn$FuRZ;kHY^tR z*T_@GZ>qfx%$_~Xos zTj`16q7VD^Y!`H++M2R1k(%A~G#FSs4<+S>Uw#XM`9g7|15<_OBo;_6%u%^vvv>`MT8fiblW6 zerQV9X@W3V*ubu7+Avt=02?cWBY96nnu(-L8Be8uRQ6WT6YDOXry_|YoDn6jC_uoQ%YiZ8n7Lu}6=k z7q;`i<_K$UYI>ywM7~W4#qwNzYjGbqRxKUM>h$!>dQRTP-%B2<05|qa0-b;+!(7A8 zgrTvCvBA^yInslK5$ch+5{P-U3NIkOKD)jIU4nzJBoaj5c1hDPY?GKB~M`PR5veDSW4M1 zKW*=OLU|O&#{PtE!2Vn10XIf@jJK#Xu7`f^33qi(hC1EM9SvknWW&B(JI!WVLQiOq z>{Lb<>3vW+Beg(4_b8dU_!WZ0rAx|Rs*qucrSx8>?}c=GuQi`TC4ZQtXUcl_?*Pc` z*-QtV5|OsVdepeH$#YZlXQ8DMzIFa3pGSpt6ei_C#0dg40N79YooT-HR97m)kTBR% z0Xp!OGF~_t z4y^RKUtROZLeV=J&>!uFIf|{WiHN(|W@%CG4Ofk)Ei`_$*2N=45T}gNMq$0xkz_(e zO-xPf?c8bvKwR%}ez)6JOCsAy31XgO$9QPI`p!vm(7Dq z4|=sh%tQoqFqcQ6-z73Pm~k1Z*JBKi-%(SQI?n~HYBr}{MmjQ~wqXp95D5N(A>!di zsG*|*2tqm?DZ-VdZ-SN!&RqoV0lbI~>=A%&Xyyo38A1+ZSrBaHWaWk!zE+e{8=*^xhA1w#yCia>T20MO2cvfIOgEkjuMU|E zk!pG>k2NY|7@AjmgOf4NthX_>xfVMfCB9n${uC>Nu<A@I!5>pJ$lG zclp)pGa5j8Wm^u8pVR8R1Dwd^?nNXlnFNaiibAI7{_xBz(#HU`E)qBIN5wDx8?}GgWkd`av5cf@C3u^d99N& zs%oCWijHd}GEQ4MD(0XLf2T&G*Crzi*klP3nbEQ9#JAzscS77U%+p-S_*+IYDhNnp z*={^|Y%yO9@Ah+Dq6K$CRQxkaURFkYVzS&F09@&CnfBDvR7#_hpgTVA4NcGpX`D-$ zN{sR5+VdqQWP%?ZU}?1-+rIw>%0vjWz}doOZ{EL)ugw#|b2+-8ZHRMFeq7H1@co2N z7cvqzwa41?W?NkhU&kSiw>X2B;bP2ua0})|qT9hD7#9Y*tm@CvmcmccSNE!gY1r9> z>w{RucoxY*XNiCRbDKr1*Z9x*2C^C1_pQqtb|g@Ejp-u}p5$d8xgq=J(5eMB+mJr# zr~RwbSVIph`>1-V2h%{-ssw8w0GAO@SetvTx8q6}_tN5h(D58QtRptBR)k{}Giie{ z#MQQXbbRh(fu(aGr!cu`P86l@#5f>;U$@RL<+l*aNps(d<@tWq^NoJ@ef?u&oN{hR zR{P8`ZN|~L=g}}jjJdt~79t+;O$w*Ht|qv7RWw6$kz2i|u+tzWHy6kN1HU`PUtPt% z$`qldt$8yN0Sv_Q!H&AaHl?Y%C=RW&cQ9Vdb5$O+XkoV+PGoldwnHQ=1Yio@?5%p8 zSS>*VSs6nAcIPkIVZ+USF4^0mWW2ZlW5&eP^N;^w>ztZ20k$mKW!rXj*=Cn*+qPX_ z*|u%lwryKowre_W%)_0C`3L!s5hpXw-fO*&_@rVYV`>7Qwxv2FV=@6w5>t49xW^pu z8EpvQlnfZWfpQ`w$lWjOr}UW(fp?*e%o#oiwlKJ1*xa?;3OvUYgaoV4z!(p)%N0ie z%H_v#Ab6HrK;eX?P&o@=Jku4+Ggq!8ocTs59+9B8IoJ)?PlyBybD-Wc+qOFP2ouX~ zxGnvEPC#_*!jLWdbl?E=V7Ye%=!`%2G!PyfV|d1EA$PG_2~9@?U#{3_cD!hMS@zyn z^JiVI8tT4dJA2#xovNnQ!YJ|6KX+PQ|42mNI1g5GPzBV%MDc6DX!XJ>h)v6B=1D1S zz`cIZleQ)p&V4Xj^P2;b@FV6)0|Jaw$g)qcN?bzXAUBNJXgqWzBV?Z^Mit}BLj^Q+_`=9_KK2)N(Om;-50d*H_ zEvOR@e3d?QRL~tFY3tNs9Rj827en+@s6WzFphg}D@f_GQZ;C#OL>X8`FjpYnIp$U=76+@HKbCfOzK^oWHAhi!dGD+ zFBb1S)OMRLnvPb*WgcL7C=HCJlh1fFJ~K+%!w>j_JNmI{1%gS_m|=H`d#Z!x_7TR#^+hECs)_|Yk1V5xv6-V28cXXbecOrpfV}LU$;MlYrx2Xk2u2p) zJR0g*aLLe~+vV4!zz|>Lzu6=|H%SH0g|+rN<5ME*bS8iW!{qOy)BmkEy5iOs4jpVB zmjLwjN)Z?yjm_3inY6=^1`$)}lB9{|>XK(?mI1#t(I z%*7k3*7YZLy`SpAWt_(LaKexVJhJ}*1)UM~a%!>9e`>B2Z-DvM}3en|G zYTE`rSPEwa?e~tkTh@97En+0@QNSGz1L%6bU}gpr~H84vn3`b#dY4q;AupHl}V$IsjZHX>7@o-xt;o& z?u>!(jaAQ`4OvGFRlrLON?R-j;q55i^N$Y>hAk{m@~y>TwWPX+g|>2U0RVsN0_LI^ z| z-`kbIEsl@g>Th^dcW6!W+&^}j0k#x#IW`}z*L-dD95qS$4c`W-z&hb{GGm)5bkxEk zoA4yAKX1xKeKCa`AHzt#j-cl`gt@6Xn3#Wno#s;aFfjuGjtEC6NJn_FFSP(J;nJ*MDf-n!u-KaXTZ`Pq&stD}9#wF?R!N-+8BUU}G{+cr<;! zIvsXHyvT7uKqn7(jygpeid>P(?>;aEkW4;$zzlk?o6&8&rN&`nVgO~OmSJO(5ysE% z`{}?S;sl2h^T_+7<0J4kJR3XjuiOVQOQ_tL^QB&4W6J#=Az3}{>B86Hb~L^jZBUzu zC6u=ipw*uv{)!=ms%;p>z=EhvZp=zG!ogIf5?|?=Q92Bcfeh&BiduYhC<9fc2>GxAl>7a+0ujispWnjiGESGd-E?a(pGP);r+p zpV{lf4*-Jsl+p74{oPsr^LGbjV&G&>rNhId0^o?K;@AAf)<8r=*GRbyfvbc(W2;iw zp+`eixD`N)Na;sG0zwM&tGULzYiBfZ6m@b*1(fwae4|Y->umD_T$ZJOwtrT)^QOaPN2$?WH1D%BF{HOdD!Sox6aa z6kvmb5C%CE+Dqh~5;BDWWhhDU@cEnOz6p~>AZJleT8ax!*XkE(0PMGcEgSR#z*EbZ z?^Ld1zQ+gqchb|^Ce$%Cikb;>jEao8N5+ZUEq@SK^`TjjZQ_N+SA9TASL99>Oy*b8 zK{=EWO7t3I09Dab1$GY20~Tg#gPR3vxGoNolF!9~xJ7r9{A{Bgp*m0kPq>D4Ld0i-?c6TWJD z{fiKOY83${DL}yLi;^XiE;M4m5fLEwu)t0{Ax(0g7G~%@t*%fq3VnIp6(ioxXqqcp z;LYqAwa5lzK}OF>b}YLYD^}*=8oo>Lrvush9eX}2w;ggNSeL0r`7XC>Pl5%a$eb;& zU3@NxZ)9g|Gz6_fx2X(-_Afan#HOxu{dKC0(Bz*B1b~4?CW_P7T26`;+Lb+621(<} zHJsU-9Kx;Zg!5|mezC1wKC&*Vj~6F<2(Q1ogn*~7qOzy9Xp%030iuSUcfBQKHOH2! zaeJB0Vqs_Ww`-=ixnMpyQEP{aA`d1eR?#-_0vaNxY&v86>In4m+62@n}$c_Z~~NqQesVOJ%-KS>AxcF7Hn&c1J0{sH2Yn@ z)0#qd`t z`Oe51o;?KkJ+{>rrGgV<{$_}04V!oVQ*eC&!Qt>pwFYIV_D=l@Ji!$)5m6~6Y1trW zrDeafgSb1G=p{B)ylbASLyXA|Ng^igj?f6bxbxH0G~J|dq*IiL?>om2CGeVGe_R1&BjVip zM-MaGpnJAwtHNLWOrXAi1C@M15z_ScVeO~#UMYy(FbqRE@BURmiVCS4$-N3@w4Z|)j2l~Ub z#!WA4Y90wDCYX?m&)H3CHwh*qz@Kyv<5x(BnN{|Mx~I@YeE|G+yH7S}$MpJ6B@s?4 zcNJNs_Tga8gr!=nA^db%u&lYAEvIimbJ27F`-*H};_VT+;es_HD>6$0FB8`QkJzl7 zBy@*c>GgzyKMVGAHr?N|Kj7%J?yFcZXNh6?T^1wk@n#gFJzEO`vF4%#zlR8>p_aV1 zfzA=PIOf&w49c7xBX8ZGUgasJj{o;p_oQ`&aLl$S5!7TNN{ zBUW(*H65|pOk!vSEg3#*R@c*5(VP*f%5CgEX{@-{_wmOu$vdd~OiT!Cu(YX6Ra(?QPw&OVO zBnva^lJpkQ7NSWqo~bdxb2{fB11#)d1r4wyahN3VwN!d}ZA5OZs-9hu>W12il?&ZX zZfVaCgZ}*L<_quct$nV>HSg&s;52Jj!#Jvtgd}nN_31All~%LI^FWJws< zU~T5Ah2TVdmMNi98hc$18MnwFMn`KLO08vZnQ_U2bZ`tfWP$p@J?v`ZyXop3yt{42 z(G=H&$<;`I=#f&XbjF*6hKG%5j-PPD=6$K0nOv@9HFdjXxPvz9pk->5okJQA4fpH> zrDNM>JqZnaXl|!|@kS+VU401E2OSVhB_soW3Atj7J346s$oO z78rBXe)|3tr094X!z`2S6on}ZbBIR{)?}0sIRia_Au(-y3e^;wIWT>E%J75%CY?P^ zWXjMK>Vf=lhQ=g?(Tm~;wb z!(oHoJM9g|dTp0pY2dm;#-VR1Ms`i(!@4QwZ@ZHcd$Et&zW{STL%&@=7!dot7XRZw zT>@pm^HNyp3>-es>lcw!NS3?j`y!l>8LW*fo#LaCwZaze2z(>_-vf+$vyfg^@0TzS zl8hvw5j3C?B3_Rj+GUz#irauptXXk;h`V6C6kje6P;F0G3THsI ziPR;9yBI#%!Pq~j&Lk5cG7n=v`HL1vXmQH_@-4iabsV&kY$s9`jeZ)ub)J)Lg6g>f z#3U8{&a74)*J?y|U1CP{F4jSNmz}M#g*>@`2bTWPNWXm9=q;3Df*cb<` z8}svoc_>3A$6}_US$=QMuy{UcF35Sm(KB$<-#CO?XE?;5mcK)ZjrH^)!DCYC91=`a zK7~LU@ZsdIiiJHKBY}Sb5gFI$R!;f>Xi`aGk|0%G5insrRA=Z6o^L>x{&m$Z-=bcp zUZY;4f|3w_UAr;Skd^W&onQ#CB{>E<=yXm+(89X|8C{K%_ref+BMY--->za;25(w7 z_si2RtOdD3ZSd~&mbi|{067?Laq zeIW?um#wuDz-K%kJLm*I97(V-*z6tknqZx% zAe(zU#!Y|OGYYxJjCGmVF?b+$&M^1M+qRILaR_A}W z1%c=e0ztc#W3t~zOQie~K)NQ0HpO94`Lj@nabf7W8s2n#B!DpQ6pEhz0;me){%Q`sRdHwrvt_7=JC@pdZi5iKi;p{%H| ztk`uzZJWH^=z6=|pm6xzm45S4&!(1{32%`%IVCO?6$9_*EE}H#a7}06z&6|dLN$YN zJ>6=15&bCk(s;?znu~7RFZ#b;is0*7U0`9d)a z48@hqqx>g2*1v(kf`y}d*t4={(56i>VD z@8&wP8^J_#;eWb4REYf{9+)EmtW}iCtG0)nDlidml;Iq8z?b9SxAx@SE~{?%Q4U=8 z_Gnnr28GRWWuTQ*+Fk-Ca^)|ouHpFdAN2qu`-5z)*ML8whc3R!I}gRF&ZGQoDPCuX zvD4p?LAdwqzW%n$Q&=5Nt@MM1bMoKzF;rVws z-0DJ05|-r)rB4$^+Fp(DK2#7`~9Hn z>A^#K@4D%8xRU9Snf(<+sK_nIKQ%YW=@Lm+OzpSb@}w+vCh`y>p_y|6;UDYo;VZuy zJK(fu>O{QqMgP&qM-vfS@IWGVsd_cde>^lrE>FsMBI=e`GDsezsIrp>;D=cEHBqZoc;8*LOYa;|1N8~`c^fL0+xVc}B1C;b;dI-}P|aL0-nIC)T5LAZ*x@fzqYynlj>aJdHW z07M7`zrR*9aA11K1FI&@15&?%QWVjfa}U)YQODEvha`kV6aV<%F4*FZ9L#t#1#>(< z>ifakdiYJ^E4?-GcrTA&jBgeYi4)RajHzd%yz7T=jTEyfqDw&4aLgDsteoqUHHCXT zk6mD|7k*QBdRiLRa@^CggVt{bKt3xwMUnBYTx@7E6v$;e|KKF92wURH<*lY z9#_nmSgxxn)0KSbUgtvPn~}ccHt^q(!MmMlH^=^lC=yT)(5Lm&9&?~n6Dqi61K@}$ zNfeW}j(Lz>H%7u%ql7bSpMd_U|rgO4>jt5D?Vo%!U+}6=Mdh1s|D)CyCY*mCU$Yy3`^Kj zt>F36m4?}Sw6+{tpdI@pQAo2Oy}101{|D;`m>vxiN``Pe zifgd8LR(twrJ}GJF>qJ0DCY{SIkB9XQyFqK(t7}v$cS8OJ|-|y5NoxPvOqgKDi)Va zL!nEg1ZMnhCmD1|z%Au%3osHUhId<~`8^A1%z(a+h%Sa&qy3qA8N0za0uW_4@-tmT zoM21j%H5nzd|UG_f88hQE7h5c4C*uWFKUb+_@J=*tDqVH@0cY7k0F9Kr+9YH*IA1C z9BEu|H0niKLm~vqgllBa5vl!FQq0SV7|2w9pPOVDVn_ww3@3&|ImkKlHrh53jy8e0 z7$Lb4?(^;8+HDUnON#eG2asSmv-l1iH>aWd7EI3;`!FOqI){r7j)eD2-;5^Hlp}L`!Qz z_-x~_kJ=ReDr+rgm&OF%U|(6>(fgbl`|5GX0He{88pL%Sx6=uvpQU3bbp(f~nZg;1 zZIeZ@2$WkWW(xXiO;mK)WeV`Ah{mj1OT(-Tcb=^`DJi%e(oGL!P8e&Zx&mR0k%tJC ziA$N8$`a4y5103q0#;VMwGAfo(W_|rC1MtE8o__p*7)Vl0ZG?m~j3?xEOC8IMwc=0sii%6hC2?UUM(De-Fu} zgKFm9h6n+BM;5fN=vPKAie8jKy_n}!SoF0WSZ1PmG33~RXv^>frS@AXSwe?~cY_$^ zQt(bKn1c!_MXpM4`PgGZwmpL`7oX~dN(?F7`j2&I5W`0v2d{i3)Asow(9_l3?X0>* zXK=r+<7pJi0Cr1Icu#&M8&Ru|~|=(7c&O>O+!rB`uv6QNn(nk(|~sFgr0 z&Ro$R06@oIng|@)QmePDILMJ9m}_qdH#LT34~KbMd;H|`+>;%0rojMW_J@yf#5Jfy^#cS;a>3Sl=$ zHXKYk8>5Rx59-PYP$7!AEPxR>(^a^nRMCt_0RytPk~>J<^|nGYs(apJu!QuHds=%g z6ck$sEkfj%6L3@ra${?VFp~ymcOg>wrzABOTK--HtG{9f%8xh+XCrp1`0>b4sx>$r zhUMW*g<6PGmAqH5?|NuGVh>>dP`wCF^)Ce|azKi)aB?-yKx*euuF@pL)qiSUJr74V z143tVSlM)XZMW)G-M7e2x1nJAdu;8yo8hUzj?{xM7YoC`3wWm}UUn@)um61bfp1hc zVd#-sSlHgAQpfx_O~#)FJJeZ77-E)|@*d~@PQlxOe8a$q$+Bz|_JS^InZ-7{t(~fE zIT6^XDoKpqdV`HAWX_H}Ag;0d*!C^e0#Lmb&ytHWF4JTmyS-TGyN(OVbY@Vt<4@CW z+HnUv*_k=QeQ=9oq4ALQd?pDtAi7aHK*zM8V_HPlwc=E+sZYesQ!$0`6b{*42B`SR zDVwf-sp~2#Yilb84UT)8Sir(r?QN_TKx6B6|8Ah{4x@u_3H(e+_6cI;J7;Qf0nk6^ zbW%0$^UQwV%&l+0xvf6NqEWFy8;`o$B^VM;hn>BH9@cJ+2>VGte!~lf9zlViJ zH=&jP+Kl}W04@%{e%H9&xO~;yMvC^ItR@WnxPASsJSb8h&v;!ma8dEEjpPnv4jyK; z;~kMPxqUk`MRqOKBbM$r(Qi1!0RCuKe^xRqM>E*}ByQT@m>KJj@bueKdFTXBZrTWM zg?`3@)DTO7A*d4^6O6HvYXaxG?>Xx+tBu8aWCs&Zd;#%p)gJoz!;;84??p{Z&BRg_ zqw0(pbaeGO<~3lo5x^Svq1VTHF5Y{I`<(|JIQn;>tLgO-HxU~MJ&Yu8gfn9y46aav35 zFk1RD2BJ@yWHgOJe85ujrKEM?D77!EDG+By@ako*f6sG5jBZ}o0ls0Dx&mB_$Si_1 zT~lL_6@OImqqv+zJx=g-Y^jRXy7@?i64CJwL9~?x&(V-rUwpOXmq|r>SoEI?Sg}M( z!K}}}#%Bzp9a~|D0I|W?Z9vtzPXDq#nf(bZnJ^~H3)m2p!kS~NqJqF=L!IQi$rpN*%_N8Xbz~=qbGax$u1kD|?NK2lWhE1B_^q3;zME|z zo1khhw6EvRrGl-jY@RGgNUc!Vy96_m8}FP&MLdtm?Irxo0pd}zGHZgm2!vm!hJj4Q zx=M9$9ITx%%6V`fSQ<`~Gz1&hQz}Vi6+x>vcoGoOsN)?HKWqWoT_Fw3h!d|^wlt`qSjs}xRb;yT0rR6X!eYm%c0hy*c=Arb;1ivt4Z^qWw#uTcLW2#yXM^xWgZhg8!$2pn>pRCo5uYO46}c@LvIWHzja-ozjYh*gD+*c2|Utt_8uU(={@RNdl&TZtJ3UR z1q@CtN+IJt-V%kFl2d7dw9>3Fh+$yv)hNc?xBY$`R?R;hT;I~kUD@d`>X|3GJvd0HyM{l%m<8|3v8PSwifSx2irnIWMpPHIxL-M zw$@uKk9u>=$V2&r&8owo)@Cq4G!b~8Rd9TKdtWYBPG6Q=hJ?&6pv-VA7M)*3$w!uF z9+9t`H==l04z(n;G`S=^5rV9kNP)zf?iq}%)Ut$XNyQ3?_DoKYSDc9P%+8RV&NEfC zlW#0rU&>t4TEexYV~x#_>z1L-`U-}mtgRch#ysI?-X5f3bdNF~8jirl#uEGtf_{PiQ&^`K=;43d@2A$v zYBScan)*+B?Az|gCa%a>qA(U@jXV8LmHB>8mZ$|(d6>*n^GDzf$+SFJGh6>~9ZxL5 zDNQeu%T{JSuUEb$)F*r;h$)&`v}Q-@>{{9Nq`Y@*|CL$9kXDoKWj4Bty2a9)an3&f z7@1(NnbBnZI|y}&#ZYg@a!xx|J#o@W^mrY2s|nJn?2NLD(O09M?F3yYKt#U5siX#a ziunkbS9;H^I`UD}794B|YTFL~QJ;yR4XT7?nwN)1J2%7J-ztLbxy=(3v~R#*a5sqk z<;jfQAQ|Dwb@7phKGh)!a1zh&0Zn64lJI!(-)LTN*~7f}i|)*_GFlh0PUTLwStZJH zY%3W(jUY5;ApUAY@)2`}-b3d%7{Xwa#U}vBMV^u zHJ}*gy_lao82ajV7sAi)%IhT!S0HQq8R3A=%Xrskrvi%1;2!d zyZ0b*X`cT+mM5lK*?KXy1?Qx;+_W8-i3a|Lp?h;4g(qW{%HYqxL1#g2T44n&XLRm? zvW&Kls1I}q(zt(qz)BW}KKkU4-7vV1de7fK#H-99oMvR&p)u0FYR#v{m=M+BxW2wu z%`>2c++5H=J(cCPw;{c$sI1`7u%+G<)>T-&D3~|TeU0A=rl1@2;Q0c{X*&%(#WW#o zL}+QwWZ8JaBBW=U0WGWeqlsAwaqU3cdaB;3{oX2hulUH^42qtfX-K z?u2v0yTH73x(i$bF({&;VMwffku_^3p-KB`>IUfz_fwc3bIE7E}OKfVWdJSxYgA zek8WnpHINY0v?wxhlq6q40U)ER;zH<0GVHH^CcgVnXz*N%;^;J?w)JeI@AOHNC8UW zBA$=|Bt%|r-G|=PdrhN@nb9g_&2T1Y!L)NjTdsV~p64w#Qe=daP-PnQFc`fpqb|%e zMkl&X@0mx8+7%sc*+_tkolOrWXT+L;;OqCz3~vWNwYC|IECaw`{$w{sPsYb zCkLwY>rTS4B-`~JQ{w~T$fAX88UiPoA%m){hZVl)D(JX zB|?#XbN*@KgEn+stM5U+4W25%s5Q)%kiguG^8WIayh0o>^i5c*7k4jm&D|YpYAV~ z@zc%W*_a$i+FigdCJOEMT+c|YtIzTCrwap2$={UF%lJ)*H(N(za!i_e{`EXCya5t| z!_{v!TGD|AfMO65{u_o4@Dbmvi@?Xup-Y}}C4AEF2C?#+c@)ENZIoUNu;5^DaJArN zR%Nwi)*#iyBr!P6$-1B_SLE(in7a4X>d#D2w8ZA+K{mj0*Myz?KD+9eIJ!HQd0|Tj+Gc}-W}|{wx8}l-$R0sh>%ZOtcm)GL9285 zDE%1D+Y?b`X`#H4;VkMldDd6>vKJIcmk*Gh6o&D!nQ2KXwiMF?q~)n4a1jZFIR|=e zRLtU#MIwM#32JL4{cPD{-orj1P%CE1r{#bS!RLD^BDqjaq=Sawx6YP9-S8c76SmFw z<7CXo?cDQ6GD3-zwmzUOR?V-MoY2xqqoD1fwmQ1i536IZNgCP;ep;^u(r!5B0Miv( zOl@<**LNIz+k>=|q$~I&KUM@IpSYOmTGBlf#TsCe!g;kt2<0zcC}$#Xk;Dj%SuBdP zzl!qR^9aOK!MEemRq2Un+jo9;*bf(fTmg*0OyceM*IflC%LM<1>!;=Dm%H#AIB2lB z;NUJRS$HSknUyC(nw1a!v*PXYYe+B{*f{GZ>Xeglj!UwRQN4fqB!o|@=d!U(7$hgReO^6ZPrHE2mB(-v*SoxZmGw>zni=LP&J46$cJo)j*zez zXJ`RX#V}hEKZYX>DKi0`82DI17YRn#7@9i96d`e;bU24Sb2j3bGCMt2>5+s7Q5ea4 z{0U~F2Ts$skxsj8JIHZ{yk5%U+TK-j1p-_T;;H=jE8%y`qPbgR{cdeZX}&&X1%xy4 zHyUP#tVY)TxhdN?izsh~SO4V>O;fJ1<&?L5Sakr+aCTg(M*@}6bjMgyjE@+vPhTnE z6vtXHH(&`)FpO7FTFSN`?jH4$LmTEDI8V*sKoH1EUB zOtWL3{9(RCs*%C&_!$g&%>w@W%|`T3|{Sy^N;BFIxJ$hSMENLog9{s z6?lEXtRr^EWNi|98p3o&jEyc}tf+0BrM)k7o2+r_i_lFG3^SZMQ6WX6@&<6}^Im90 ztvyNLL)XY>F&-9LRF4ISfkjpSz*2IU3zm;foG>;-oFm%)1piv9KFN{l1ySYzDmyYd zu4vf>nz)hsRgvvOfgJM54f5QO!-6N{IgjUQ%;{)4j*#m;J)rQ3M~XvV=&(AU^p~f_ zKbrK66ysa{TQ^)euGjRtkNR~A10hi(4S@sdZ-H>?ux03g7xIhW$OGrhR# zYwan*yZ8_xJ)-t z+TWkqv|<}Nvf#epV-W(}J;L;P=?O3li1X*mnEDBsZcJHs0QPCQS#_WTs6}5v9wh6C z`D!Ur$qIQK8NkKLtc==>Ugz2~r8i727_T#D>lOM*^MRTKwJH&!tkQfevg2VGT(JLa zhA`Y4r%pntJ?(qY&tSKX6p)hND85e1eV$dF(G;?Nmthzgd0p6HlxK&$Ew{nUyMfaN)>UDnPX8S$HL-w&|@IKxLv-12aOpAnkCbs6?3zQeW*ac zIr$f+B!C5snlsRfdtHyqBU-#~!^eu%`_~uo0H>vZoTGrFKo=#Q7L*v~Cp=!=Z(|f) zHW;Wmd?;^~509JiokTTD+W`-b@{8N*RE$vND+4OfyRlRPI)<{P4ahkm=a3EeHD`)b zhWIzaoEWox5=Hk$(=U%u9If8?e8yYUxuKL9bO5-=oPB+sJ;PrQ(7eR%vgxUhV=S(p zDd=%T^n4$dt?^lazVTF>fC#_%SZuIN;XCc(Xx09s6~p4+MwejwOaZZZkFK9tRrOH* z!ho0gA~=wTy5{sy^MSY%VB2mwQw=6gp9$&Ou`s#-1W`GFyfR0Uglw+jyj)J{Ip~V& zCSc|pgR>(Y*G6A1d@u0xb9CKUsWjqy?2o#&v1r%XAR|&fGA*Vfa>XO<{BS;L)<7~* zj*dWJScf-+3@%vCDO1Y4t7U61ax#g<{os_`%?V)}fiv&;IfE}*yf`_fc?EkHGsP);UDJ#634Vov%-Zt;Zn z72Qf91e22}G;=k=$<}l|qdwd>2NCZQp^y=CpeL3sqQF?Qn0#V(Q=}U=?J6L;;}V?` zM|kk6pg>GRI3ooBZ)vb%XKDui%67kM6#`7 zxH7*odkPO#yt-#g&Vh*BWkaOL1Gbyyo@U!*3WI|$@dsk1id3HgP4{C_Q#B&M)Q{Aw zWZZ`q?%;f+!5+~tGhFZ+fQv5-;3$YW7UR${yIvUI1IO|2m4+2geId|0$o0q$ooW$c(K$~pDVAQ>= za|FoDO>Vw9aF+iW!v&g3X;P8upb$sqs**=}{S%XRsI85cc(&S2!iEPay%gvG@=D}Wf(?c z4x^FE%|xypdP~Zq+fMfm;QNhYi(p`J4%RUC6#Xu)FY}3-?)u`^I;yLh&1OtI7#Ox#2k&|=p0@zl6;ZUo??w#Mf$5m!W zuj>=DPWR{}csOm_{lxbe);~Q;5lM(U1J5K)f{E}682e!%g_d_Apspvcyrh0(3vM)D zY!zMe_g_ujX{3L);w}JGWv%yfO9;AUs-UhRm2ipjX<4DAbqJ z%!1U<(FF{DP#GH5oEC7@(C4>$PYsqFruNTr#-J(dxo*IGQ)+g$s!NSt4@T^+D*vf~ zKh6vnsxrLK5Q%DWt&&f}MKR=~w&%G9Ynx0ox*QEg=g)VlnWppbRF1b=P&(u zImXoq;3`Fd+C~gx2)Z~nE_xG;8a}H`s%pDmg57KbFa@S_$HO8SkS*^3vUU5S|A)Zqa8vW+`4S z37>uiWJUC(Xji;Zrx4@o5|6;#?TFNpk++k_kEmFc;4v?A{;@W!u>31VU$A~qTd$L- zRnBj2Er3`3A}15Dwlq&A0KL~^Ewd9Za2a4ZbOzV-upuPXzbw6Z3N|@0AjA%p#O*XN zt`gwCl;AG!$Hz!6DWqpKpMLLXT zp_%`SL5fs@G5uKJZ1XRDCVni|s4#TgtDKrk&Lh#((n!$yu(oO5NHL*7fP_^8`7p;7 ze>9C!m$}}1CqshfOsYFti++?dRiBikvh;+e^ZN~v3Ui(Dp1mieTUxDP+FSAdE}&u` zutl|_cdeBV^ci7ZzNhXi5$Ws>wJoo{M)6h!{qgOI^alOC7QV98YDvyL7CO2Ome*{t#!gWT^0oQOKnfX9axE?D3w&A3MS{yC0 z^s7*s;v$)Np%j*M#e!;3D>eX-}PWD zbE`X!k3GAKhXxQv$1i^hHHw;B?pZx-D8lHNphI977^wOxM$(ysH36f&GDhnCs)qzd zIV3hj)%4H?W$?W}!M7kkZ|%^Wf7P|kT4ryc?-}i64I=(A3_gLYMItNlvJ^Z3AY51n z9=^>xyK0hS`kzllKP1JVF8a&G_=FA3&SA3PbvIpCY9#RPo#C91TsB^F>~P)QE@ATk zX|>;I*8kXxBnLJ2;ic$}R(k3W_r#!wZMD8qg*BpIz9Y`_=X8FlZ$Jmvd+@FAAK-eF zcfh7yI64i#(T=7{Z1=I=m)!sX5Z>6-r}xHVPe`Z(bh3x5;aHPTGTtK#6A=C|a<`!#wveZ~bQ&a*gMk!$w9ne5}71WAI^MnAG6|2-6dNk9WSz zX7RMiO;EbQfUy&IB#+LJp;UZyko0%B+bLW+~P-oih>mWcATeH)%wi7lrUs1O$$cy{+vuCg|<%MMa z20DH4Rw@h$HUnpa%tXEjKo3U;PrFwmO*K`FR*k=WBk4BS6E`Q6kAK%wUYUjlM6izo zyoQO>7~c6t!4j{_#zt_>cm|%)*Ud86k1=Nm<5>)i_jjz~c)2IGfM97!vwl>)zRZXg zPXfGK+{itKgOr{$vZ?BU-TI&R`~!Ra$%v|%Ya-5_Mjb;UV=*iMkXAD`{UH?NkI;CN zKf0RWbzA3|*V&z4gtW0g(SHqxrJh84Qp22wNh3qc%Gq8%vINUeidteSgyWonZJA*y zLu(IxflS>L4J(V8PHZXpI%kiZHk;|(6Z5x=5m0ZWQ;SL!6}(-VM)O#FW@sbTTLe^5 z7!fG>1r6`deu#Ssa68kPwb~WW>21vNOnK=?+z^s(Mf4%LxUQu?|8=6Ae1lHuN%@ZC_?mv!?Gb|8HcaUDZZ_LUO$NVL&hbbWNH-Ub_04E-H#6Ttq)la9V)6%_ftT}6 ztcV22*p_*Sa|8w2pL~Pyf7m*w=1ib%i^fjJwr$%^IyO4C?JsuHv2EM7ZQHhSyUu;N zx9a?W{kW^v+I!A1wEqZF$_l~<-9#3n!(#tT9`7}{0YZWV3gj-4kbF0SYl!yLWA### zVVjfM=J1s&^9&OBU1?5my27{P&~ipxFvHO6t0{$1^Hs)=j>gy9BktR^OvD&pv>+il z5VZf!e+LwNk*!bQBa@kOQkrl>vW4GNvMRSz(IHsVI2MFOG0fG{bJ4QT=dKJ}34wYV zsid_F12S;rZYA*0@Mp_-BZqZ5|LUc{0POMfUMOfKu39$-Kg>tRIjzZv`%%tim9wXH zxsiniz7G%Om_)s^!ee9~q$$1(BkAf(;_!SqNT~R@__#>c*d=ld{6xv=rx8gMEfi{{ zcH@xDpLwHC@_hE&(>GRX9#@W5)0rdZr3g<_0k=q1xg=}?(2a-$B}>D*>UUsF9htwS zQ-;7sc*Hj#h8`sTtppdbXjFpv)<8OzUXcy`Cku0P1Vz6pP%E;;)3+gM#V_}O? zN2=$dJ}UlgCV%VrjMLf2TxVS>=hgfIR_qHOi>g5+9g!FAa)#HHOK^l(tCS6vm(w6; z^&~)L(uL-+dtE{%W^-#3VQA@-e5c&S+$J3usrl#Aos>=4(W;^)8yU|FWC zuY@^YnIG|sAM3E2-}mU*+yss~oLaSjP|2EHr@oCNs6Ph=#c56bUyV+D{()smobN7+ zAiQ){0}_kgK_Da+F069=j5Lf9>3?;6b9N?x4(b|j$xixE?bi;Uyf0tYKwND4xR{d4EW;7 z*bNreQ^z~MzuGU=r3yj?#db={2;l@&Hq_3tx0 z1?d-Um>$C_EjESSo&R^QMkK#`ZVZso7zfNFAD4*CE>TJx{u%=Tz(%`-U_n? zPL9n$iHiBayb!)9{GmfBT}Jp#RmQeRngsH&d%pXj#93tS*@C95K6Gy=hqlO=1>f`) z536wVr!Fi|^b3fmdaf9eY=29npMo-Uk!i1rLy~AhW{Ob~c^}RJ0PUGJf%I}pD*j5! z-WLn>@7q5)KCU0iF00QBeB%7CPGV-z^LR0^ZZ{_}tu(=}sK3R>d{pPT!ScSl*S(K{ zztLSy!kb5rpApx&MaAics1);e6==_ZXF1%F=&U31Ye+Fp_kaS8%ws7mo9c-6{F#J$ z-62`sWP-^~k$gpD06CKM^Swk6W^)ztt-gd7fie5(>Dl;qj#}n9X^!Lb>45ey8HB1} zU7NkSJRQYkOR(rMa=uc*oP7EDnPKq#G|Cl)L>;iU!mBBcW@AS3%ksPp<*4^>EOXpz z)Dj$KWaj;brM0`YSomRKWt{Y&>xc_mQ=AJHafz}MI9p^00CqbU5d(0(ppn902<@Q3 zzKJB(5&}@Lap@=rJ_qtWK6X1@8R2sMN-1-B{Ss_#hdVp9^tjAeAg}g3!ZE8^yzT~@ zvzT;D_a>U$(4R=y0LR9)!r~)Tbd`ikX+%JbQKUCB{F=U1Q03tP~n2lJF+7hAZj?Sxw4gMYB>nQ;`BX{7gXprHTAZ(S5zcQ z3!|(l>}c!Ulrkt^*vJPPX-FnPW<{i~dT&?VJp>c>HX^s+J;-RR8Jl%Mbi$|}rYP2i z6-^62FC|RhH7&#$6m!%sKGr!3r$*|7c~Fm>Jl=^PkSgu1fQvyFT&N=A*stCCJIW%_ zhEkdu7mrVNINQ1Zp)|SrH+A?_xG+d2^>i2q_!2(l^U*MV^gKVcBo21=&>|BmKA< z&Jn>0KpIhuSn%jF!yDy0`}eTXTT#F!f^6}>4Vx6i8s8%Uj^rR*Drul$46*5>8toma z2F->JzUG9xaf#KtvRu!u+l)zlV5DH?W&FY}iTUj@W>G<;mRqCh4uS&0j?5=atBvno zT(k_Nnb{rIzjD8z>0HYtde4*k0q09W7;t|J5T2uR@j$FJW6W!r#C4T#;#We0nUKg? z35B##WvP37YCOMepKn)Eh71)C`u-?F;}~z&UPQa)4}|)9nA5#i@~|*}er6T!!Mke9 z_RSh;&wa>OxS<3IMna53OX@gnU3bTnv0(ts}i&2rPp3nMHsH zn0%>ok<@GZ3NvWA^WmA>g`#<8bZqmxx+8Q>v^I~vYf;mr<0P5>2?s`2f-i%n0xIhr z#Hn{GoK@NIY>pO!c>vr1jl_R^1dbKJF?^2Y5Pmu^JyWz8j^@7K;O)}GBV--s!C7&z zza0u7gxKsQ?~E3wVlnQiA6zh0_jo zFN5Bn&%oc!g4VK=L@q1@)*Eu~v$0{601Gftlb}OO&>gbiJLfPFZ`KJta2FJKi&{zn+OwESpS=)%Iun^$E6EU$e1;M}-5y8NM+~K8Q^eV&n5Yq#0BqHQ@ zEvfUNg2s)Ch2ReJz_6&RS+9<42tG&7YbUSUt6Zk_E`Da#e!ibyuDSr}^^Jw*>G&5X z7kGewkqXpY=oqbxYkoRPc6t^nYMaA^j9X-~sFL6mIxszAO1h~BsSWqD;Jf6v`4p;% z?-lborPuwis}`KP?fklR6L~2ME%dn5WWIs5p`j%TvZt@cpw?HoB{+v3bILUD^u@xZWGb9b@!(?0$&2omEG~dF zwfT%Qc36x^h{zo>9J(voFIrgI97%O4924ZUgh`2JW!KO;qx&@SW2z5wwbgGS2C9s| zeGu)a2r{>*5Ka(|8Uw4}20{p?Ch1@a;ruLqUJ#_h$lJTS-^Ck994k8WD(?eIw^K2h zC`=vtAhd`WqG|_<91Uh)T;>7OflC0;%d!iyz}b=ZB!^u{Sms46SYl>FKe8A2f;GxC0Z zy@gaKJF1BVsv^O_t2`-Rn@PL%w_6_Hm7PK6VSg8I>|kzNp&Q^E^}hs(D}?~RY`Zs( zeP1trGTHjro;x(vDemq3Z^ldg7y?jFAiP{N!J512$poP*8n#InhcD$FVH#jHT{s>F z?$#nrC1~%J+5^?)tc|{@Uk?EXlacG$r`p88&msr}KS@8|w2!RN_{6|d9HheRo{q(1 z0V66QiRpZWmb{X@J!0~vG2tXK##I9N6+c*APfsy3bK6!USme$&EkDH=o(`9wZzx3A z>h|Uw2XkP)ptONusn&h(%KkR zSzc}c!tGK3%qpAPA62EA;qNMjdLq=snwfpG33T8V>+c?#eZ==RE7O`b z%;7|#v~F3j@BFA%L=N?OTuF2<`=*<$j4u$i0c@xipxp`GFMU;GIyYN2QIe{pm7b_nU)F^3SJ(sqF4o> zu{p4LU<@{n?3n{p4D08MLY)vE(gs2W-{&$#EJ|SI2Q*8U)pI!2n>#wov3!HCjN|!# z{}5RR$&vhX+-#yxFm!6VOGqHdI}(0`F3q1Y*Z-7hc`7dl?kQC!JjL6eS!s;N5o4|I z-6+jfb-2xZR~j_M_^vW&Jj#Sb3zO1=jap^#T(qv&%og8}vdt zrg-=#sAL${4mI$po6y!-I)Xaz9+R|RgI6Cm28qBZU9QtRPMQKEYU^tkW(W1!7Fh?~ zgmu*hB6I^IibDGl+QWt($8nU&X^5(fRgdl;B4r6O*IsRs_dnm;(Q*yG0$Ewy5pKEh z6><*B-T%3#5(WAvCw6|Kkn7^lLh55U=zsRYp=HDl3JlAin0|GM;s zRPnmEgNj79`~|aQi$MWx<0xnfuRiaeM-Sf(rosi_GF*mRgfr9AMxs6FmsE^m=DWW} zteQ5>sw_L-4_HO`N!s}Gw)XX3fWK(a+8j%UTd$~N;6&RaudiJB$e~6(*YbA@$kcM^ zr-pwQ$p`e;23_boMxqFy{LSK?@v3(`){$#j>z1#T2=^b2HQ|=a!P{#Q2G7)_$QJzK zP@(~3=Pu>l`}@2EV)@*wWgZcl^G#`qUpq>e@8NTDG0pto%(ec3W065!eJIn~OlhUn zCV&6SGPeV#e>h5l_1meJyIAIh4vQ>iIIQ-uQ0}81E?} zMB-L=BHuLDm+wX!?d`BR zfZ`Dt{kU?|QixF7!r0*98Gs^b#_SUIl?KDCE`Su>bpzvC8GA*29}%-!%kwxU^GWUP zJ@~E(d91AJJ<%OfF=~jbz8vng4JQIV6RJ#Jkai;^j()O?pY{@69 zV{5_JSg8593yyo21T=}uK864valfzVL2omhEMx5~44shs8%>6kLy&#rP+*UWCeD!D zr=@Ef(-ds+pKt?yVK?jXGtW0Z`-}lRrUIm2WP!sGiN{aGrX%Obtmee|Xd{BYW) zCd;F4b~AQ|uVKyB?BfjEzhz+7Yqum}?Km6b%4TXNTZ~%~LJQ3%-1_E)|#h=i;tKWY=(x! zJbmJPo$972w_PkX(&RPP2#mhLn6rv9{@dL2zwBxNCo9|ko13yc+?-KXnqQzs<^?Ik z(Sj8t3WEfp*aQg$C53N>Fl8Z)tlRW8lT~#{HRG3xNY*TyO~#rxdFU}g*;6fr&GSh8 zh=Rf9?Yc997~0G-4?ebem|G63U%sB`s@SXwxtyNuT6VTS!i0FAQ2X>5-2ql9mD}A$ zD~r)(XOO7%sZo#7Sg_0Tf04*(mPZf7_Ru2FFreSbAinO+1CFC}-;h|JP;V-99SS6J z-4ve)js>=(yweDYx82eINW6{&*QA@>Cb^^iA%`gl8$|*O3^Q)U;=uYV!OLbfoZbo3WZ_s=Ogpm47^g-g>(CX`DW1=lcqyiby699P~yGH9z; z`P7Jw3sNUHC8g|N|GY@!>||9WO@zO}X$Fk$kp z5JRC0A(MnF4q_V8GR3$jhy5#WIDv(_XJg7MfTg(myT>8!;sMAJYmiXFr3NnsjrZXV zVVIIqe@_ycBHJN1gmDdO59%1=-?200Xb94hq9ffP$%LB>IvRr4#cPOFk}o4#g}V%T z8iLlvt%{1GWQ1cH!qz2)ku@W2gyRkVHpHmQ&_MaMgA^q>e2$bLafz+Sz8?u?Iv9!M zMC^_9sN9kBP7iPtF66(rn^aHhs$8RmzCdaV_%u13j&qY3llZ!8w0o>5NRar0|8Smq zTz4>HIl?sJk)8Gd=kEI1KsED?SQLS6IAc;Gz;VuXyNQ5Hanf?~Fmi+YlRBRJJ)Y!X z*QM~WAAr%t(DgIlmO|0JIh8TWGn6y-Bd+i{Ua5XQG7nHoQ~*uE3oRAH38*ipd>of> zKFlKFSlbbbK)08*94ZuTq{HjVi&lhcyy&wikfP1ujP6xYKrx8oGZy;n3% zSTk-g#RW`G&V$SwySBadF2LmQ!BM!M>j3{LX^5qU_*M(DswdV!e4?q^LbB>8Q?XezAL>9c z{&)XqxsH~_G5b2;w7&k<#9j8@r4B@}2<)I|%;`Y@fbE@0ysIF^8#nFFx;%AJa%UgR z7h~A&P?%RP*!^DmyvQOe)RM0e!q!(loggXOkmkbFoOW4aIbDu8jahYQ+Td&heE|bW zosr`g=g&Sl$Ejr^u%NJg7eIB&bDdcrck7R@(HEn2^n-i6r&nA*J#`TGIuKE+_wtqY z7bXzafqK8j^^dFm1|c77=!V_B&15=T6ie#R*qE19SXfS1%A6boF|otdV`I|2>Tt16gTB=pUV_I|Ls85}{squhl#R8_l$+f$= zFz!N}6WOU~0C5f)!@BLqC=h)66;SVNqbH-TrWS?{%tNiI_B7v7K_uGmy=>Qil6QO) zQb2;<&dTwy;#KbIrAd|?p3D!#1h=_6e835eHJxO!H7~oLtkiNzNlOwD>)#2{u$q-A zzMR}pJAcX!i9R57r2gzRJ^>n4T|w_T#{S}w@A?iup?>p**PcEhPKR@sdf?mY=D ziCbp+mAF)HgVAEFb`7>6IjHeEOsj`J`V>J^gl72{JC?afI(fdR6#_$$-uu_|UZBi9 z%g0~RCNfBjkp9^ymq&oiRa9{Yz?^@|*N{bHjKhn#-g0`~! zZ(Ic4sGbULm3bv(i#)gnA&5Q*UO%(DR=CQFhqDWl!KXz^U*Z2;X1(CO!Aivo+^9^C zMu$@dPZbaaC|G%r_eI2&5MS~v4+X|JFhgK{v`2I3-eaSa(g-2g-!X4 z9_D}oukw7tr;TPB`*E9RAk@AhTzR9jx8iB-FP+g(eia0M(i^dy^e+8}ZkIFv&Ghqn z!7xZ(_7*_f;9*Ofe~NWEgMeqbBI*R_2HKrf%1lnNDka6iqTf&UE?Wg_JT`a&B&8-JsUDb}&$Na1L-y9vujbQgAfz z?s}0g#`u0-OyL7O&rp2KR>9PgKW4uG&8HMIZ0B-n)!MF)gDCSz(r<7?glb5uHy3Wo?%!Rnbqv7yI5{Eq_p&J z6#(E|;JW%bhj@)(+usD&O*Q<3kx<}DQnw$HslN5Ae(`c^Saa1Ykj3fmf!cx!`dIyF51oTq2-{4I%UAOich6m{6+!E$j_PYfNNHwv`^c0`=Azc+w*seQoUU z{VA0Q3F&XPRui@7LjNPQ-)4rg&IqKhy6T!3^JSdcyAaL5FAtix(%qW91XQB(_%#!F5Rz%aJRZ0 z%tR%$YFrQe7wF$DGiXd+>{xge_9`hA)8cDkxoWE&+6p|ndIu&Tx6(x)u!XgJ*C_~o zM&JfrBaS`hGWY^a+3~AfNCc+e14y+PYNBx0n3?^G7}O@?pR&DEkn149W@Z5Uo)@5J zXXf>YXF}-XrD3$L4*9EB(R)N*5CU~LTs~+H#lDBW_=;d-MAcFaGS{9e#73>aH$n_b zS*!@M2otqHwF(8Orq)f8>G=(N-k3B83Zjqiz=N)o^BVt(-ONG@JH~~CqX?Rokhr~| zuUwquP|QF*Yho~!N!a0ddt1Pv=ArnR9&3(p)?|ad*RG20(2%e#;!>H$z&4tI=3P#m z2|_))hYS8J6z{K^1t)kds?{-_Naymaweu$N%r_UIWp1}@3|2ql(2cVppPm5fj$M}* zjNrFlURI2QP-cy6qfvLKo9?>74TCEnBXb$0_psTw?S$fE?=0g2MwkE@i4%4NWTKEW zFInttC@mbdi2_4C_M{LI=9zp(zDVd<3AlHrG7*^`wI2*LTQChnmor>JN$5pB^~j4o!^Ra%;D7 zW+|=AfQ)=zeNWif8yP?sCxEvaTYacjPu@BbqGJ0P|LnfWXj zRpr-{crweL73-;Artr&=k}W5f*4dAxiOy%V-n};1KRs=q2hOClyV+SG)|@%5Ac+*| zt1GkdgFdm}hdw}wY4W~Teft&16FBxgF!RGFqvYUs%4#5aRaUplT*x4rpSRadXzXqv z!TT-_20`}E<-oK&&|4w9i)*il9NhXhC&=%9(ltBUr9j!s7TPI(R?E{ZK!ZQssMZY& zhM!38pr*>AFT}7?Q!)1j(k<6(>7}{TABh95Ti~~pAv3_N4DUZ+)lml5^*FLTsA=T% zr-GiYtpj&cnExIFWfJwJrvBx8B7s&wP)#A6!lo$WG7FEMnzDQs-i2p zs_3K8K8O1cvXWU?cQdqxjl+5jtS-|Q^i#iOS{CVSQ4Q7@Mm}*%_02$;|A z<_85yT{ggggE=AcZ_|9_P0@CmuWWQdUkA}vE5nZ4%0sQyoMJ;Oi5AH7$T4!!+{C9()HN?+}faOf7O9kI>E24Vd&5 z(|Q4fMAgH_H7@l#f%iwog7!nQBcdmaSX*c z8;?gaTgMrR9L-r)y=3ted$a8VIG3T5)Dv~1$~FMcNAl#BLq@Q z6^Z!MbBMNz2ZVeXN7t(!m+pmnwT}S^y=C@HPe@w3V{|IOY#3n=Q&y9Qj3rgK=UelU zCj|CpEaM{t>P{oa1 zeu%Kw);hB&Z&TkL_@=Y|3=Y7mZ7-U*u%I4#UdN^H8hRG?Dp<1X^`Kkpa0LNi7fiBa zEw-&2sr8&kJ<@C`A_B3IT}Rqhru(xcALpMv1%f}py|?w5ab~|uHU@>ees>8Vi?iId z&`q)y)e!3h3mPDHv$e)Lt|Yx;4^%$QV9+R_j!=dN$)wt!=mSXCCkJ=l)96gzb@+RO ztQGUx0DmO0hCGelZ&!GjL)_e11Iq1_UK2dr&c2Hq1EiXT);d_^}WP8v~Ge zwy(YnIywr6_S`QdM`kl&{}%P)_fm-eWp5%s*!FOHKjOO-3ZjiP!OArJsEue`k z|L89mTP@$y65!I`nL%POacACokDEcjXSJKigQv_{)~DD>g7vWL#k4f;{U0Az_h9#! zIWLZ@yO%oA^gsNM%m*zn56T37?QnFIX1yCPSb{>MD3YC+fA!gT*P4bBdWyu`1KcUm z$|5V?b`2Ngw_5(fy3h`8{5th47)N&1oJag=0jz4P6$bFO&b z*=q2~QNDnE=}=PNBHFf2Oy{BKgHgB!{;mNt?(S2cge;=7x26H$D*osmm6Yt_SN5~( z)YDt%~Xnoaw)6y?PRC{qJ^V7rMs7A{=#S7vD&f#fvZ zT_^aq=@{(~1OG~rhOlsjc6amH!^9>PQF9T5ImU~fNm2E0wrRE&ScyX?J$|95Dh~

RO;HK1}e%VGt>QwbT)I8|6fHrIj%(wxL%536|I&1o-dhq=(LTB8t zWZh&)iBqHP)kf$xuReTC4{q-&(7Z-WA;d3nR8?KXJX9r=2I#lxV@oBs6S7mgIDDwN zSiC#^eyQ|HB-wB5&6iW&v@LttpAQATto?{Zo^o*Fq^aqBOK``guS<>8-*9^UQjU}x-e}NR>d*8-F(%#cxHl_B6bVzgLcF_9a$uN*yig!gy7 z*9|HNUdNtYJutc;60W+6MsBq0zft_w8~M9O^$XDgYMT&j#wmsTaV_Yye^@}}f(p*6 z64#nE6U;Y_56dq!e)$Q+D7i%=ANun)s4z5dRC$ntdpe9tY#F%rVSS6}5@dG+zLanX zL45&L5G;RHjTCLfpc73~6u}yeP1DNpU#4uHFbG1rYA%Ynh%j*sGdod$i(<#(im>3{ zxQmqdCIulFOmp)C{7OJjQQb53=Eod43Ho@{P6{)vt@4v9472*k`<+ty%9%}W#Azs( zOcS7t6Ques$@LIU&CdaXrgIdW@zx%mT4De-BV894k%G?O{RF?dEZEiE>Gfbi`d`UVq}W&V;URY!OQ_7Mxb5Og=U65il!&gEL<#mr$7Lj zRp9`pkEN^efm;{OZmvabzlni=UK&+x%f&mP=V@J* zsA_+xRL~KJNAAzL;-QmLCnoqbzEnU6FF0AX!fWixUXb!x#}5&su}ZMhgz-{AN~k3j zEi*yt*kS!8`nJXFvilRmULYi{`_Bt2=(i2fbO!-bD~N<%_j0UVlQF3o)zWI8sT)$Y zWw4Ojl#7NW7fjX>XU|5_Q&}f&tW9E>TM^!B7jkrI7tSdpnsG)adr}Khr3QcnMXuBD zL!-hel6`{t&y?y?{rRUj8^P(J9XUy}w?EsThCnzgeu`O#)5kXkhHQbLv)+P{*e46~ zNzX!}fxCCp(woJqgq4q&JteKniIw1R9jocBsKiA6v3St?u}39Uyc!H#D?X=dHBqh@9SycCmn?c?r+gH=K^bW!T+OW68MFajn)R;SCW zx7)%Tg|09-A59RX-w-1{caH%=W(kE;c^VK)>cF1c$`KITEJcC3G9sCWF8dVa^3{_0 z%Z5V@8iD?m;ybm&zX#6_jCS1$suq=lVqfG;V2nPlmwnHahn0XWiwq3*Z&|cgpjw{G z-_=t{W7#*gpuI*2tC!{>#K;g#O4?%Nt8mL|ErRkRE3teyPYUT^Nd`8pCaiU8aPgVT+)~s8lYfHsbkP#ZV$Dtb zWK~(846U+4kko6~I9iegEQalIxR?h0jDSv9y=yMbXSS9f;HOM_;dRi}yVcLwLV?ya z)V4P>mDBoCK*Ist%8rEmL|Xrtz_MBXXKE)((c8@`6RP!=I^dj%qtpQYUw*tmDi!F4 z=Y7QXHwsen6~7QnqU1fV>+!DaktuMd!r_>^gjy<~{wf|N$EF!amPeT^6A}{W@Oq^n za5uzUwGm#bvITn9H`Uj}Q&=b~&2<>Zj`>o7y~TORiev-&;vu65chU~}?PR(vDd>@8 z+;09%L0TkzbQmGrP|5%sI{xw0!nLD8#8dp@oFt^!BcOwGkJp>@2wl5fMXI*_RXw7m zf1K9;sV})%XJD4DXUUj;>t_kc9-7oSr4xc}?b)$ZesaD5Pt_|(P3>TC3S0%B(zD`T zs(YbYZtnwN_KUR6v6&N!@)#_8ljljU6wVB$u z38dofO^{uj%xE+#TVQ#k6z}7`(5TBZ&uDTH36fgxzo2+a_i2|I&XjI!6cv{-ay|&Y zV&=M`<7o{7T5VG%b*f73*2aW(7(aHzWz$-~<%ABX*RRyb)q<|Kr%2Mv-Uw>T<97Zk z*)u9a{BjKw67ZqUkN3?|zPvS*$Au6ZpHCB`k(pJgO`EjG=IhkD{krMtSKoL)uMYTC zPu9S%o40Iy=QmzOr~cM7@B@CW8%UhYfK;R?{u*)CcR*Rb*>+s@CcJQa z=MVPXHF&kt8z+58n!!MV8X zd~Eefz7)pqDxIl@uVSJgYn0$MR;EvT(1VA2IB`;c=>FzzYqFn+KEe&(qD=8l|noV5mi zW4}u1z6bey<_*ja($)*yww|{-I$QVFO_lf@hR9gCZpM%V%su(_*7-jhwc-NRH2o7u zVDhoswFbkfs8I(p`{E*!*PxzGD|)QB5J|lv*nACJX9ZKMxV?M-CfHpDY3X)WCcy?s z&EHpT|_*sFxfxp>COQ`Du8OLa4Wnn3?-DL=c*W3)eCy&2h!^)Yn9_{R@H~IZm zP7Sa z9|p-vQAs(~;TEJ$ln!pBE{Owx_uc{QVMuqYFYI*&Ms`WpNUP*hDi&ez6}()CTE)Clc z|KamAek%2nS4Vx{Y~?|S!H0*<{vZ&-l$QK&X$!XhHH9ZdVA25SN^_NjOdR^a>tGC` zgUAH?i8FS?>oNTilWVb_^NX~QDwfOpnrDRkm*uZ4x7IB;PF}V=^nTn?`Y?RH^d6?% zdfM9Druk0Xd{5k}!)hByM2X`r)>UcLY~V86xCsU0a#Ihuc+AyRq;-Pk>)CSvNxOeg z?f?yYSlZc5UiAQAryn)m<@KLvLeU?4bn*Q=u!+|x(TP?`%;6k+qDwJiM;RT*kd)Ap zlTMR}t+Vk{N{{-)AijIzHh+FhS|eE+6zDN?_1kW93~M~ z@txH4_xML2gs%n04d>D9HYBOnFWe);>fhXgfoyx+sm`uShguNkIa2 z=}?3q;cSCihFP~Rj7Y*k$QR-80eH(Hh)Aye`7y2Zjwr$5>DI>VNX-W}d^YkMat$&q z9i}}&I--E{q3eBfOJY^ow2`;y3zt|fT$e=7YlqIO!)R`@Q;2hvJKCSNN5MajeYBE+ zL7AX?s+^mu6DJfx$c4M*z1(s|rHq+Q7JpRP2XSh0A#ya5`I z<2E8<9?&YvkgyjhD7UVc5iW50BPdSo99f#&$eRE#6&Z^!A+-ShUF$g#XCatThYR_8 z<%`hH88YA^T7{#!+_F&yI$_w_QtTe^?_KuqxWUCnhAw6#L@cwSGphF`DK?^#5}B!m_<2@CAY6Y zq&22gOqzf>de;7|B5(qjvt9&9NnT1Ve6!O?jXnVPmB$x)jj$v16zy>4RaNp14scoP zUMJuv$TI7E-FG{?d$F1o=azNGoCweXk-)ff=$c1&z+)AiAd>6b)rrq`-%H4m zi1Cq}b7RQjx#Q9)iCuU^qV4;2Lz_upFRzMP6#N?SQjSHnNI@=c|{(X-8+0=`r0 zQXysmbw}X4o)}XI+k@wv-$$jvCiQ3I5%u&SGRC0E_Q4e(%7^RNE1*3 zUO!@NQUZjOZL)%A7` zCRIGoEfQnw!qV78;h(OWpK4`{*9Z^_{da_;P#8uOiZ#3@vMQXTti!K;@$m==-78O^ z&|qWPgLy(>QZ>HY<>YmJsuGL=SvbjPg{fJGsOqv+IHo?Y7uQf+eUe^SZwWVR7-zl6 zMtYVJskVgm1}J!cP+hoZNV!Emu;@;8{hsSCy{%ktOfJ=?yUM%FG#M*bU(!-KrpzZ058~izR1s+DSUJ6#@~?k%R}tV0zic$;)J#fzg@Dp zqkM`ouK~#y=6$2ii^VhTJc6Rp4k_cC5mPwYbW>t#%H^1_&#ffjytg342@fj0r83^% z0nFma9yx1yok9Snx<4b$Ko9biPo{msbg?xgzgJs(!oka!wMZ)LtrHn6BWLUq*;^z! zTe~m^6t7VhOy+ag1ON!*G^n>Ubac<@8*nkAbe0|39K!+saKm6NSoS)ETygWp-ZLLDaG}csBHk{=rx1Q z^SQUT@Oel+W|;4h^D{970zS_LbQf5n`n2#b+t=6EK9`)JP3UT4`Z~@RI}0 z=hHdLk1wg{e=on#aMnKwlZ+Q|9vTlgu7REWQMh**fM>;Wv+;e#^CGc87I5|XAmm8o zOvGjucjiCr=p`vlt+R&|X&UdFpT`TJ!?Q5|x~^QIxO50xGwRUEN<|aCZ6&V59LH3U$oxg7tsYG#NSP$)R{&o#i2HDJ6fS9!X zD)s#V*X#q`n;GIuS=63J?KT;RV~}d$$K}5t!|F1G4^-umsF-o2Pyccz;3;OxaVT92 zs1qB`uBkD-5+0?`Qi(fR!N`B zFm?7=d^y04cWAuGIg0h2)vDZi%EwOsuG!!j?TM9GAEJ&mDnZB)BXBHLgvx~tjjAV& z5|D{`K9AC!yk5qm6B0D&uxMb6rr7oZU8_ym6a8Bk*I#E~NJE1W9S`Akmrx{R0E_Yd z3PAXFHjC}xzrTzB_y6h?Wa>1U9C%|cuQ$abebFGG)oUH}GB2X0tZVpwp=i6VG3E=3 z(D{Y?^fZ$cL+40-R`x>w88ytZUWl#Aq5%ICGB7jmxD;hM)$GmbnB3n}yNIdXo-*>Xl4@F!eLxTq3R`eGDZY* z5SVO^UCwl5gI|=5j$+E2!h)$&)}Sq4S4o0N|0<(?hOfg;w2Ar!w?3ZzUCJ^pXyVFHQDW#%Qq%S=f5yTJ1z!0sCK1i??ek<2B0?G zO*nx#``^m(Ya4Ngy}><+ME= z;{(afgSq&6VjAgkC`)ea=el{i3!^^P&g|yZ=SSJkh`c_4d)-)n}&|zAFB%U z(O$AOS=B_{WU0ip&wvpN+v>bR8z(n8{!rz1f_ip8A|58*p%zw=Gn&TDkspXcq5<^8 zeNdse=~MbbW;`>qJ^Djtyvb!<#Eb`lEBXY7{0kDjA@<_G4buNH925nW6}fYSgcY!t%kp}mn^4y`4a1m z?BdE~jiP+CNH&F_+~WJ=IsL;iG}dl91|NE`0Sycq!ia^|aY2JGErYiS+D5NoV2g9c zhQLxvZ$-oDNo5um6&#L7P2xU^4oQ|KTI=PBsL%vTXv^j7h2_kw>q^r)n&s*ia5ELm zN=s$sveN)symQqF&cJeeySif8l6~j$EHAeT$9j&NQ8m6c5*jn@=lewf*~bcd0?YM6 zqEuU+Nnyw=ve+PhzhwHT7FAnD7}&pzYq)#FC~19omMDE)Z+({w#(j zEM)}8IMR5kegYPkGqdo2`Z~*?IKFM|2S{*t86?O+aA)w~?gV!U?ydub1os4Y5+qpg z;LhOg1RZ<`1Q`N@z5L%(_trh9Zrv}do)3FhSNB@0y6d;ApH=hdGp)LFW#93GNgwH9 z0_^HkR^FislPiG9gXt8SK=709uC*f9@Ng+5B|UC8ZpXFQJARWA z{w>)o&oWRwCtp9)e9^P8nxbm>xaOL##2tKemGgYS?7Za#N=jY5VW+9x>fTAykgt2A ze1P>}DOV0SrohsbQDg3tyGUw~AbmHrfd#{1XtI8g`l|$-=0P_N>CiTu6L$VuM&XZfkHJz8Tmx7bME__I~v zdG)mc@CI8WKWV4F7W#@BNYbCqNi>I!V#zG3s0P#D zoeVRFM!LsM2UP~EEi44Jt}00FBhwQDkJQyV7i&I*OrxnE`uN;(NIBt83(erw)Z^Eq z9uFx5cH$`|4L zQh;c(vwez%kFiwyj07?K0V$*DVxmzM%f)t)UCH#$5mu-|V+t?E^mr%!U=vHYcrE4* zr`T{g@aWPZ=B_dL=8;*8*!MJzc#$CnJoH?GQc4xH9VcX;m+*?napHtVjP9_EuwTL~)T^NNO>6jx5v4D!K^;5;gYkw-|-| z76;H#>t?O+x4s&ci6;}wi$bX-D?p{CyZ^JS&(#3NHH_4F1O{>WG4}|CFoliiFlBDyvh0IttGf;8&_` zrsuER_K6krS)HayD{coIHF@KMAEv@DklclF zMaA;CBT};iBNN0mZnQL_@~jALL|X@PM2Lv!JYE;zo8D-HTh>qALBCNF`(t7t3e?n` zWhI*%B)!2q6Me%wk}rhlSkC{q7XT=&=#dG`$M7EpfdV#9l@ap(!6eyjcPCugUfKYB>kBM0hJRA-<|k%26cPf9y3lGH|q z`qWFz(dKG$qlelSHiXnVqszFJwdY0$(`lmoyQ{xH%1Db{+ybRNi8H9;k|YBTN>~SJ zM~PhQ|ND7hyZj^FtQ;|ggt-5OmIm|4$nL2P& z&!V$T%RD`tWWs--jHG2O4FRv?5Slrm1dmbFa01d9cxe-Nl2E0T$<`{B2J6gqprMBA zf(&0k==rLu+r*1L$=;=|EU9$)Bp0`usRJD*Yw(OTq-HJzxoFWV1hjGR>eH%s$uO@5 z`V&#wWL#(5go>!yR!pPcTEw7?-8x;6E&uCVDXwK z86{;(ucrBm;&OMF6y@mQx^>al^a`rdeaO7b2i{jY4#+epg>H*GO+R@&$khGjsQguD z`PGT{^3AI$t7ZNpEA0OylAD)~o9>^KiivUQ2DsaDX;?Yxc)M_^)A8^Ka>+Y*dU@0F zaPtbJNr_W~g+c$b{wItLz1HLjL#Jwc)>gj|9vlj{G&hen@31wWd^z)nzl}>CFpc$A zWc9d!wFI?EMc}ifHETEN5s;71%pC}cqbz@@@!spzwO}JNA$d{Y{3V1$KzB&KBWm=g zrj#v;_&3Z$3h)HV|n;mOXOSv_eg!h`aG*&`a;@unJVA)uTN>5vC-voIEhopyu zN^CkDnKY!Wsv)Q|Ze?|KJQ`)ZTJMa>GO@sdEIU5W+eN}=g%5aH@)nX#?)&yWwl0MP zMfDcZp5Ln)K!7{L46%grs-$HbC6LX0ag`wb(oFU!Fm(wr`aUNbl{8|I^0OIOA-FGe zSQPG2E&-s#5hUT*e(~aSpL`E;g0$R+5-kvqe@-3hJMtHAO6tRJ5)7~^__xa=5ie(b zOR+GI_(!Qn)IZI~jd}u&oH4(ksOeZBt+CFQTz+eiDKVOrACNB2)@_aUMRjA%h~|k} z982++3UcU?uo<^HCuehu;ThfqlMH7v{G}TrTqL$FPTnBuricpSO>6jqm(OCY#vWf1 zm-2Jwb+0Uu;|0!a!{s69D^D)SUYCjjM9$wdNHxoUn40|w$e#T2Q1CUK3_%%s%-1WM zxgMIRdpayxVFD~E{SoMNbZV(=*N1vL-e6ge1{pJ}VUksWcQkIhZua#6@C*>t!ik7J zOjxz~8sVpacv~PvnpQz5(g>_Sw6!O>67uw*D|@>~0TqW2AWz1yr>wzrBXDG}9=LZt z)V(R9NFi=}!<&Rhj=4LNuPiG9#7v4GH?Wxpsa%wF7q=h8CuY8pp0Q;JXkwU3+yQvQHl8ouH>(qTz-roCZHeRz|1}|p)>0f2`bl$4R6?NbZ&RUwYMSAV%&z-}0 z9&kRBKB6(-dE~9Pi=F`J(LvF`5fk_`j~}$}ZG2!uEm5lg-F{ffNP5-KKudQpLNR|m zl1+PfkwzH`a2nt-PF(REPq%J<)^%pou!ROQao7SM$&{{`&Uu#tfYwb4Kr6CiLx5Ih zq-AFD#P-#>T@Q>15R*>ehSvO2S0u`Rg~e{Lb=?#3ij@6_Mfd`df%v~dg={Hdma+|N z%D)7*xKXS_TzdS5sS3cxiNgaur97rpW!%*2l+Y_9vwh$fQ#wywe2lFsyY+k4tO}db z)GXzH6Xc2KiOBKIErm$nmxqa%CmV@7S!42(%+P3ex2wK8CEjg|$;ei}y))2Dbg7$z~8s@ICa!ue%FLQfrm zm>}}7JpKwgDb*(X7ikCxm^}V8`b)~*w?x@Z`iB_Ul)X|6Z|z@V zB)lymVCSz}THDccQwb^;@a^QNou~Xb!Qw1$sY5q|4$PjXnp^pW8q`WOr*}q-y<-T# zuD75vl!$eX=#=jPFQFqS!_66PoIKNB3%p6)RWwRvul9qkC25;%PA!7 zd49I0uM^=Q>xx#oE2-_n=u5%@y@=%@3GBw14OFVS58;9*;A(9)l`LECH8%(D)DRVH zA>0|o-fIGbAGvHkB)!5q1@za7jvUMu9CB5u-fRw;Y7_giCk$DcUv$TnIp2G6eP@ZNuDWZ}2vV}LR{Y^ST0Hvdjomq!%Vz>*SItR=q z3`UC)!VgC4_4}_d;v{upl-xneSo;bIC9I3?#WLy3A87VS-XD5ug>L#vchl%@85Jck z)R(>cN>6%v1(;Fjn;AptVrUh2&}#nLfcs!;_+vilLg+zgXqob%-IAnh@8j47Ns?T? zT7XlV2yLogZsvZA?qlqKHR3MCYm$sj_Fob`xaR^{-k=#ReVTcxm>cxC7% zMQHad89h+72ozJ-EHf^9C7!W}l6wErNgK(~2gXUd7(T@v?0V^lTre;Uz#Nv#9A*Lh z+I5MmcqF*2o=1e&Le(s@79!(CO14D9JjOPBftlJXbqdeyn6UmO@h3-=25Mm&0SGFa zXyJ7^R)t;b7uhf+FJaWAecOPazWKE%{_4Y)Ye)NOeqXh^X`b_a-YJTP-Bq>fCXxo( zU%k9E?2+ofs6n|N!{9}8t5Tj|hQY-zV(0F{&JMgV)CDS34cA%Zv{3HasIis%$%bth zA_RWtAE0Hr<$M_s;;Y}8J0-7Q2EU)om~n$nl{AcTEp(r4>CJ6*-<-Ak1zh!<3b*}jm7i;;6irL72;z2T;Nb@jAjf$CcVG|)$&Rijnd$?{UbWWvG?7XqBn zTw#E=j#ncl%3(|jZp=D>p6{qay&p6Khon9;H=gzIGZf29v{t$Y7ouRe?WGaN|nyu06|4o7|by!g9U&W0*(7CgDo@n6) z!pJo}yMS})RR%8#$1SX7F@FwV*P9&KQZFc}96@X~+?ZPK+cdle1t zucCjONU3>U^3W=fdTPwyQ9@=PV{$29RDGfRgx(0 z6p*84N6y3h6|NFt(Y(t<38#9Te=VlE=mfC}-hqYpTIaogI4J zz4A&Xy~-`-3vkb7aMfz+=cA>ok~-be>rxyf%XheYP`u^j`bb=-I-jy@CovV_>)|!` zrA4{zsyh5xZzbgP7p``dpHt*y)CwQLk331RpiR$3V+C3%(AoCK(jZA6&V8}V4($*wT@=% z25M_HXF>SyOyiN13wdX4^PS2Vc4r1KmBHp9T)Tl&0N%EG(k|?%AGbd5=e6&mk>k^T zUo%1P`8?<5_q`9?-}Fw%I3fUIb7|9*5)|F80Y5&TOQk6vD))oVTv%y!B|xiZg6o3a zd2+4EEA3?7Kx>pA_{H-QhUP9W3=LKYCpJ_e2Kv@G1r)z%Igfb<&!GnziC{3|eC1NV z|EO=^0~B%Z$eWvSiw7G#3cjcC3*F;uoe)2JkM_$wB-A8niYxuyu==`j?ks0|?0nQH z8ZZd{($5w;7c_UNWa(06(6@tbItoxj6Z6zA)$@v#hQa7wyl+(=j3YO+ z9-2!+sk+7KH#$SFcMdZ?5p|kAJl1N1RYQ&;0_TOnV!wN?%4tQ8C1v(18!$+Rj=jXo zC>Cn<8*Igy^XKhE?6T+Wv{Oe%7LcD^-h`d$F%=T+7@9J%$;ghU0wr|3@9XbFO4G?M z+guF;w4Oda#Pv9z%Yj3L-&YpQA!&+3dODJd0?I?R@fH~12I5*%%7tB;Tnjv(U`}xP zPB~hN?;3*|EZ$SKug+>K|2(KY)O3|g3ikQO!F{h7md;DiT_kyfZfBs7s54yJYTy$-ME-J0j-WWl{>2R35x3=@6NpVBW_*vYj1kuSM#=1>e(+{KWZSv%L`kq&J>?ySYd` zUB)7BEnnaQArl$Fg$8;=3}!}GBF2tvqSJr2-Rn+~K`$#PCxDIb1$rbq24<~5)FD0? zH+olRH+oJJ=CvqkfzK?eR={3EkMbU`*-eHK{JFc3usrr zF>1gDMfVCh3FsK5exg6RAscBfC;?+X{YR?&8m4Q%QBT;mFc?9M%;g%({?c>@J*gxe zB)_kvnmBdl$9pI*4Pl=9gR(hcRI(A)9N$k*Es_J9Cf%ZJ6ga=i%Y;|k`!LYK%PL>W z8y6i?{VChC6I%6C@Pq9)Zmm9&UQ0)1XwZPg1Hh4?Pr-tD>pz5)+Y3m^8!q_SYs7IF zituQpPYosW%Bm|c_DUqZ8-Ek*kkHaUZ41C|5N&;W>-iYfWC`h7Ei4`i zUcP+RW!)iho>x2Tmv$N-)2Mnj9^Ng+yS5AH+=5Qp1VpnuY6%=lJQGP@t9T0mAEd#X zRS)U7w@x)p;uko#M@DnC`P7|(_ZJYfDf19+L|cTPq_QHL#UdO07#G+c?pthel}Mx6 z96cg@cmXyzqO+Fiy$@J5>dnwk+q=2^THS}^km-`z=pn84frWVf&EG~~SznVx9{@SO?2Zld zBf%PFC1qzJCGO>9Ee}JckB(igv#hnyXJ5t=Jc%%<`^y;}%aj&1Zlems6UiF40rIKm zj~f$Ob8bGJ@9}lt{@!Q^`kOD_ZV}I8-W?cUHv4s3u?osVXpx@Eyv3LsG3O2znY<#0 zk~3^LF(gp0FSyVNox6RJVw2O!|)7>yPz6_bG#Zic~1Ql zfCp}Rw}MY8UK}^^L->;wmUB!sH@2}gm2;F!o%p9X2Sbab+3=D>znGrHWeibkvXj`9 zWt?_v;_Dv!_}=_wtRQRi69ypoLL=xZ6ku9w3nXMcna zekNY^s2}`XQ*U@sJsBPY!eE9H=f=*ti|lV<&$o)Js0Mta_7b!{&IOMQ3WLZFVp_ah4Vk+GQYI>V~;x0i^*?SUxVhBM=*$1kB z;Dz^{wT|0+UWI`poq^sjA_f2GiT{L^-xi=(B>710^QxVg4JGjH%tctP;-8Q>b|cYx=E z6(CRb>yWra5E7cRPLfAkD$E*Ru;ZRJh*63{CG0vy-sQ{3lxUl&rLw&4gzkY zs}2zZVk$tGa|0us^$cZv_4)nw<2^i?G1eY{LroPJ-Z{j)>QBXI1Y% z%4AS~WD=dk9-29mAhO$b9w)K0Ze91n4LbJ8WSe|+Uz;k?AUsg5a@mI>W8A)35yVV;EHmK zdVEXUXY9<;lVDY!#C^cMz|M^kf%vA{S#utbuY7EGAO$~{yJ~k-2eHp5_OeZtL`ZWvY)#@qW?tZc z!%+W@{+EUhmJir83okjx66==|I2rI!sazvj=AIPs2rRcgwS!r*m$oJtmb2Xw)b|F@ zi|(-)o~7g*7D>vVhRYeCT`mVcSGf`b)gRMmaJqx!3@V72+igGGl0pz(_ym6fzq|V8 z|7jn$xqs}+c2{_r+Gj#ik?@wl ztY7V_jqTGjAUN!iwUzHZR5*}YlE`NtcBx-$OceZqq+DbCpPreC zvhbQ`E}6^{Tt;h|h6yC~=9hz~q#j<~SxKHGAprBRitf9&fN;p64~a;)2v~g%7V?#^ zh`9d{zFO1keiDYj{XY4? z=Z@#t!{=QEJ&dxL?b9SnNaA6~toc3bgG&9ROWp{PJD;(+r9jt^5Fz+t({58VKM2}s zisop|dc1iQdMF3R9zZ>`2$>fWd60Z-9sl+L*2N^)ujw3Dt+}}=QruPjvE*^#7e>1^ zS^NNbd|%fxQIIv}H3SqtD3uv@UVf%Nk{R9a@%iUt=gAi(G9i|seQb{pY0fkpt^6FnO=+0otg8#FUZ0umX3g^iP+AKKZ)$<)vm+GC?cQ`7lq1kP`^E}g@< z(#^u{u{G~%&6?tVBn?@>+*4*P%L(Y-c(nc<|W_;e6A0I)$Db0 z<_hGCrE}?Kf%LV>M?IJE4((^R_wA?g^ULh@Ub~5Y!t2f z@1CD0J92mH2QhQ*^5*Ds)+qaZZonwb&+ji#+qbpq2U~_k<(d<53Z4d-#c@DY^^E&da zWikrdQh2a=?V3c`?!L72Jo9av6`oCd;kem9r^ayvfnxXRq6saaj9UckjX1_H1FXXu z@XO|<(ipIJvwY3?)bTfK&u>gW8SLG5|K-vRcW%w1WX*LH^n)ENu|A2=sNb(&Grov% z(L3?0NJQj;LA?+IXSW+X%Egpy2tChobbdEE20f+s@;>0Jr+K$;Z%%o0^DdMX2~?XZ zzSfpsyy&GyKaWdYPF(_kVL&J0Q$N021dUU#x#l8VJkMB4t?r{BCojY%W54}hjMaTO z+lBdv6V%`F1ukv0KAo6nE3vhqhhg`*#?ylVODWCc0N0p z^3nFqv=o$wBY}X_CBtUfVMaY^rHLa?BPRd9yGp$V#-V{1&hv?*8>}dc?%hdxj++iN z<~0kF@t4fe+Mhl$!EzMg=it!BNYa+U|NjOT0Xj+?;#?9o8 zvIpHL?>Z1m-a+f6%4`8Po&H)Kud1D;MqtL67{x~7QxE{zP**vcwTgeTj3JMagEk=+Z@fWm?eBT7|ifWOt-2b=ldLf~hX6 z0qPn&xe*|%>ZWL``bnB^;gWEApAuiL+dp6OE$Dk~*jnA;opeM-Beo95S3L z4r_G;y!coIOv_*9G)=QoHJq^^S5!hj6pxKI#b5LptY|}4HI07?aqpsDRi+>DMb;~H z79d#Ew*p8^fU)uHgYS&b`0Q-)3QayKveBcK{m5lK2)Ku?m|vzKeu>j(++eu0M{B~Q zZ7cu?d^bokKwpb7RQ`^{ z_Mx$6;;M*AbBKezm?QZh>l^sfLKC?#8T7&?>$YJ*7rMO}9Nj|j5v>TSXF@|3Sg;|C z0F2*q!O@%z)=&vrqtFXxamie>2|qC|tV4k6QYWUJxLxur*#!iViLn}lt%G9@Z(vwA z5!!eQp0&G#9E@XF#lAs^{Akb!k32<>1}qah-21%l4i#V_ZYeG z6-sKscLSwFfr{n+W;;4ZdeGFy**2$*vM9k+_jW>Awh2G%cUGnT*WN9 z3Hq|hN@;9g$6A^lm>F#nhONVSPXvCCQCVg-y~%N8Ez>g9Y{-D4?l$nazOb;*`J1ph zwH&{IgqXCxi7&#jJH_y50`m@Xk?*B(Jl_@*P*t-~B3ytZrQLexsWVE@03Dg^7_X} z!Vp68C0GZ6uS(f4B*<01t=z;-jkl~F!^2xwIUQq6nIJ+W}ac5Lu3~0XLp6R zJU(oG4mMymyHN!H>m_Du@H#105^^?IXg@}W&Iv9fJ~-~Vo}=Lu)JX;O8TjRSGqoud zE*_*PrG?ka774AWmvE~v%kU8MImSF4B3Zw-%*7=S2Ds}VF$m|un^T6_&;I^Js zrRq%q2ey0Y2mbFbMz^rmDu|M^b0yJr>tZgYaB~dPpo4Bvz`!gfxC=f0AIUdgIG{F& zdyVn12SHsF5i3JN_Q?@nP(f*X3KI8~sR0ty@7?nYQkRKym&=a=9?QIwnPMzuoTaxG z$P3EmND!~cbNf`_F0DemMF6eARf%B@>jJDDNRHkGmZ6}MQ+ylid=;k!-rqU~Fby>1 zKTR<)0neo`fLd#flz+1m+6eu?YE*12G;8aeiWpC}imi1)Ave`<==2j3b;&<3^7F&ci{T@=t}$nP)%DKf8U zn|#ggH&Qe=$I|MuT)^w*S|MP(4ZNT4xGwFI(eEBA>S!fYqfKz2S158U&C^B2p406O zv_;qNvTJDwIgY9;RXHk(U?<(|QKD`hude4}#=@Sf@W# zr7G2^9>D|4AP6xl+HJV4jEM45-NIA@%&Q3E)_l0w9j%L(uws$fTam#K4yGt~#8*AQ zm53x0GB(7{(K*CgAy+Iqh>1lRkExjWD`DxsLq++SComVc?B5m(=uF2YjK<>zWOzbG z=LU|*%!9x;D+(@7U8?nN3%zgFBVrOUfV+{q{2M}nVL+3K3ngXqs}&fNVKe;#OgE%p zeas_xwBRE){V~Q_q7dqf^|d`F6KBq`i3_c;*dP7~KUNpU!P}hIc=;Y6*TEA%yEq{raO9I&UkgQrH;UR z0dy_Q(kBIev7GLw)RE}?wcDG5RQHPy*7^l#c=_!8LI}8Wnua#DGx@&=_1|P~WChK_ z`TxNc7bE-s!c~oycG9I}g5Rn78ywd`vtr6k69Nto?H`EHU!mme?5&>hWG!^Dw4N>* z_>Y(G56X>4FE+UFq7q>jnJFo+Qx7+vIqP6=|3gSuSbso{6HJ zr>i+o--H{QmlOa?pm*)hY}02i|3A0as?+Vfn>I2YlsC`#tj(S>#)l-r)0oo^>(a{~ zD%t4QgPH=+o?$@q=gn%>%pInk%@-#uhd;oRdLoSxiYGu<;i*M${^PTZG?EWT<1s^0 zB7nd|`|RI+NqQzF*gSjv&jQ|M0Y2#Lti&XEhrROStq@=`b4cOP=Fb(vpv!;Bq89n$ z`*sJkV>Pa7#qT*#d;oth;L)Li^x>OmJE&=GO1dyED6AStcn0@i<@Zn{8@UwJrE{wA-P8T z>3C$!geo3{jR>Ay9<$?L?JUGto)jOjSI(aED^{^ws8OiCUMSwTR2ZzlK53dszgE#A z%q;4$jm3Hzucwz6ZYWMTI9}YwAaQn(6B^~;O*{if@qu*X)GWyF=V@Lz!eWg|9&ZJg zmVUsgVMduB>JZKxgEupd=U#UXHhK*ysUz5_Ue12clgf4gy{&i3J2=SBEgY(wy-{85 z5`qxlhp`HJP4!2Bzu-{SFid3wTz4yCfFnipn(8F#C91U$`nw^rJ!$|NQ?$k~G-K2| z>d21v;0ta|LC=z6v9#CRAW}I-k_E9_BRRkb+DW{vE3 zq%1XUwHj&63u{=Rr{DeC4!QYfqs8X73f$ZE7(bmJ%a3z#DsC+|Bu^UB!;g->6DGwJ_2 z@7)%8(W?uIUCw;YWur(pf-4_!MM+GfH*F$9+&;2!4E4dP0F{SKiHoBmyY1&Ppr= z-z4aWX#W^9Nf`4!(|9aaq?@=GmF2>)e-%vy$)ubuI3e0mddWws`g%Cj(Oug>k6fY$ zW`akp`O6w&d;e=vSYMt)J=>hjEu`6?(I;*3;)o6majv?Eaokg%mpdZiRzoo zlY*Wq;%17KdPq!0i^}>YB#7{JFS}CY2=f;nrNp{!D7N2kJWWL0{T3*>x$3jQhVHzl zqrU_HGu|xcEKw>(-#$zlvZpgzL0+Uj0cwMWg>GkmD?~EMXL0HD`vmYy76casDF(?w zBCrWVu$aNfi$jFhB739vSSd57oZKYuszg7KLEXytRzx>N0K)pOU{<_7i~S7;b3CX z+EI7Y*@de0*&Z-aD2;p@egDYWddaLD{}~bUrg)h3odo5i_%;;a0u7JB$lBu46Vyx; z{G$NwQ|4?%R`Wb4Ycmb_ox&SH@`W?ZvJ~8#iJ3nAH=4;K6G=<5i4L(9O+vSi7MDz= zR5LQfLdTX`9H@r_W=hN223=>V125n0DLkdLH3B0~%%>8t9>crynp*jsXU!Av7Be;(Ji-Tx0pfzHS zee$4$PpAqnSNZI}3B3swanR4PqYcXp(cBf z5yIj!aRfM-+zfA4D_7;C?N@3|1wAb;phfq!il4T|`F+Tzs;9epaeN~-zYiQ|<3yfh zVmT7+_75p34A~P?*!1+6jpZs1mA9+X7LPO)Jww z#s|o`+(u@I_k^o&LD+49RT77@9EC1>E6q?2i3_pm6aZabZ z@MRhM7~WNtW*0w_1EbW6?v`zX_iK262m=g^F+sJ^+2@`EbR?58ZxM9qjA<`~_KqZc z!eDhtKZRHL+n5`Ne47<%Am;`wYiqR_*kwZTL8~TZ`fXW&%EVCy`70$Q;?%dbg8+32 zM(X9CAuM86yB{UyC;yHZjTgJ^63P~`aYqMrMQyW#uU5-J^Cw-?{h*_*O!1=u&dgPf zlYhrjsKjkGB}{Z&ysyPG!D_n+{lfkqaN|sinI|P$L8)ri{E|zclmow~D4|hNW0ikA z@IIQRY>mauq)ey=hQP99=DUk})&LN%ga(IWU{j+0>5F>UK0z6H46G%GWhWj71|;N$ zr9-_Y0zo&D_%fM^NC}w^j0|F2wg38+^*<)JxIZPUA`9|(zzT&bCe^jM)Y(X5@mE1k zV~s4^Cs&S(w3c(Mp-gUBQp}}6#@3IFmLKDf-3-vixkv~;2ymzvoI-`U1_9U9tC81g zJ=8Odu+%563+Tg>A+^tUk9$W8yP0P*{oR5cy==BW)5z{_Go4BF^);R(|do z7;&0Oi=UGMo0}_pvNcWKw*j*bE6%u)lTzTUO$8~|b#b-O?o%o9M-ro@o$H<`#IR7U zrtaj#joeV>RI5pnDoH~04TUizgm!aoa+sHax?Jo#I<&6E@fkcQks}2+R>(+m87^;>%m8eTmt&H0v+^5D zjm(nZLvCh3uhq~88besC#cvAa;kQ?w36>7I*vRAPu$pKDK-afBgQpL(uA77gO2Ml} z$oAkCLJV0Qn`}w(Qf!c4=9=-79-;zZ8(PW|$kg(83Q|95JmjlUo}-#&q?oAHtghPH zR3YFHT`7oax0=&$;sIEvgS(W^z4yXxw)7+tP{8%bY3qv`hJpy2czW*<=UoMgZWtus z`H3IC_OR29-e;@VR6|xnf(R8J*6}18+2BjiqbRqIRRQaT4s6?JrJZT260?kk@sfqJ zkSkaJayWHr@YJW5+M2H>`V%VMt$TEIpbC^P;5QV04EPx%65!AWMo3V9CdE>3GDi!( z^}scTpQD?t$PSRU6e5mnnHg;Ns=M9{RGSWR4Bgp+xF4antWx!|EVddk?6HYrFZ^+z zy$81olxLqwniK4F5~_hknzn>vs!XP!8sv|GGB1~hDq@S(SE`w-7c!g!Vb-y^A?Y=E z?2~{z4fNgC1e|5Dy3VM-rwabbc($%N6viEqVGcNu)pd@t!n`V6=EBwZR{O9VM z*w$T2pdppSjlZVsKXyg2mHe%}Ji+&T&8Zp9tl6&PD_%NmDa(K` zLL~(v0AMgs_45;^W4F+}$PEE^jJuyEHE)odX-S1UU1n(%-)KHjOwI#E_HK(V=W340 z&T+`Ep=dyxDlYz)-##*YN$?ydm&8w=T$b5i7u9%M7(%uel~(qr(zGj35ORWK`9U#n%9fp8?2nx_}+_FfXC zId=Ec;2&+vC>VAjgdS*;9XP^kTuYbCHJ^v zF>xVWwtJDGbTz@q>#v#|WX)Gd{C z)b85zseU9k6)qJ?*eAy=Rglqun>d(xQx9)NpdqV9wk*pW7G-7S*WKIZFXJ{rufW61 z3~A)~3xDS$AdCRv1aaRSUejl6fp{uP#8qtg^{p4zkN4~6aDR2zG>n&aVF{0)pCB5J z#6A2Fz&PDFIQqC7xSLaZJo|iaqKo@9`_$auo3_ZCT%+oj{$ZRACZZBI`tRe-9s)zc zFwm12->&0kGcK%mYc>;K78PB|aK%!HLAEFmBKGgP(FUhNp!1_owC6Bm($kMNq2HwtGObJZAln^U^DC5hQ$Q?UfH?DKs4UYXPf+XhsZK2JyfMP~!os>u6Lmq<+PfSHFa zp!bJpcTP=5!m2Ov$29_46ZQR9lyA3d8fYdd1WYI3=?UEBk07 zhg90Ic@H^RdQGN589O%Oc!x)q^`13nu|qG-dDU=xHkHWwwx5pLFJafvU&5OS@&%fp zW#vFEDq6{nr9W}F(517%K{big+|&pQU{jZ6M)-K>qAkRyNN6Heaum9@EuWQRW83Rg z-COEO4%mEC)BQjnJOx(`|LZ6%`mukV4)kX?DKen!#K-{oc;bCpmFo>X#($F`{;plgB6%WUWxaQboqv$$nBvEn&fT2dT zzpc2R#(SF@c5QAtDYM5o?i{KLO9<_tgP(eJFAuO~0jI@ntb!gY@+hc!^kUP6C;sxu zl8wW4%i447=GY>HKPdp}s?Lj@rfE4Rk3_apRYnesO(=}sH)O{2;_m)oXKiy{I) z5}X7Tjgve*Pf=!N=ThtJr=Dm5;$%3;OIFUfyeZq}<^E6Mfo7PQ6~$!yij+z1bBkqv z#+BDVN`e;o7#5$H$F~Y1F@5w(Z+)cH)t?6y<2bTYA(1ymG&#v(88hHuuB;|O|8|F@ zb$AZREYWwFut;~&{6JmOCi70Tbrs#`y0gD_6)jAV*p`>nH$EWUE>KPZrb4~p9~|gR z#dz0e5@nXvw1+Xplq?QSMq|Y24X5bkT;~srR?lMMq{OtK>vP~z62%l-pwOzY0vBz> zvU{H>t5LQ!N1|;Nrt7BYSZP~h%?Tu?N^y%?*cMHzaP_U41ZG56g@OsO^8#z!WAky8 z&fo=ndOfl5KQBQelZ(><#8ONWQ%OF&TJ47qW$00@V0ls|fdV4L>(juoTLczBxixd2 zYIJ|#D;Sg`YS>KrcXeK@0~VF)DZ+D2XrK$)W>pd=i&^y<1&&D8dfi%!tL0gwQLq1P z*w5BImm$j}c&~l#UWMvJHJq;URWWR*{7#$okf>*3(n;b!HlQV-akm4*!U=A#J(Glf zS@{=+nXTz)z-f>Mc=Ct5cLb>8`wnFELd!j9XXp5jP`R0Ki)P^+Ps7 zK+_E=tsgkLN}36vpMZx*jA>Re7NtYl*q|f~=PCG)e1=js$HXPkppI?ogapmkpkDT7 z7L!r0$Ulfs@F0C0X3^rjyW6ce`9;rYm%pb$ZYO8^S6&&fRhxil~4nNGf*yI>DE zZ_Jh&(D5vU20iOM`Wq28=8Zh8CBub6#|xk#?<H>S>$;!)YHn1_iOI4)uz&qv4{k-#j5B}Y9h-DX7W%`>0V7e#NW)+g*QFyNvMu3 z6jMOwWAT$4ub4UkU#>UwyB-&Zm<>59^Gx7^TCP{L_XDvy>tF zD`p*&h+`TjX9QNHEwg=6%Ol$?P_*Y(K&Ill6Qg3;8O`PBi!jOjle#Q+6cPwpG_I{(cSWjg);|ka z9@JP23Fw03%EZO}O#x?qnOxUu`pTTfAZ<$#rrDa}+(oyJ1-G>?Zt+zt9a$I`EeHTN zyZW8kIIII1@Pw7s6xC67klE0YzAoER!mCE_aGVd8=cSxTa(1%$Z-as;Zr6wcd*dQ;snNd^=O^tr8>h&3B- zd$OE629$3(y)zAaHcI?gPJmaaAm7C6lP~Q+k*lgOm0dsMuv5QqMX(H+bTAnwakV)6 z+w~?>Xipv_$XB(4?L~h%>ziWRY?-zu)J`&;Iz7VFWQ4jXRQI%sPzd124D236CMUV> zn^UUdqOLv@_t&u_W7IF?H+7mqgn|_9bPHq5c_DvKMa;7IuTl=dhOzsUnVyu$n6QcI z@4qqCZX|H0nl2H9*~exPf+UVepe?n$!Y%%X8!p?R9L>Q>^%TRwW9K$+;qE#9_f@!F zOU=?}73P8rDoZ?%KfwSTcMiO`E@K6`%a*XBCE3BM(~j<_@YSmL@aApkTKUj-oO7wj zqMuy5KOUyM4uJhY_F%Pd#t0mdu+|P_&VxE}!nY4nisv`_fO;gAqui<}-Ua1Coj)rl zYRuLNbTUJOBGMHa_T%x2O|E4d${*2)F&Ni|T|n%4ax5=9Q?<4PihHOduxv*bS_WwW_Zln+4aG`U1fbj<4aF2NTUjC% z6RGoJQn5>=P+wvcWe&ULfs|$k!)+dOR>`q8Fw&6J{qPe0<{89P)~Qm4_vnH-QEFs?24fySrh6ZSkbpmVpMN$b zlLC$e%dW-esjZ)4U- zs*i8-0@7bK_Z}#Mqw{!lF30zBO-+VCpP3~WS`@p_?F5-NbR>Hl^*da1(gsQ0^eQ{e zcG7=T_7HK8+Uk1mS%_)$=YEy785Run5daxh2?eb3IizmhtcF!toKzNPZ_zf>XyTW) zOI6HI&+_J}jqFj7L?WuH=QkR-1>aAQdxmC%xxGzau=YQ%3D0frg@6Z?PPbrFi;N<6jYZ#4xAr!XUDQq9RsiI)tLwbF77vOm8^B`x zP3J%T)JiM^E9LNzxeq%^fSpwcfQ(Gg(2#Wk(tp>J%iajc&in~Alq&)CuVnNU86Zf|Pa_odG`v^L2RSA4ef z%PK21(V}ztGX?!XUilZda^Xg%^3>Z!{;yGl-js*DEGYVnqVGDOB})g?BLFf=5(Q|z zjLGkQ`~5cb0QO*3uh&Et!TAv^$IT}W{3?jn?r{``7<;5Fv3qwz$2JA&41Ud(?1{N2%P_POJ?uZjX^?+W!bb&UY@0nl-kxX zSoFB=dB0+f8A7=fOmTvx29zlCeJ!D2TjwMx;GI?VNn!LmB2u&?)KZ!3GnFNW^MWn} zfxlgWZ64L3V`PIp<{_?8+ff*|A&oyHrZU?1BFPZ6T%R7NsN!7MFqkErI(EN{BS>BC=eCy6c1ZC7fG#Wv!!^V z9`>OS###xxb%P5yVg0SlM;$D__Ffg$-gqN19RK}`ielgFa#DA408iW*l>|IBYnwB! zRp2{cBXN@+E&b?=qAxG?@PB6Ac&a%jx)F8?nhxIwu`d;phP>@FzfW{*;Z`x$d|IkD zgS_8tt9i7D`C8Qc8hUMY*&YPxW+-+T`P6D+n`*SEws79JGfI1Mt<7Eda=6y}_s*Jz zyoY%_ngc#vQTMj$0rRwTk3vGT0i`!$%C1_=8^AibGG#5L( zjJrI-Zr07AN8ulsE=tHo^Gq^$%7}qwa)ocoX}#7mM%nLr4fvNIRRjsmf@++}PpPE? z;sZ*^JkQ@q=s2a5_v7WIGaFRH(qGJSMOb&iLMMkH9SUco){qm(z`L;h8xEHK!b7K) z-&4b46TYC%fCp8egJtgLy_oD5(MVG50g%yJD=k9eec=xf zo}klkX>8v92%#K{H;x>p&LlzQ3qk7Vow*B}RRoi50MiTwZPZi71aubFgAv#CsX9&xCxiM74*NQ;BHcB!XhqH%!rLQ$@yg~irPx!kU$z>hJ1-V=6%fmE z@JaZgfH2o{O{&*tOPf$DrzKJn2bF&4h2K^DjrJIti8*ZIM%a&R;@7(v|M60xrvL24S#Fxoa`X@B13|aT`;> z0BspmVkweabKvQ)r&4z|MxEsBDBbD(MVVY8Kw??0(N7jQ!*?kkCHuGC|p=L{qQ7V*4@OFEtQIkiLO}0nLbe!g11a;j`q`AX!TMMhLUsd-T4 zI0IdsxtpRVYfP+BNw16IPZ-+`cI-YAAXUthf3%TO{XtR}FIDON67M%IkRXJsV`gnu z_`Yp6Y=jcwn@~P&+ftyp5{Sp$iPI*oew7cMBWaFuW}{$0irf>wrE7q%KZ{C{{b`y( z-w(O=Q8V`_j%(3v+LL2iy(dsJ84o>vLh1qgJ~;29ql!{6fR^Niq*^Owy&3ZdAaXf317TF^7oD^BqS<6 zwSm;=HE=hQxFYrz#oknwu&Pw zAt%r74ef71=FH3{7t@210j&ors2R!p8*$7iTTCBXQ0(SZ33xT*ANjYR7>5c@!fjQ9 zO}Hgz4700)QM&1EUK8fyD1%^R{lH>;XkI@bj(j#-pH&3ZfkXSw1-JQQjdrzM(*lut z1SlX4#v??pspI{66hCYOkhCOhkYYdpp=j3o<)p=%v1Jew&3gIk`?UIx-z=JVw>W>{ z29dY;s)Id`?UpJsxT4*Xx$tl7&o;G`K$lU}F*L%24(qbGWT& zU;CMm_h8kWy|51d zF~(PLS=gSF05MGk;Gt%giIBgL;K>6WGqgf^9T2^|V&kW;!nn26>D4~=>#n1w*|54j zeLAH;nQst!b;j9}Nti})<+gYx#GM<1WE`AHw)<~S{O2U@Lhxg8j?$G8X|fi108$6L zb7Ep*Rn)|#%C>3_FC(~P-OW&6V572u{7UE!LaD&&RdNLv;3_r8pQ2xrgLR4#Eb2_d5rCW?FrasltKQC%2T{cnc2 z(iTCp&9$ILevpxM-=tg>%ytuzs}%=ufsU}dA*O4>S>Jm|%mspHXAy1S- znX_Ow$MPp80K7SrH7{gSco9}yBKtJ)?-7~kKWVO3Tj^InhhucF+ylE8` zez|E&Z_JACgKX7rqA~1`%MwwWv4=6Wae5VW%BFD90hDgjI{Pv{E~}3Shq0t}cKp#h zc{EG~@Zn3%cTwA$C_1W9h+}4?NG;{Z()$w24>w7XMhgR?8ZGuNib+_}IHg<_-vezC zrHpv1v$RCc2>V1&SvqG83eV3x03A|#-0YQ0?zvppB4||^D_s=i8jdz?qBF}2C;lws?#;0EDW*E>yfCaIzqoS;#TwO+w{IPV=FDo44MLML( zC#xTee)c$hP;){Pl0h)>^hC}l!h|T9BB4Ev&PzS{0Nn8lH+y!4&uQ>G9!bX3;Kw~I z1=unv7Zf)NdS*!-S?Q9WsRDW8h@vc@b#*p+#vw3Wuo11{@iE9f{7Zg zRl!Ra@T}*lh1@>G^`Ya54fhFxo_!cN;LsxVhtqib^3hUXC)E!zW%4GGzbJTjytNYC zF`&Fr0|ZgGaReqYVTKHWHoVZ!zjCA>V8vfHUm0W>V@BOKUT4ufhl?zUsjSmLlQ&3B zEsu^-5W{vQa-Mf!oHrMgSKDnUAuub%wV*ElL>&GHkJ_9CFHGMtH;|LIcT_CM*q1Z1 zoS@TL{dM4v%6PFTJQ9&cafAgcxbSOjP*$LNs0;sw!3zjsWXP$2)A?Y+6qB?dAmbuV zqx!8>w8N6v(K4BI2Qa!Fa0_F~d|yT9Totv1JDSv`d`ycKAFm6gXjr_+%^{G}Y-$j8>J%3vPRmi4yZTHJjR{h3tzoaIK9N zI#$6rXyH)QQ4W~io3Yo1mU=A!{3UaRdOp4kfmHUJH!^iw6XppGPMk;;6JbHQ|MUFYG~?O0G(QlO0kS5G?LW&_t zT+6XNjE7nql*mt3*@ae_Oc3}}gr1^2_mPCU75tG1TJp|wC6Vj^fWpQit2;&f(|_wq z2KF6)0qvoL&I3PfmeGNcNJ+bcF~6#$Ap5l3j!fZ~F}Eu5pFD5VE0`X3w-hA>csGXsm=f&4rgr|eF{;{SW4xtuUS>?xVZe6YZ5I?3x?TyK!`pI) z-8B2)EWl=`m(qNbYMk2XD<2{>hH@d!4)MFvpl-u{(?#Z+UBgPk_KRD#ILu(a7){E4 zDXaAUrbh;EL4oRx8M$>LKs=L~7-p{JiF3Y3*7^)To8DPe41k#!%_7oa6mIKI9(B8a zNX{G|%_M44eP2t?obHBkmU%JWZ6Eon0r`I6UX56=`dej0)=&RejLxCA(~C#-HF>_B zR}J^|b29G-qNy^lC23z41%#0~DFBZgz|Qo)XkDWvm2}vi@}C@VW=35on)C}Q@kV9y z&~CPULq>i0jgbwaG+1_CEWwICXXfMiu{(sAYW%vo5-J3Q(2ck2*c)N(t2u%L$?u+= zC2I=JP|xOt0@Ww(-{MKx^zDwl-=l8p_~1Z?$>WbB$|j>U`$#Z=evbbz^>&Pw)5c>%SH$S=7>Wih~=fwD0}z6Z_RBpd4<9 znCj4DGbV$JQa_$0y~i_)_n`Y}Nb~Nr+tMAYw9;Z?0uHO0E@y%xvdr$wi6X?2XLrE)pX)%&o`+U2?tFt5HtvQYk$wZA|6;7pra;&_ z83+`^hWKo(R7`%^hq0b6RHX3?d zLFH`9RhTac_=l(oLp+Y9mjmAl8e8u<5#_!4@FdE^{ST!MF>F@R2tyC+vtoZv zS_@u8ozLcw7!$&@+IjWHcXyKg-nSgTjU0+!G+{mN`A)c`0p7szAuO^IPzzt=V2I0W zAC-R%|IGn-n`+uyQw}okWwX3{WFPqf+9C%~yURlsVMF{p1l`L2Jv?smN^VX*ItnwE z*-8`}P^YXi7oMX?=rt0aTOAco?ek`)&r2n38EstD8|WF6<%wUJ?OAlvBQX1m9paP< z=;yY7RnDES+#=}bB_--EW(6s6-SkVwb>u0rfRhK{OS-&g1;;LU(lJH-XCoAgDVc5P z7SXwcR`w@o8VTF3zCZM#?zsw@xD-k?Q!*4^r)?sMUrKC5uz4yXyJMmCVDyrR-6^$) zSY^~Dc)qR@h*-Y0+U7bOW#@4iPm_X%mJ`t~NbO3b;O7cOuHZokJe%+rH-EL4usOPR zry~L2>}JJh5yCQ16**40aS*Axt{;24B9^98{fxi|{ zEQ@am{mC~z4AeO`BN4Z1w}?5 zzf`fUdUqB!n6?KpZXp2$qG8s^er85wVNIl0INC&|r7IUN-Ck!Y0I@LM-T{g`=4!V9 z?T|%+ce6@2Uyl7}EliuGa4MXt&_+f@#MNajgc>DfuREHT)7X%jI(ZXgIO$wkdNE*4b^u9&c;73zF5)TjA}uTO2QLB%aFF z@c~U+;?tiC=yb1IbQ2Ya($q>L3Z8AC)Ag#lfkX!Aq4}gWI=Ut)vM4uI5HeE|%(27> zwQm_~H|Gl!s2pMAlahNMVp2!reJ^l5k^*Ujij2MG1`}svz%Au)Q2ehW`jd?a<+68q zLwFE!EK(^>j*f~xl9?_>quFCE**x%^b0Er#8)qd_PLSp%x`hU}1UqZS=}vYO$_%uI zCd}SSS|X@Qo4Z1M^<(~Ne+ReP8l+LW-AS@tm$G%7gI*{ff|eDvz$77kv^}H%oF*D1 zEwiW6kF%f&fINfyC^`XW6eiXFjcX=*H0D6`BoU#^n;o?nAD$@g)!K}Y$5p9W zO%xUIG(1_jS?$7`F15Zk*i|U_ZUHf!Dd&BS6RUaxAf0>AzT~?YuECW{X4c&9b`+-? zxqr0K1W*Iv6mbFXVva?mjIT&RDbgIt^!U*r2D0y-pd*QzAN$fFxNCeziP)`=AZO72 zfO{buN7P*%8*uS_P`^GCF}7OD8bKq@b0theL+@7+R_!$bZt@;JqvGIPhaM<@x3d3? zqNSn&s2=}nkq0iS-t0}7>hep1Q(GMFSz$}`QdXWipW&;7-t*QFW?VX=9Z&(w%@D${ zO9>IjdmaLgcv`PCGG%VleWwr_IipE)7gP(bQF%+AaZ52tFmzKV;cflbvE*hdk)0(Y zhsiAbX=c)ncJ1De&!uWN)fSBMSbmP!s8sR=*pMv_E37Ju;{2sZl>371{nPLloZNbu zU#@G?7WXZdt%COVGWk<@T@9doypk{9AWDs#auOp=juv2uxzuA_;7ym{!>bZm4 zf*KEw-NCt3M>qzmn^fst3$dJOYVSg-V#dRslq?^s(WgKXBu;IY!N_Z^%)SL~;L?u= zAU9+IZvB8kU?^JPIT|Dz6$tscSE!k>G9w1J$PtHNBH$y~)*OoAgH^R%L-l%qsx;qcwrx3-o4JcNEu1@9B` ziWn|P!U3Bt-uR7L@wdV5xy_6-_H?*a4mf?H_i_{#TTw^X^+Dh#~^`X~|I3QptGh16u z(mztCMtBK-onIBm^8~b4z80$)yd)_+Z^ZQ&nqgxT*^{OCF}iK5+Q#;vv|(zELqYv2 zv4*Vt7~il}!1KdoOs&l3L!4p;FjE(sCdv*g?3R2nQY6ZlvAKeul-^CN)2-NMbmHA; zp&6I8nW!|jNI;{EH%FnL$=hdS`dS+ah+d1xt0++mTjG|oHaV?<{gsv=n>`4AW(ReF zz0L?Ej>zOcbo`AL3|_sNPHEoPTq}08L4jrRPW= zMoW2Ftt3GdVV21l|BTY45S1n}xBuD{MSYXF8%pd4W2Zt}QCK8}MnJ!ASaxqp<;fTUG_OR6+Ryg!tQ&~# z8`jyo;GQAN8Gt;XmOjdCVsU~WHGEuQyqlm z0V@^%I))ozYQk=JBeP{%5$fgnmMG~2;-x7O8mAn+DLL0qp~&!41O_j6tcH(ZOe`^B z29~s+unB;YfSWi*e`%NR!@XH+ym4bYm0SMMO7lKi7gt{ZU%qB8JzKGRbG9X(UWS!l zhs{+?^E6hP>>9DMFXO9i(E&ncsz$3fd6rbp9JwcG>CR2NiwGu(-Wl>~p57?Xq9o$m z8yN3Co|g9JShJuVZy0S6s zlfhOMsp%y`&soM{7HCB{3DtvMB_h5D!sxy_zASB6CdCRXGHS339(##Yp$Ja+Tph6b zco;t`P6I1zd}E@-;0>nv8O>f8NaVM2`?43F%;f~&PSRqMx%!i1(DvQ@V0~taEIW@; zsdB^*n|{add@ztKyVCv~ieI(~oNOn(H(dn20}XX(xd5$neM)eW(G%cy3Ddl*){8LF zGhOQEC14vvLG4XW17T5dWj)1#fX2$duB1|0H&bllpACJUT%LJ(E1lUP z^Ca6V0JUit#L9`kp6z~P&DwLpWi*oq+S)EMOn%UK_6?R=JhKX8;>0vH7baeH1(M zA~2KX3hQ`nJ9b7s?a$NDAX1uCtFOgvPdLHxD8C>o6*24Ql1{(E zPv#^R4%BSI!Zp^)U-Uc<<{Hx)g1etgP(8h}kzhps5`a}8;J6-N`SBBcR1g77y~Fu; z$J~aiJx@$ERP!Uj5AUF+5ZJ7fE@$dE*-0-#DH8$veV$-NhjUdvh|(t+ku@UT@?P<4b#Iw$28D_Wa@3Ng zeZ!k0k)7It$%7_8%LWV4A3kj@arEM@dF9fi1}d-ZL^;r@+m)M2A^6+A^_45L>1dkT zDl*88v~dUd(VMO(u5tf1epT>5Y*nU3BJp^;>hq*EHd5}J283cQ6#BB})Yp&>#3nw9 zjE!Sew}~uCw}}&lJ@=$-$x(T|<@?j)+m!=poSULI%iVjw{mM7@=T`GC4d=C$?fTcAk0k38|iFFoJ34S zDvZK*PFBXuM9j=w&3G9$5Ww6?-(1Q4d3?Z}=>ihq%*pimuK$(}|DP|QB^!UzhTM0q zc~Jq;W-h(5j5$1ahl7y7wTC|tZiisU-kq)0o0jCk_w)K0C0@14+B^t{!iGZ43=y^X~5Oq~F5!9`k5J5E;#1(G~&ejuW$WyG#S!?fya?w`_1bFL7mn zkG%%>r^Z7X{jqO(fvyHu=S7QEL1yZq1}b*M_>EIXoswl?&l@A-~-GnH_WJ#0K)Y_!gT>DY*jv3ZNG1-JAO@+!0c9dzP|$a)_b{{6NK(U|jSJp>8bm)>WNTpPC>%tKK7 z=y)5M!i|MVvh6K8b&;##n^eHB8~P2nF~r1jdYmw*jDo+~7Un+&#?+*!mvFR?YB6B8 ziFzF24LyWsrP;p%t4|@1wM~(jR{Y^n=E#_vTXxE=kQIvlSLn=^4)weJf9u;DZ!`}Nku=XOe2$#;{M{FsT{CdXmeIi zU#d+kqDAJPnO-7}QHr&P)cz_<7KDPmnEMTULI<*@V3OyE1343CvvlsiIzM1Y6R%M3 zg>ncmwPkBC5!N)@uBPkGO)|br6$#pQ|jqP;Nx}%NEZr||E?_O7_NY9a)K$1Pr<^xUOTB34|EaO zV1SUJI9vSc0&f{DmWS242oEiWcJh!|u<@H0O-@#}g8Lmtl2B!y7-sd+jUdU+QHpW2 zWus!}61D*lyu_{brLOpg11r?aJ^)URy$$lV=N=n648%m}No`&(bH@z>Psr~=sgT7t4ETM z7rRX-W^S_IxR?2LF-F$mE}-OywNFF!i7uR|Pp+PkzUkJo-i`rXn0_wTZ@t6&}AjTo#iHIg{^zmRn4@gwMwa%;`aL#eLnl6gWJGl z`BK^YRIns!P+dJUMKs5{Pd5tIYnMRm;v zd9?g~^#+N)KIilhA#_j-@ht-(Sx>Bq$&ve{*&p>R%lDAsllU0tg2~}q8k(U;cu0K> zF=zMeX~q<@hWXtIXEex+f}1XvxfS8Y2Q+LF%Q0oWq<|4bGB%vcTrxa1S<-{$4pBf8 zMvf9b?4L|38p*{l?lpwlqYF4gbKXQ)5ku}R?rgn_l4x(EMlmpX2Unx;8px?B=E*N! zy$EQ7kgHhTi}o=Zk>LY{&#EZ)+h6=w)^_C8>rK~Ia>Jyx{HD?sON8vWmiS(225Jg9 zLEXx`jCjayxUv(coNF$VQK9{>5te}8$A1aVm0?oRvGD{?CA$p0-%E_*zLSVLhziIQ zr@0U;EDl~PfqBFunRK=k)XggCZ7`g5f2qtfK-^tM3Q_SQR0kHj7R$jV&5JSm_yK*& zm_{ahzsm$-6u7%TOH&iOX5m-So804grlfM;IYgBWf2Qi3mz-HJR_;b40wVybG+z#+ zz=JXJ?2HoWCNxxnE+-v}pb8W7yudL9zECWT`N_)Pd8=?*I{dgw;MM3ZuJ7~_2>J_h zRKN=2l;V|B))sHuz1-|2<8*oPbOhn1XNGOwN*pXLW=?uH%zQFQ~sJnl4)JRXA}uG>nAWJAV}9*1Zjkb*ml6&K&`t zi2deloBvI0SULU!QDWs{|KG%>R7W;`TLPu;zJ9^H5sj&6^6t#`{RF6yGukYW4D_U7 z4^;du21>SMCOmi3u;0*KUA06)Vhj~5E^2kP-dpq4PQd<1KIHF_d>MzfPKZ}yrGik; zc>nlp`K;%AHs^hlJOPHa4aYlTwpMuJCKY-aK)bE8{x53JZtm3I&07UrbT`D8>R>?n z@k+X+#1D^$ZYsE+Y4|PR{%V8v8b~fb0W_E3VI zKihF2)pEgb9Dks;Q`2!_bvW0GVq5 zo^yWVrOr=ISS23|V5y)zzpM-s)XQUI&?I_kauBU!>vCs1*d9`w7N#n=R)FQhx(U>N zs68TWTTFO6mcZ6FjG!woFyCmja9c3gz2g?O{Y%iePYF}@FD9`MsuGXUSW0nsSzMI1 zLy3hmnj3wwF%=WxSgzeB%msT3pa34P>~5>y-dGnQ*U%acxrqRQ?Ap3L{E3k}F9H4u zQdk)DIxIxEE&=I&RI_W)<>MlxM72J4fZ#yXLtXK_9$VFPzpqAOoPVzY;E^7o!HIN> zLd@K}qQfa|LeVQFa#~X%who&TjS3oNpHpDU3DxULH!v~a6y)%kXdLu&gYwIF3Cndc z!>o|m!b3IV**Bc7VqpHfeLI@CDFw2T!Et00FJ!_&u_2|8I(`phJL^$>e!R+4l=BrG zSIB$V+mMjUEo3l9uaZUtkZk4ocHc$6@=)0{M-qLo%l7v6D}|BU0OQ;0(k(y#Lsp!| zTYH5`CtN$P_PwOx5N)@DE9S{5HtJ@In&WG(yv$B_-G3H`sIsGwYaX?VX~^M9OQfJIC%|MD zrkp4K(K^6RsOyGSWNM4GYl(@<*Wi-&BAlunc%s1GSxSYaZmHTDyHUWm1({b>KFQ`5 zR}xL-O6u8>Er>wpa^K&4>1eZlvA)${rx?4~=7KfxZK%#<0jTKA8|S@*lsy@^%yme- zB{;lJ4(M98_3^kijc$OYHN1iX^zf!EG9OTm!~+F97&L*!2JH&0(#!`Pw_|z+oHg-z zq`at6+h$*H)o(*EE`J^sY0i3%rh4{IPkaSdqk9dLfGs>YIK|Sg)AQZMbClCgouJg(>G@q0|w9Av! z(Bzyd*2pK7aLLaljnxTYG0{E>wvlmlPAv?CCF0XpMA{An^~)bzo6-hkGEGcNd^$Gi zVQbvm5Gh^9MQ2(!S(m4EShU!gVz5gFRDzuG^xEO7029I^A+&2jJ*=^@pTECpsEVon z%wq6j!|V+Q@KBxL&7bNM4K|<_Om-RoRppz-kX=DqX6{Wcr9IZRwz|pz0z^cDux~1-IrYUVt10?Xu0hgB_wV&gYo4|%7cOP4+$bH>qi|QSTn+259;#Xf z*6QI5G_Sw51ag^XerGlfq1ct%Wg`qwgJKf7EP-0upp6XLV$KBmuk$H%{QHsE#Zf_* zszd}OGTRX`MmKaZ8RulY>QUiWy&Q0s1J78-0h+w<#u~N1KB8Ta-k-%Ig&ERD(UBenOOSQX{iwWiJF3}zJK*P7>$zJJYvm0KtL8T*kQBWPzb7+;E6&4hyVX-TEz zpI{-=8rpM8v8<&wgYMuh56dloxeq7$8zj)w`V3fqy&F%C*@ z2f+P4uvK}apggi$o}n?VkaATgsnl>iAq#?<(k;8#2sev&6n2{73ENKsDCqAhb!nwy zqLi2G#3UdI-gG{XSaHMFir>wIZlC@(F=to(`jZw(QTai>D0ft^<}K)=|2hKOBXAue zjhn%?8dAuzpW#|Yq2|OoJ;`wVtx7qS1YqK*W=A~!Mey@;HcLu!)j~N9g-pNayZ4oK z6^kl@^4%9aiiPO~Eu)RcXxm*%LsucDvm2ViB28Agl2WinVqjIkh7+*oiFO5z!(V!z zj9lByIO_$&xh;o`L80Gez0{m{v%>Bf7khsqWe#<~<)--qxZz3%aT zqEBZHV-lKosAELle)%hLo1W*P_H~^95`*^SegFAsi!7_;j7EDL#D>)?IK~glFvY^o zpPNGkagzw!7e~IQ>S&Vf6g&v%l{>=;B2wsv>ax263)nBKjZ?LEv^+5HcT5<3i>;PS zba37(*QYuAz8WyR(Q`#b<%*kZUb?8BZk}r5ipaV(_>IiFVK+-h}{>id(sspdhy25dn<80;)mS#T>(< zqsg}{I_O3c*qov}$AIH_#XVJqXQ7=6eYGzTMlm3*9P`(Cn}Ba-ISYzpEfE{;D}D}~ z4o6`l-=z~2LY+8l9vcD~Q_dW`VwdP?q7EppBvi+VE5dcPR~h6?;Ny!#;P1s*0ox>% z<)UH?D5A9#%r{c{I%ey+08|ktOs=O_zJO2YZ~=dCbJI|aBrZje{=IcksqfEj@%gd`~gnQ{r^OaakfH?C@?iW~Oek&W!x-*do0O(y#U9~ymSL`_^ z`tQiw_-HfJPGbl8t}3_|ICoe~B)oia^h7zL{Su~qQ4^r_cI5_Q;i4CgtJ#T!JILXs zOwh-Emjd^jkDmMzY%sa=by}@ZSwTlN$b!6J`-fdgqoPu*BOmWK?s3-YVA!_nfp$n5 z=MxQYY~SY&`4jj^0iZoD9qSljQ~!W~1oApfS?gpoO-DMpnXa6`2gAjBOzk7tCMJdF}&LC)Xhoj;9+89x;Q4J$Q2}5BSUX0X9piBVhi-x|`Pkm2Y}?J%e%` zrHiUY9^y}VTL%JFJ?Y&UcOEChN!fxbH}L2!3Xo8^J`2#6v;`i;xp2SlBD%kn{p+aFys&LB`D}5x7l%bC7lFHqaOsj`ic&dz_arjsT)+F5; zafaKoFoJNF?PofOa*d5*nmS6Q=

    YbZ)dA(cPIw7Hh?7l86mzCCkrIHD5g;*pIWyc z>yEuyB~ZHt)MhudDiulka7Fx{nId;FppDkmm!){=F#H%!+W6x7 zRsr1Wu6O@xhjm-Y>yH+?x@DGgfj;3r87}%iur2M5DWvW2ECK=|>)!D(2P|LrZm5n= zFa7UI9Q(-G1y$hzF-weYmH9%)c{%>v+4MH!-?{V(WtA|hu3ugNT=BgXz|k&k=IhF< z`m8?B!XRiu;+veRi=ibA_kPw98*77lXFF-47TAKs3<}p;8*i@Uo?)S&5X&2a{k+(| z!no?6Db$vjylM-a+kx1(f#7ueyVgIHfbQsk*Z6HV$=wUQjLoWvuhxokl+|EYSymkG zh?YRV<4SxwPXh%2J*qi5Y?cR_zuo#9DKu&WnX*FB_X6IvjZoq73@a#LJh|4J0+&@o z7vHPjPF*e?!mrgjE}2_r#T3J*mA#_Mu<9)0xH5hGV^%XA>WSR=gdbmG`Vbu4D8V%o)W3^7iZ;5E4YK;( zC2xYLExjl_NAEJYwJPo5gZH900v52dova5j85V407)DWMu*f0G9+O6gIi4|3_U`Qj zkp$@-|8KbtKR%cmIuN0U9T!t>(=ps7UZyPnuX|WBv?D9>F*ZowzTn!}YhKkBzSvK) z_*a++ozg#x0z|klxPagWAE=_?6wGH2INu1I?>=#!y&+`F2O4A-k(4uT8%jtXQqw2= zPcCmr1eFn+We}}Zp@4Meh7lLA3DYlQOl?_>3E6N!V}2B}TgV>Lc;vfp6Fg$k>QIrU z!HO=a5BBDh+i@?Q5+nrZQUTBM2<}*$%a!@^Qa4^UIcaZai;DF8!D)Q z+~hL5=Uw&KOMUmz$`tYCl@wcr>$+|Nh+|&5Kg4zCc@-HaiA0nJj1CzSw6q3r08);Y z_k0+j0hcNfMtWUbh1mGZprO#p2a5b3eqe0NXDe6QBnv?^-~sg6;zQeR2$C$3a%NW3 zd0f(xJT&kPyQ*>eK>LH?yw@5-aG^l%c&GiJq~_{It;8$8iQs}?K+m$Po+0+ zhf-l;Xld}zi?x%EC}U8yly*)b+xRpls4MBPQy-`RS5nFC-s1T~?2zC-{65a_IJRui zW3Gbwf%8*58{Qr*Az02$o1(k{dzm-d9Ezf82^cK5?z(NRcZ9Bb6r+0&tnFgmlb{Ms){( z`=&1ulQJFQyvIU1#+;69suyPE?+~5{Nd+7Vp1?oBf#%T{mV%`!MGjq^l#v9m1(};N zp^L7|#GlJhk80*B9lJwcAVHa!km1PdijY{4`L$-xHnocGb1z(Y(5Q33oJD@HfxE(a zn6h+3)w`+b&ffRrI~SdB#1#Z5+8S(499&vyNZmyR_N=4P7(ejAUaYkKQF?YIQahE+ z8&mxAFu^CPM?rIb0GX+yuN(uA105%S(a%M~ISF|nr<4PN?i+_D6_l_-IGzaq_$<$5 zdL%7fo2H(WSj3oQXZ2Nm7Dhy8lfu(Qj(WB(;mVhw@t4aGf;}a^{zgg~RjW<$$!-!l z$(Riujygd>WRTWZA62nF_9Qmz(cc^-ux)c2rLk{u}v)eeX|Lrea_?_f`+!$7Kw!6*;P zORhvjyvfpocD{^DT~-3%mkN#Umi_rVz;=f&tR5^Q6oFq^BFXb~a~>JU6*g0o%Y()c zGV}Ks14bAb3=$kR5JjVbs+ff>@MUpj6m04+1IZL`2=PQIohC|QJZCL84m_chCI`|{VO#;=$zyD}*nTq9FzS1g zn+mr&`Arn0n&v(5IyAX;u`<pUfZCE=3jP^mxQ-iN911-Om-H{s6mXh17wG=uw%@pM*5{#j zp_j#?UHME{G8!02VjBT|ln|k3R`uJMU)%u11cHCFh1yXBC(cioDjN0ldLWe|GNj4# zn?-fYn?Xu$U734{WF4Rt_w94_$sd?hi%hHY-gO|t&gR4PX5-(=rTD592#~IJFJI=+ zm!w2(2*C!J?OIt|Az0t6{$l5|Ke_*Qa>>XVTHRf7_+nKpSlI8B_Z7@5-mJXputYW? zg(CBV6gteSC6^1+tXPSGcvACA{1umZI>EZX1#wdXv7T6}sMb-tXY&|{*Gi;#!ML|w z?g^SIyny1=;dNMH8$c5S#aoLKi7v!u-#k3CEad~BCfE!8UB|{6$Ob>550WeGKWnnp zc5+;xBh$}(4rW}ypnn^x&LQ>;H)?4x$?@wNxXLTo9gY*0X2ob~&t-h_r4+pqS^!O; zUbq%iyM)isii$-vwU#*TE%NnSfN**_B2LtCjm!;&b{G^9u9nWG(=SX!eE>E`OQh^28-!N0+A92*#?r z28ITXB)w1~dW8hW5|B6pt=ZVW!|dvH!t?~FPCzBNe7<4cO4a(nMb6)UV>$AVTY_CF z%&jZhxf$hd!e|hlieVwS4|ws>>iro!wcU$u!~U{~7xr}dWa+h60iIyY4)&37KcCl> zXUs$Jy%=SM)CQ6u)_JA{`}-EaSQsN?Ro}*)M6$4A)}1O+Fsm)XC#r?xCD1=ABi9e0 zom5JF8k%IRAK{WSyj7q}>I&RyACac%e<4zqLn6DxCcv3tb1;Uu>^jS=G$Z1wr`npN zH#tl9@jx=C^+Nr)+RcTTrRqF3HcQczM0YhWmpWk&^rh70`^ONkiCPkenT$UT+;9QO z?jS5`XjMUK5f@fI@+Hk&eL{EWx>tk*e8N}Zu!Q{gM$XCgZ>~ZPU}I(Z-y3-?uC42F z+oKO4^f&cNOz4p~h#b$Y-qs0)J!3Lgoz>hqzP1=?qsk?io`|r8SnIIV z+GaC=BZsg2gW0Qu?<59Indt)GfpVBW#jG|Nm#gne>hvWr^|ZC=zk7e|3&|~seZ#v? z8?V3493GD^HH$+J=*}9k1YjSuMoin8sM~-HD-JSN;9Il&Qp;9+b;g9X?QI2>mRL9K zrrI8w38!Fid4ACW3FGsjf6xT~&N%hz3<*R8$Ra~ni|<~7DtJqA%Fm|J;*Sr0l|}}q zNN}1r+H=Zxktb}INb`B9cS>LL(0UMn3*l0qMWZjEUBzXP0qO#UX)BKlN-tSX2I={K zp65%E@SG}}n+l|}q$&EcW`4_Rm#%c_N(AV*6jZ(sW=!Ttf2>Duw-=||HMd8&*a@<}BD=WT0qYPC5=94_0E+DK{6j0`=KRack5aw@Q*r9{)Z{xWr z2hng(EgS4Uc))x)PaXAbtBq4vWc9pCr-1>sR};x5>lEE9$kJl5CvQp)%XqKEAow2` z{r4#_WDS3FSd&zV6FAs%P6BKvPA#pmL-7toVH^7Ynm0=VEFryvSe;w76M-u#BLKn!Gfl zmq<<~zD0E~4R5g}v*vOJNnSp7{6%bovLJ5QgTm736 zEDMc>IeHQc)AcewyoA&Zg{oNr+X3aahGWB^0$O2O@rQSkT7LWe@)9ouCqF9Lja_>M27U8C(hAnB2B$sqhP^jT9-*p&bp8S>_}?>@Dn(Dodo_(3`85GaV+@ULoJv z10l}{@hTjeyK6Dzlgf4xc-|v* zq?bzGZZ-&j;b{k|C2&T^4v6m#--V(owK(gJO3F+4WJfFDXsLPxwZGML!;c`Ovdv!g zxzY+olvzH4LuhT*(vcW!;|~Oj(wtv7-SLyU^G`m45N5br0m>6ay49-ogNqX#Ub}SW zIz#pL&2zwabJsl=0QC})iA!S93?RUz<%h`o_arHxIAVN|U%X0j$54zG?JnS$d|g7m zybSBYE}Ah7Bt!9!&wVSh@y(&=gBUE2R{3M`5EDXg&NP+71eBaLsFB8Y#(|ubDyTgZ z^`-+W7>LBRmqoMQ$8vHV8{s+~TNVhL1dJBQkj#d$CuaG5+y##D=4GX${y=TS>tZJ$;TA>YH}Cn?(B7&zsrC2|B}>Bw-@rLacsb#7*FcA25}Y?bBbp0>6dfsJGAB&*-qRr}T$b*FZws}vQYMLl zAj{7d*B@QuN71brNC(KMh$h5X>Sah!9^HZ*mSu`2|b% zz-99DE>1(x%loZw+4A$fR}K4kTom%OPrl^oEi1#uW+5-5GSalWfV7E`3}r+|&#b;1=plR zos=^#1`xGi@;^B$PmVqFpy3#1!bsTep&i z)H1s{jofwL$dusKw;(B?Tu8Xhs)QAzV<`EzZmMnH*N)~Te-aLp==@-&gVidbk13Cx z082~sw;MepiPQz1i37bBGta62^4-=~4FY+`DQ z!s`IKIbXj9y&)mki%oPVE{ZNs1Qq%)M4F{Nny;5G1b&xy7%D*6Q6x}>We9fY5cq}Kg9KQez<=BN4tnrr=% z?X4|U!`tbgXK1It(Mrgd`;asuL*s3AnthkIH??Ey-l=mK}&q?Zc# z!%Ld5U_11O2Yhd`n@b9v#wCgy0>GfkL~=82J$?dkr7*-Pd+AI-n%?s5L>W8>6G{L; zu*?lZ4>@jinF8tip&5bDrqAMfc~Mn#nDHgmpNSt=L48s7IItaq1FvoVLQ)q0Vyx%* z%V);Xgqj18Y6lXe4~r(%*ovI?0+*$7k0@~hKQc6h-ZCsgxlZ-s$(9xI$K7`AG^=1X z2NLhyf*&x6gW(=~m(M#+1r1VchyMd0mnVNctr;jDMVjWQKNe56&tIQ>rsGt4pR<*% z04X^0UQEDvh$yBW0x0H10;fjOCI$ zE|cYQXuWlI6_6!2;_t4&cmbXPQ%K+B;#QJ$pFo3Ncq^{l!Aqd;25YG%m~;R`dRP(B zlG+)x&v)6`V7upzdw&_Bsli^CfpP`^Cc_ zN*I5^ScZw9_`&Kz`@Yh*E&X4=ywpw|DxMF8hH7mQApy}vyntm7mp>Sg7fdKPcM_vj z-O|E-$K80!4Z0@3Nk5(VAaVijUJnV|MKZ}Fk2;iX^Z&f&KjT@LOo! zCn7n&^80S#QlaD^^e*Uc=2AxYPch*Rb!z^ydlx<)z$*8qqP+Zp_iyAdoS+r&^u zvHSPT;+>31cTLn+L6#su;;U>|o+dY&#R%wr$(a#G0FP z&hPu4d!M`i=;~_hr@CsbRd22Ccdf^>SRThU=s1gO8`H?DR3Hzfz~Qq)4sATD>l;&q zI5&W9|JK5#KeM=H>~wt~i+%3d5&2*f;Td`QvtW>yF}Px`;Meuv`J?5*e_b)$%q@X~ zumLcj%v>C)yF|eHi5y!@-#nbXdsw0GV_b>lTT~d_O#je!1ipWaa_07yu0M!4IXGAn z^Z8IyvoV0-0A2d>HD)7rTQfDM@&R-G*>7J!K|t}ykW9Nobzo-3KE!;n$k_H{%cD&9 zH>!u+X6ilh5)R(O2B&4x%VqmrEdo*)6%+>kUJJ3ZU$2;gL|^+Sf2lY9UpFdtKCV$1dI0E*fF8ZSpLgnT6}?BAHU1@kR|K0l zUkxMQdTzEm+kNe6^v;{$KBNovReOq*YVs>pQvbI3{_$A49m(ugtu@qbJM^FWlQ54& za_l7k7(&yH`1kxi>=SB_N3}f*aD?37bo^a;CH-;Kq^H}nX>i9Z^mVp`i5BZ6?-eC% z?pRR=s;Deofq&Q#z zx~Gbp?;O?-IMmL2yzovn06JV7)TiVYOci7v{gm+ToNgZ?ip9iOZyG)b2^4@yS~}%| z2@rr0>e4r=@Tu9=cS4@=zS4y|_g(E2u;01?pdM-iAs&DW<=m*g8EiN}egAK?&1DDB zXhZL-3g8r3GnY}lG^V$QC2sr3#P`8daF8(->!9gS_Kd~d9@6x2V~Nuwfw3FPt5&=c z6KG#L>eyz2fxaMPPv}P#6^um3(|K#jR%{bZV8M?>l^>#;`4atf-TohXeaBx48JS}F<%qO5lON+PoOovB}gCs||Kb|f| zPFv+Qc7=M)AF30K)hU1rv^f>f(Zs;7V0diFb7vPb&d`ASo1t1YUltT@i*(|s#9+K_qMOy?D~y3%dH6Wv{g zX4up`v;$PH}OWt?I8^Db<_h+ic2LRc|1@PtO6=^4>ZFXwp0r z7kWJ_{q>itN=>EkU&{pS=I#*m7t(NG*!k?|1+o%o;Ly4=s8uqbpFc}1nXnguj+O4> zi@n$zQkKpCAXbA6&q*sB^Ju#j6{`7V6JtLP+SeZAq}Dhn;n^fD+vP@nGa@owgBsg~ z*Z3+b$PaZ@`?k+M_Xq(R-m(fN+tCOYQPJk*9IF`ea^*j#8!ADOUd*&Fi4xC0thtbM zXd`h*zEiXo$?C#xtPw z49wQuDpiSJ+Y9ip2nHdr$SZkm3q$NO{}q}p%(n!iWjVuBKr-tPcl?kBoF8*pfl48k zIjrA=uE5f7PCDwpv(sn$*xVXD!7Eog>;G5U%255a9&hTot;Nm`=`6x=w3KZi!AYsh zAt)44$Q&zGpY)>(HNHc~M3dC~J4kVv2EE&7eprbw&UW^uD25JIRVK4_vEpedthh(R z0JF_|?tp+yw8yG%(u(C2Xfl5XlyyX<+?3AJ zU;RMNin<%KNpu!H_I+Sb3M~_>Lcl4nP<0Fv*wZ#_S6=IkqFg7ai}U!)d82vshoA{ z_!nw+mj0;xb}(?3)&!7_4R+k~k~VHPj3G@kZkIfO_d4 z!}K*Q+jtjhbOO-Sr7~G_b>hC1-`$@1v+;lJk6mR^w>T@;=)W=|gFmc9uD7@nca=-G znTG(bD3m2+1DwT?Z#xn-YM_CW615k!9t*1 z_DIq#UN=V#@r_#XJdpne=}->s2Ga{tCWymkFpLpXh+&tx;7AS0V&ZK6jc)FS*-~F= zH?F_HlzaBstGVO{l0L?yAJ2eNrq!dHyi+AxYwp$jQe{XSg({UkJRH&IP!)UhQ(<2X zrD3w$4Dfh%L)l1cCk%lf!2RH}TTyK#|LrZbz~?SKKh<4y_B64dkCcmJ0S~M{(;7}3 ztB^Q_mo0ClG|qy1PhG8S4qeKgGPrN1E;U%QJ*jGW#aDl-H^HrEbm8Sz^?H6PzW0lw+$W{YTrP31JwO*pfD!JZcWR-A#viuA}!8PXO5m* zd)=tlQCgXU?`M-bL>5BpO)sSu+p14-TT zB^rt6Kh3(kVTbGa)MHCPp;N2*2 zjCZGwL2fh3LQK5f87=(cMk1i)9eQel56pni#(GZk?QowHI|r=?0^yv%c9P{V1q%f8sR1nR## z{YP8$1uV+yBeyxW%nSm3RNFf%%XkT162F=m`K^XJ%_9thVf3;G(BG>$D+~SE`aW z@JuKE(|#^k=88LxA@VM}(82uTZSgau$nwBL5wOBqNj>9xrEMcTUZa+R^Q#Wh^-{CDTG^BYYjd$!EQU%UjCD(agSawPi6H;{nS z?T=l0F>b$F{Z8{O3&*r`UI=~{;+JJD+!w-@dus6*u8tY2IVg!q>5OMA`5^dnA z&3raygSAEF+LP0B=96_p97(3kfN_$FHoJc@$c6^g^_7_RhQl*n^(HX!U!A%Xi^9#I zDBW#We)dY$X2u^`c~6+NiNJPM-UN5{wu;K=4Z0hca$_Y6w_ee0M3a>9uM->}9Z<>AQGAYnUJ z6Jd^w??cxVcl(^8mvKaniy-!V3WYu848lSJvt(0csSwbpO;1TgF@oPNP%FTGSuh%d zB#`M+yVLwTCLGW;2$5>48minL$9B1vmPJfu!ml@UTkPTr;clx+I(u$!vF5pv*I0k>^)*6THT!E^u2yLlA6Mx9q$x0G>yUXZST(AS-a_4;WMe)(hgJy zu4k^mpGPn^>$LE#(-f|%I%IA%RJ)>F)eF&me_=>}qX#HBi0+R#xn}16b7Z-5U(!%$ z{2x?X#hakQyAUXFwcR+Zwz8dh@b5K|5ZPigM016&SDU6&O&sKB_n~zAvQV>=pHEV! zmXH2o==SHuXJr=GT(p7?$kLj_FfU0oLioHbHhZcGIb&$y9TtNzSi}R<<_!*&6I$i) zWMlx)o9yCDLuH7YRi?OYFt`YINmihPMOtT4sN2DLoW4nMl~?dGY>df?Y-SNpe9WpL zuN|kD`^)T*hF~*}7FpekTdBa*W;%~VXXQh43_{5NY-$(IS1qthRAn@}dD!0Ag|{!K zRO7Mif3<{CL!}6_1M?I)Qu5e7R1G!{bsGnu(u`4$Mv-xlS|+%iWUGudQ#)W7OdX_u z2VbKio#+>_86LwS(4}xQs#j9B7Au_0ZV@XA^2_h6D@q7kjy@O@L&we~y=)H-TmGH| z%2FwD?7E&C#3($kER9h#Mc_e=#{w;_=BRv9_*(dEF8(ox8x3F#AYP`R{Wz7pmw;Ny zTd=yee=zvQ+p5^8WYyHh*jYvg7f7>CJ68X^L5##&!_T%O=>gMF@+EfyWN!7A4|rXq zFXJuqu&`B*!xGGIjdggJzNc&Ow)}?gw$|ID1+_Vb^Z4G)EpzS$#dI_jjGirnJm?l_M_Q}+S2XVOJ|5RNG(`U)f&!1Qz%aTjmTJgq~_m6rz#UA zH-Cuw4FEsq{Pt&G)E}J?_ak5$&;MKekjgG)IL51FVP&poMGR3A1Aw(593;CbewP-y zWb$c)+-FfH?_UR`smN}xf&l{EO0N`Z?MCJQ9m{4TAx|r|7I07zsrFTKF;i5Gj-VfQ z_i{_-eO8{4_ttyVLkaWkTh3sVa04!TdYAUqSq?YZ#5R zf-~wZVR@?v+YCp?B|ywQSkC`tihrA}59p1CWT}sK3g(gL_h5RHN-xWpy_VbK8A;6P4$C(ajhaSOa|o)wRv=0WKqAz zu&u~3(9WCZ;nT_Kxiy|LN><><!m28bDJ!F(u|2%IPMq$9< zlT}pwtZ20PTCfcce!z|@Oa$dHh>E*a(itWbX}kF$P9bpygkJDbxK47dU5`XYIe;x^ z)`k79uO#PI=Sv_lNJ_F~kPQzp66gB&M-@F9MQ4Ou3rs}cjZuVhNbsTa+feMSu%WBmObyv<{ zy=3rGE4}%jUQTV>yRWjE{5Hjdl+yE8n$I-Hi2?DBP)xEIQAJpvT;6Pf$7#pu@ZLK{?bo~!k;*}tyyE3a3puY%8aa)l8;QXx0{yi3!FE_J=TG*pZ$cuZr8V=CLuc25D+u7tDT{9~|MZjzI zkIizjGx?g_A48v>O)Qch5n5V|DCo08TDKZZkz!c7ZQhHnZG>TA3)^}nGiQlQXyZ(Db3qo?H? zP5}PF6E6FT-XeNNYx}f=X(omeOXsInoVLp;2l#g-DaX$H6 z%;$+qFd*Vh@`)l{d)&BvHhzPX^MCp`WVi7iT@&A`;|-V;2u22EmyJ>;q71}Mv`RN+ zDZ&g`YJm-Ev#qxcST_E1`fQk3EdVC#1^5`Wj82zg>`IK3W%Gx>*(5=1D5wb(&a3|{ z7ly#c=IG3arXvo?s&IZf#DFK-vx9qT>)6az_^9eQ_ghfp8=vM(Ikh6x!Jnwg8h zIoGY!PA7htwrvSKZ+O7SCS{}KQNDDtMoxwrUbvq~CLF(qF&Dq5aT7+z_27CD+B(uV z4hctJWy(ZU%w(N@0Hu-U$DybzF-p?5cCmkLJeV!Ew|*hWacZY5CrKw!|8^dL`*{q=|l9{z+4r$HR<$W}-)qBUj( z6h*kC>FfDnZYmGT^K08*4d95kM$NM}K1w!gZCL+vaaOFsW+ZVv!p&aA%!M&b0%Km0 zk-w1{(|TV~T(!D`aZv_=oAgnI7l5R)0~&rdSt#-u|D!>>3i`2`adAZ!*u0snaqgow zHZa#0`_pas#ivql>|T9(QkAO4J!^xuOM6;cwHhAl*u3B1^c%#e-bkttHB77BYT8ql z9$Ol#IIKGl8h@{uwI!lm7J)n}pQvj#9Mb+>GJmTcKrjKMtnQtA zQ^jLgY~8poA|VeuBAhTY-M}rZuSmO6U;x{gg9m%`kX)grtwASK+iaPl_#e-NCa#@$ zHk))oU9`J%ea_=vMKXVRo_17*bHZnq(nZF-t@BTLIN9&HZXPtM@TVRe?xQna1@F3_ z*fz(}KTUSX|t(vUa-9$UETBey1(AX)_i@+Rz3UmRuWgTV?P%4q6i?-L_KAIf$<6eMa8*m zfNIxHh`cK?-E*OBa=d)u=y&x$miAopYPP2Qfmr;rabcHB)1>t-F|#4rvRH%L)#3LL zw_#W4ks3?j++q8WJt1beUMO%4z8fFKMSjx_v~4MK=GAfLl}$b5(UO_dlAiI=x%tpJ znRMULAwSb0C+}}y=WSqaeSfktKnQGXR&tvHC=i~Bvb+NIrKc?5D1hv83z>miW^5Bxwzj`*>b{zu=flbbJv40k|gCzX$?8^YetM+Xq}@ z2jd)nmO01vi=lOEyt`&UK2 zI6l})VBO~z^4Eg_Q~=G|ZIQ&t?a$3n%A@~V9FlI_HcASFQp&F0Hlp}=F8?-`29U*_ zu-33s-`vUG(*+CweZM!^y8R%YsU7FfdIptSn3~16S=6Pw4$BoQpi)p}|>(yZ2nR{IQsChyy|(N z_V1PY>Kh(fH{6byEWamy-pO@+a1l;;oi#JRbNc$`6R`kp96bc)aJ?-SI(wRP=^mba zcfN<{?pa?&xzwoV2JjjG{Asm4+aP{UY5iU%0$6$e%o!#G?69B0W4!zQJ$}Ue`*v&tudzB2~nxZ#NyPcNh?P5vHRaieuQuaS7^y_Cb z9TqIA1vNT5x_d3ZLy+v|5=bwlxUw_zvC=y$><-7?c#=@ucyDZy_s`faEwj5{xc~ZT zSR@4^;ddC7^hOu{w$G??2$B7T_?N`Oa19{PYh|B(oIIvzbJ18W=Z~YC%YsIj1HNeZ zA#NSh3U?6PBUP1g`O=H|ik2uMmL)rbLtOB6zr|{FWS=W%`yq6>c)-@%?aLDhmwhHo z9`GkDD9WJV#kS*UfezB9*=lMlyQ7z6-kXP;}^i{klJ?8FbdZxp{mx6!iN%srf#1 z#f!`OH~jfExP!uKfBR>b-Tf;sw8PobU(omIZixS0h_WPnI018{5PS8Ydhd^qWJF^&M^l104a8?U9v*B8&QUo=_acu`M7jB^58ZWpkHhW>9+}6d7K_JW8m#s9Q@(iI_&o|3_}o;p zFd{~>{pz~lRXih#?xKR3rvv<{M(lZ|+5CKdGu#%e=`x(2Db9fjCZSt&cC0xdf`{eN zZtCzu8~O5V0b=FX3Rgkoz*&x0Sc&pjoz&>hrSLJ0?nP|-#z?RZimxFOyws? zEkA?hZf+m4=|dirJ{18mY4taud(qSTh*TQ_(!q3dxTXvYK`MjX)NVC}df{Rrf_PJX z;{|6`*q&|Hh^}##p*@&mh_rqQ^zUla-1y3E7o+ z2CkkBu;GGv6d&Y++e->V{$aq`R?d*32WbN_B)o{+^~QCLzi|t4^1ZF`fEapJ)MNAo zzk^co-2=AFLmbknkewydG`Z%nB9CmZxIhVs+I9z+9!tA%0Z8=`hpCahsQh{&>qg9idmkznla)umCZ6>nz9kiB;%tu;o^fCnK z-gBiiEGZaezN?%PcxF*rkgPba4#iR{^OA}_f865*5SbAV_R1qinf z7m(C#f}e_zm16jlGFbOl*YDH-{spiflHy39NJMwBB{%8S=x-$mX?s*^Z@7tiNnpkp z4%DVhNZD(Oq~zWsHaV4EyU1LSTl@$PTkY)w6T)(cQ)4Jc-v$Dq!T#d zLgKCR`IpZoL-W3cLhd+-R`rI%{K677N0zW1#LXW16txMFtkwInOIg4+N?uoSp=w?^ zWm+>QqD=rFC4#c_GM1a&2VtdA`70<0*h9w*H|_%%X&P~hzQ7TdE^jWg5b%CoMB=Uf z@H7utb?G=&ArQdt5Y`}%Ii1CMVj#gGdR2=-z0V`Y$aRO)<;n>RbPTo)pHTYD;@URG zejV%qo97Y=1s8ep^x9{_G~XujgyT9U0TmR%IP)fk^^jxF4ubX~(04~;sO$BlM?~2z z4M7AD&m%3$!UXq72EY6n-38ahI1C>9UM;rDW869wlYcNEWLG5#Yr1!~&I1EHg=d_= z;&;-%v||YAQ!`IQ+`90IdsJ|e`hn4e>QXC)i0>WUp;F~s;8w~6ZsW4fB$bFaJ0a{p zIHC{_;JXh`(-@AclytKFp;uU`E49c7ceMbwv>PRQRlcd0x45Lzt~ti}u0>M_){c~a zUl%G-ifQfdtBiD}=D^KHi)gjEHZO*UqtkW}wdz1RL69N}xB}QHr7c|_(arIHDvk3* z)?VPsIu-8|1@47DOik~-?83BIYZ=$)@q5~Z?5Bbqc6$B>8`@AvbA~A(si_9a&G7;ny3U7@|)cqDSRV{lymV z`kT3^A}6eZ1_6^qIX~r%0~ub~uEH7c_wC0K?-|6?O!F+#{ZxdAfVTPq6NE3wuN_bx zIOku^5ohR)SxEe+2OSkASGr0gMjhDm-Hi37x^m#yhZ5Vj7O6tGfCz*Hr;hXE;ne%X zXbrSIrDo*XK)j&(A8uI6)?w;Hve|N^IS5-|f&8~P`Lql?S$pQqFqN6cK=APZT zJ4`rKLk>8&0j3nYk}HBKo8buK6O&A%K8n7gK~TJTC!DHWpWPat8(=VX;znRYvNA)i znjjKsjuSVW)1Zq}E+vsY%1RD^O0RE2@O5igkydt|c5(}NxDXKJHnSXg>wqKY(&HaN zhJ35I;$$`0YXx<>wmo@wGr=E>0UDf1=H&RSwMO@UJ{7V zI;72DaEB442o%w8)74IF&Xg1hoKgRE>rm&om#Gio(|j z68(wMm4p(SYYwL)1Hqj54ox19Ymp2=vnf-Hg7z%YU~S}7>f5$^vjs|#RB_9q`caAhaP}ZtSqb=#c)jt<|AYFyC^pB;wy-0CsOp< z^qsfa&h&*G#yiMin;N8Iz*k)s877JT`!5j1DkK)cchzmF!1~G|5(wfJ@=UjTG4CVTC7s;z`%U#C` zG$Vry{Mkjm7-Rh)0FVZ5jFPSH=4gWB<9#e*e?@g%HN^a-Qq|eVuWlANogXO&Z1pGW zP7tPW1z@v^7psQ+yI_^T1G!m5+%hmzY2=fs{vDCDqM}~(_P$-PVt_Obrd||=TUPwz zVzh^{Qqj4Z?F=T1%i}QpqRGm)QDy(|0d#bnsFj7&De1@^pp>|&n^TRN9k>5R;xPo1 zbM_w7L1ul3<?T3L+2$qgkGQMEJ)eg%gk=c$Vbt%()@=ne})$@(mvtF@#lbjcm{^_rOPLj-M@Xi z{XL95SnuWnkhOu6efU*3P=E}~&=;1AT;ZcGPc(zxFjW`A zU^iECS@*i#nddJTpW07^RH6#N-kN>eBVk-39>)zpsn@*NL4k#A5I) z5*TxPGZ$B9b7Q-I_8d&CVOW^{O|i}S|HZ1sI=Zn3&FKC&HMbKaEVUZqDn(=u`Kw@S zMf4mi!1uFf!L|#{?e&MJ^@(FOH*IqXm()ySCQL|Po`QU-H+bHU7cx~SFRB%CH7uHg zUUlo)fw%AX?2dSBNoxQXY# z`FB^uc9I8Hli5)L1nW)H1=aVTZ-R(_^@_)b#bYk^9gD+X9tX}xHq5tV$erTRB9}wZ z7i^oD8Jg1z^A&B9#q3%P9bDtZj_e_Au9ssVscBMm+ifSu$)Hr4L_ytUFe4&zA089K`N9^h zaQSc!Fi>{hHc-Zs)9QMMFLmE$>z)JM(d;FMvXxzY;Ybsvl%W2sF4+43dYPh|<4ai> z+YKC8wddRVY(@-ybTr?TT1|q^qS4@uWmE9Ah(hRH@+V|*Y8bc~43Fob7t_Y>VS*=^)VLzDxx4zqEH!O3 zEU3B&XK6DE!8+P8rvqPd=h>A~iG@EOve zzdoTAW*S%|C;?awd<3=z>UgG*Oex)e|bwk2gce>OeP@_)3dw|i&_imwBDK<0-s1(Acq63yYb}X^4gur5oD^+t8{pp@pl{80c$dzyn zhO}V`GWxSt$E%50DZT2U|LPgNuUc)rAm6!FEb3B2{vl0H}a_m+(mgzdvfR7fz4tdbq zk&MhW|Jy))#!FT68nMvwaMX^h7bp7aMYMp8#rgCCd~0pzCjvYuEsxG4I?~R~*F*E24xU0P8|J5pmd-hsjR|A>y?XI*aupz_4CXTtI556-$D!cG@G*|f zq$%)0<&k!WHnD1CSjFz@HeDT=MiL$wNpYP@b+QEQH(@IEl6YQHQzdjC7f1E zPL#`)m?b3GzM*v_&mSI;S95uME_-ZI^Ij43R~_gFjVF_pIonQb-2YBSP^AtG6859(mtM z%KdjWG=K{V*+!+i|Nc}FfsSag<I5 z7y6NsFu5wV*P`Tb%mobx(Y7Q97G)abydw)WJ9@j>iEIln3OWx<4b2Z6XO%A8)V<^X z8D@lz2-w9Cs=Yg$&VStfCXFi}1a7A4ivx2bHRtdq51%?HSo#JI?G_cfE?GQm`rYRAkf1%16L8<9$GIaxhJ^$t5+X;UMpeIt(U2~M6)W6 zgsWbWjW|#?=k^`*=fb?{*`6CXPVWii+#QO2Edff8-t&7F{DIZY- zUqNX)Y-)?YCyJ3~Z3Oz4vk9WN)O|^7#zPsXxGRTzDX(GWfHwr`8i8gPnYYUr=uv}h ztWovRc1^e5Nk*Z^OFg5az(}ek(H!+^>tg%rUd0^Yd>9A>cN5-c>z9e$!tWC?zeA23crs{vD(x>vGyEhdDA@qX{kY6kE4M_M zY?600#?p&kt*M-i!&&!YH9f70Qjf`B@@kbX{;E-r-k?$?;oTv$gO}*MNhv*=8>d0R zVIZo%>w@{s) zoCKL=(v<6CL{@{bA_d*kUwg(=D<0dj;F2`c>(5A{aOsIceZ;)2%v9AT1hfj^w^;VG zQw{Z@VP`mclCmH>_VcHtM~Bus!%_Vl#hLJ(Q?-eMY{c9x`f@TV;A375Fl}`X4A9>u z{Iws4&D+BA?51RxQ+xNH(iZb<3t?kC9!#iurwpw9D3I zxqfmalC0_kf#H0Rz{Y^*L;YubC#DtT=_F@AS8?!h@oGAzorM_6g zXe=$eX^&X#=c-H8CLjpI7)0Y9jfsVIk|9BRh6T*@4vMFQOq zQYDk5kTDGeN6!6IT}3u4^olgW;)(fq=Zr6_sEiPJM%}ZG3-B|<8PyiaElqFib2~Ky z0_KBkx%m0(7+B#tdwU?I2TQp8hq^@d0exzK6Q)1jgh)S{r9d!MNNJNr(&9S1fT0Cg zHKWf6DNxYY&?SwwE!Pk9ZhpYp44THSK*F&X`<4e zs|OZ{1}YpdFF+Cg^|AXL(*G~r{8`O*yP zunR3FX8PFK9oIDTtw(xPQ^uz)jE}tFk6?*kJ+y^{*SD&gIkT#%UF`_2mLHyb1$OG= zq~{OY@m;&7c{XlPzaF#&*!F%nmqiia6==();H}>-&s)42UuIa%Jz3n{cEDyr$_`u* z_R;=v;Q#GG%}ARfcrWGn$3CbZEM;Mu7@YWn|5K$9N>C0)P%=HFIBAQ2#!#edA z=(P$C`tCA}*66i?a{`P7tOW>t->0wj^Xnz`FK|ZrajNleEL2bymVXIsfiNJ<%>VG$ zet|Hvq&g4-3#%}*{zqD46!&zMRCP6WHRt1FlvHIVVqs?gHw%@dD$Dmi$N$-9=lrhy zm!InU3_I6%jqCrOQya9kA zZFfecce@j3Ay5<)sNd_v7{3Ft^BKra!BKj09-g62&_&dMqkM`Tvm8TNufl8b5$B+> zoW^kB%fRuwmKJSdWexaMwHi{_eGCW@5a5v9__oMnD6_9l`3h46~%?8dog|r zM#c22npg z0Ny}vP`3a&vz3~i)uVgPZ;ri)(R;mG}!5t2K*{5~RlWy%M6ZqiA+v&{Ub>D7m${B(~)JR@v znDJ4OHZuIdxopZ|0Fc{ZeYnf5BBcP?yF}9`%$9-2#gg|zK=j5b05e@C2h^~q(Hl4I zhPo;mAihWC7xJ$f##tx(d9;rI_Vj53`#Hx18bz~mko0rrd`U1Hjv-rE(@MB@C2>!6 zrm`7znQbd^B}|g(-nr;|i-V!K&uB)Z)Vnh+Q5W-vR^c%kFjSUv23K@|oP`XnU7aV| z?e@H`xN4=^o;DYZJIC+I|2l(Hf5Ug4Su6Y~f8AEg)qy&WP{sO;THl2el|fs=di&c! zC2pnkDDU7>qsH?3B7NXdUI%51*C2NHkgjQ61+*$U3k^hvdjAb+7h74^Xd*|ngfvdn zPCS@ydOXAtAYOB3<#cTcWAo(fH*=Bx4vwJziZyAg)u@?nTaxH42W-$@1&P6ZBZes? z0KwX@HF|G<`dPx9UjU1#$zF z?wL;q+#MiATARl4{eYvpwYWT{BHvtp`f-De2=XJ=OjfQ+<95oL9KL8fTA#{X0{G;M zcw@&(`ZOdIZiS=1L716-h6oAtf^_Y!w^Cav{?mHd;n|%@1zPWtS_?#1M1xpE0(v&X zrr&|zp`B4kK$5&DNV^1qXZ*%*#$}SDJ960r@HFY?YHL8mMvCaqAB$Y)SR>${?mcHN zj0NA<|1K07x85S~7aW?dmI6(Lum75AWkAagIFLhvCx_HGZ6kYnbEMd14Po~o?>Sj= z?m1hv)xK^3CJ@CnilAFWxuMBJPaclP>RsIfNOOWxotUk|b3@`=tG2HADwJf#T&(-n z{-Yokxi;naO-G?N1zEuQED&WbUT9Ej@R~4m_2uc)LLBe50lAfDO0(l#DN-5bmN2sR zV$ZveW>q-hljoE+OZG+-p?;P=U0Ntm*it0{4o%FuTdN5Cq&&d1Ka+4uKyxuJ9+Cm4 zk7kautRdu_{|v;vfrW3mjo7v<#b%le9FUU=CW^|FERX|w+JyM3tP^?zxT7$qIYM*e~ZR=ETtb9*)bw^{9&?GB_#ll(}&c}=&=#`+|PCS!W z*sM__nR=1lpTU1ri(udI!v4U_}5s_&5R)#O(Jypx6`Vqi^6 z@rN%!!|PX7bst&eS{z6tzfBzRP!&(De#ak{?LXez{=2sS?F2jKKcy zZrGWL6*b9_anpCg1s{tk1s#fgzw<`cV<+ zxO{CvKJpAeJCGV_+KV><2nT7B>1PlnXYN9JZZ%-t=%6c5wkva3-|h82Q{XyG3HSdM zDvPeXm&)n6p2+|#0Bf+YDsuxr|81wDrLDf>#nb%eV{2 zOC?3`l-*4#39>D$CdCz|3X*~8>H{*W&xNW99oTU!HXbEiBcTCPJUlKr82`tzYUujX zF9Ao}2hhw+iml={Q$0CSGHq5& z%?kRTfzMLyN1+NXxOXLfvzya2;(!c0Cd_0K@aFNQo+%)bvlLuMa~qz``Sz9X3;(B5 z>X(X#dmWe|e>NotrZsym+*|z6*V>}5Qzd$%F1Nw3GoM#5^nv0}1SXoRhg@Bl6Zsh# zH4ocP{?n@a_O-vql!P*dHGki~t~9_ok6-`3JN$h}!MzsF*aSe{S4%jRA*^_Cjt*W) zi8u5W&-1n@_4LJn{t8`>#T8rRw)ty|WIoLEp~yKZrZFqUIeMCa-{TB?C_sKgz!Cm- zugigK!`Uct3GU%~IcD!@@!FtnWT`52Lgr2-l#kRwC)>9)UTq0mjX^7I?9<#=jTQ=h zpwEEe(^G-li3OnK8az}-`vU7!d5} zkNeUiy!o4D-X%D7y63LCS;*96f)7~Zw*r@sEm8;^WIrH>GhBrXG`ZWMmi$Qh9Gb|v zGCImdlvx5)9iIbAu`2>J3BJEDvCYNaaRwWs5t6>=o$g#lS{SCs-x%zVKnOUl&q`?I z5oVfM__^)JChwrzZVJAtxn!QnS1a)H3*dr0gvF{`LXhg5hXZ?`y}_@FN(wb#?d-&!?YF0td{{=~U?~1ot9%wAvUa`E1n=PYERV~= zKLS9@{P3Qh-NIT+9cf@cSQFrCWM}9{iTsUk+Jpgza3=6`K$zAIL$R2hgNmA-&?mwX z3%a(q4m_0S2OzanIy=_!AY#(he=MT=FGRQUd{|{+z9T!#ig^#MJfYKnLgfvKr zq=0~wGPDTNF?2T~byQkPk;ajb?oI(61O%iTq(LN=kdC|0pzrto?!Eur&j;t-GqY#! zwby>uv!1ojyk|T;x0<_B@3svq-zTFpb8pA@xnn*ONm!euEt2ddSen{)o0!!j6Y+;> zUM3eQ-Jh?j=S4z(#YLs}Th$CMo|0SU(;vgT^D4TY@1Tq~&gNgS(Q`3LIwIv=XCud4YoGkl7 z;V%53TEm$6;8h7(SnMs5B;gTZscWKBjLvWUZ(MS2xq z3Aos6&9FE%YkZ2{NzEUZ-C)+}`Wm3RZMVVk70>dmp`o1AjZ!&Fsh(Y7yf7~`-nQbF zNjKftt^5~PY!>6WM}(=HGTU#x9#v1@H6t^-#gn9%08M?pd@W7A!RzpJn9j(r_X0<8 z{n+uT?}Ob_LWzU@8`PyI2RkcMANy9GIxPL^|C!c1y^WP9*QdA08j0q%>?lBkb zh=;}73VElcxI0$zdof%(^uDP!SHEx7@*sF2yiSvG)5L|!w%5K(Bc}TkOh0ub-ZRKz z=@AGnoD+cRZ(V!NYS@2HKp^RIcF6c2UjBl*%h~c0{E}QD^rDZhnj;i#?kaIT=Bi}w z{gB}yzipXnK%HWDXT^5ZH1>UI+Z}An^Kb4-hDMeK3=?z9G8m*~As8OsmJiUi6&QU( zVy#rF!BC`7iMZ)LdW9s8Uia-IZA9gx0p&JL+*vcya0uyX^_*ljPLVlePXQ}hDVASy z)Koq;&Grr#>$s^lR`hJiU5*M<7fnQ-PLo>3=(`xS^kCozg1XCWW>yRI8dof~KUfA` zW)lz-kYrzCzp8P|+v@qF-(aYNM$^W2;c82~Q5FT*VC|~Pwo<(7qo$=hwr{Ty^ayHa zd@WOgH1A4|n}%bR=L}e;j=hd5vEj>ec`k^)T=1Ik^yW<0Dc6jVw7-9cE}EDAS?70W z6N+-0re79E3%d?Qgbt0~$NLfohcge>y^A^rg{DrIStY!E>PG7fr&snNhZl|e8}$yp zK1WSgbr;D_&;2+QFe9_7yEfOVQdG3gv-xLb4x*bn*=3~Nq$(HX(7J4Qh#d3z_UQh2 zW4s{W)p-_LLuEau#Ile@`kj?OyFZeSdxN?UeyiFQNi_5Z{j%6)dYDTQ^zLIKsZ!{! z-v(CDi(OTxT~}wcZENDE)r?|L zPGxn_3Sp!ltH*C$wqN<;=&Rn-JS+#i@25YX?oy~orx?CaZ;I<`3e8b^>Fy)GHe@Th zqT2Ig`_h-IRY=0w&B&|ME(=PJhEGn{W9))nFV5jM3GHZ7=%ObhPyakQ-SSI5-f=K& zT+cWf1m8vOT$xiz4m;8%^c7pfCS-BH-6inYhs`MRsENn-PtoNQmD9-+f>$pqNd7-A z7~cWkb`*|NjXp07*U#WPkMeQ-(dRiX@PXgVfWP(lf8L;%sx4w%Zb#fObzD_a=B;e0 z7B$`FE@XGq#gGX}f_@h^wLuc&SJ5@Dbz6V7DrXru0^j0Z#~<8W9vqLG{n5lSDf64c z!MUQ%jW`jh{@!>7Ttyb56EvK%Gx*pg#KKvwEcBExNf`Ho>xakLTi)QCp?fMsdEnOv zPb&7;?YFjE?ZxSW)To(p4H@S2DOst$m1lOCU#HyV9&(Cbz+JER@X<_i(3L#i5>R_i zeY zJyw5wSFAy6)-=0)8JYCC=mJOZnAm^bgwKYLS)pfm8%V zN@8R^V(f(rTNXyC8D0boaY3=%Gi#N^+wY0x%DyNZ1Z%|KD4WeTJ*)}4mm`kri$vE4 z>ZnyNEcryI(;XWaj_DNMN`OS<+_SHX3bPbI>)21pXOi_;fAbb`Dn2aq(h4;%{?(S| zZ?kJ$F0et;B8SJpD9)X=*l@wqzciFO{JbxT}9^HM3@0F-0l@t?_oixBH^Gi9ge%OFq?)hu9YClS{FZwpxSIPeVrhMUJ zJuNnlh(Kr9LxPlsr@AqhBfDR6X!TtSxN_3pIW80`zk7p>oMnJTyFZ)Znos-Bg1IXU zHssAKb7bkybAu{PkaW)(AzcEyCvT9(9d>j4dmc_SU(2aH1PBNUiz33mVoBpf<~9Um zuMmjta9>+6&Yg=Pw+Ql=q|_U!Vtd5HFKBVO_$6Klia$D=pI=_Fy6^Vr`fN7a%O~${ zI;&mB>!BqrZhcRRy@VG_Z!LZM*2}`>5DL_@Isb}A1!rwsdkS-2ggz7yV%&XTW|MY~ z>g(g4V(-iEntw9;xH(2sK4#gt`q^7>S!FQb$&S588k4`{!x&Y6FH=!rqqlOwRpa?M z>y^*0`+EeKB|frI_l__!nReR?xmJ1; z60p9>dGmqfeCcUZXw(G;-$3_t`UI=aHw)j$@!~hQODC9k&|=C@Dnkq3g>Ym|dpT{I zHDEu<@Gv8|e50(`@I>vhEA1^*{+r`crB^Ar9XpKbKW;O;thB>#iIRmzf8mfiU0!&H zIAKE0eLJ_fe|aCmGMM#5r69fL{kCxZAh^VwquF%+CdrX)pT>O==y=gC( z`0{a^f$75ysD}0H)oZKd(M;wvd1_K6=C}zt>4La}7qJK<3tx~_7WzUNIM_I=GphL4 z%zR$eeDt&@EL_(vdKSNA_OqUF^5a43gFmOVWu2)~uf8Ux6g+3b-nr1m`}X^LA7k5> zu89;L1Cmm&Bd%(wFyAL;?7mm3>Oro`q7~kO99NAGQX7o^<8hPy6J8Q4t$gJ3VzayM zsGt$iY|)FMc5K^QF&2&-Y>>;L`ZZMFx{QJ+!Bi()Qvra1=_o zWYKXch~OR0^A(wqS$73&(=6!wr{$V+FOb3CYpq*P-s-UHD$sq>tufPH*0SH@znDet zbWfmz$rA_F9CIVGCT?Ae52(uFw0JS&jLj%=Efjlp7J7En3BG7e ztfBAK5RllzX)B^@kyHKE4+lz5YP$b!I1%$T!TAX&r8WKe9n{gsSEZu_ZD^QcZ5t)b@CdK7q*qquW_J(Z!#4 zFMU1gxyW!2=lPG2MoxV{nN$^smVI+Z?=e!fF`ZXk@s|ZcrRKVm-)`Nyq66O5Xjw;p zba5(Y1YaNP%^!*i_#FZc7o+;s!`jQ(3FcRo_6}Whzlv|V?mT`c`DH?d3;#mlh4WHG zhQC*Q;@0U~&gqoCeQp%^d8&TZbAk(ZDQ@lh0Efzjt0hv(-QEVzZWZH)FG6n}o|io~ z5ptUR!h&n!%@Gshxn*yU`g1vVR*W}#R@x6`5X;=7m?Z1;+-S?Mm>>rI=-%TVI{Kcf zc&Tgi*O9kh6`|?YUDx}-|L6XY=A8L{mV2j@@B~K&oye}S|94JyaqcU=_ez;9l>H0m zhdXY(NKaUMw)j-ghtK2|wzlad2yyPw%K_ojLXJwKJ{+b3y4D%jN+mz_hx@D7KMg+Z zboy2M!s>ZI_qDw(6s2O!qZQF#RsLd|G2LXUCVmOG7;fd)JzS%*wztO%AzNviz#m$?eGZ@W z5J%a0>Vj3zM7v=%o~&h8q0ZwhBgo{Ix}#f!qloU!IuTd>X106Ha-35)xh7G$@9DYX zyIp=+IEO_eZ5~m)YYzH!<&UT3KEvX_OmNNSSaQrdHwSf#y{ zh_H+jN4~+@5Rk4e9}=XEu~-(c;GY%`j}0EgS)P;D z93Ct2b6OSeUcKP(4zstI7g2)BM0rx=S6he0r#!SNOYH8OWuy~ zVk&uR+we|YV2I#Yi&RbL6mtuZlYI|Hi{{G*lIQnV1pUOkuEwNh z=>{&h^0o9FN+$Z}6^Dnra;Nb0LR?!pOWqq}oDSS*Hswp3&Q~?!mDAT~)krI8+2fYH z$ph*o**A&N2h&oX;n>4IZZ*|ERDDc?9rmz4{k&EsBK%B7l}b~}ynv*xXeok!V=NGv zWj}i1k#euqY?7y5ZD~|&~3*6kG z{h|4Kn2SYBFQ-Oivh)4x7pxC`LL=W^ji@jB^TeK~@Pho~qa=}VjwwVGa&)}u+m-ik zoA-{{9D15_X)}B7e?i(#`;Rt$X^=Snc3hQEt90Q>9ch+c*?IXMD?a(XTtX!oq1VGI zQ`nv-g6EFoy|v<#w;fSwU(^RXAfbTzqjpk>dt6LTv`2pI3$6D1*5{~w1bq5`E*zrA zTz@wOoNo3cFWFo`tMk8P&foVknAPOM9pR{L-`u^K(i2BY)bxEu)8DR}q9ggqrs=JZ zcgq%p?wsf5_ImGa^()%Fv-ClVBK8BeN%TAMAUEfP#`M4#$`$gX-w!FCBdnp(cO_dN ztqUKfi?GZ;=vYF9m%QU~(?C3k`d*l%`eM^s&LP|W^|1QU>KExH=tCaKji(hv#ji8mln9@2hOZTRPeDvl$t+uQd~qr~X~w5HBA^8Zm3@$-Z0 ze&GAGRY6~_dR@7|cXngUxUBs1TxWO2yf4g$xikpwhxz}yxX6#WJP0l{-hnSD^7H<8 z2@zaSElg7e_t1@I56Dy86}gD}J zu}UtsuHd2QiulmTo6BLz&qrsspNF13Akn1cS=f3?2_>2Tk4GA*k;a0h^Au&xXAjW% zCoa_aOXr{PT_CbX<(>Mcx)mBM=D-g%IC10}$E=)W3lhdQsJ!84m+gB87FR94WvQQ>C!{H59;mn>?T=l$loegG5;OPJPDp9V0z@48M=z`k zqOjB!TZ^qx|MyvumGNq!rO)e>EUs3M!_z-e0gL!QdjJdV`|ql*h#j$V7Hs`aE-vqC zTKR~1xWV{p6H5M_!dArRN^7vVD4&g;JiPrpFDnK-{`Dlrr%0)vw&!*EshRn3o2HaP}vbRh|%DZr?^&=m0*0G+ZSfYp>MS%w^ z*e-sL7){eREXsD9G_d&jvA)ZM1WaV`!j~iXnAe!G{7}yPG2@2`jXQI!L_=P8LyoYQzufQ(EkCYo)D|AertO3@=jQ$4BB!eYsX{Hw88i-{Av zC`3)@zjTT*))!Mb<*694@}qbNS`fi?fq{)?vLyC(S!|BC$))=Dk&Iu~U zCB}V{3(oU6plNk)k+Kvq%=fRZW>Lj)s!`qD*rE)JAsQyXBq*iVOgciPWyU8Mk9@``fDq)!9!wt3RV>plk;>1mGF_nz2t(6 zN4|?Z(8A*cUTa1K7gJ)oRuk^qOJ&2ZW&Tc1jsL77qA*pK&qjk$Z8UW$DYsa2jSt zOPTcY{cU(5L8*=|#}dA@u7=*RO>sTUj!Cf*GA^%*)&lqb-H@9U8dt&6okE>b}kuF{u|KoOS+Xh6NB& zzGDGo}U+akmD%GOy%ysu zQ-~NGbf&8lVpefX<v?YCdG#H<3hpo}0l+Erlo+EJ$vQT{IZM=KrvX42JvW z#-+-n_4bG%5_tXP>Mvr7dE^G}(vY)&$$Lnw^yky8(=V4{b@>MrE4IWs>bB>8Qid!= z4)^T=jWEkF6iCv)(;JviV*x8UP#rxoR{|M((Z+^z#=K|90Dh6*29ZZzbF@l=i?^M#>N2K>wkk7FqMJ>5jhsj8h}^O(USe#;|U$$ zM|94@4+DKS-Ydo-)G6+NAR=R>5iSt*|3%c&Fn@uZu#gFBd3nLoD^@g!WZ_?SYH(Z% zQ*sz5VODzk&ZjXmZ7P6#U8#*P;M%66M3^6M-@w>{kv}GasbIL?To%IvT|l@*f7ZeU zEnrjcdfLV)(uf(DVT+p-00DY|sqEL9J5K0+si+kF8PN+fJSo-hi6aIp1N4%BnUqLY zqZJ-p3nr_mVjV3!>aaIY#<-1`V4{Zo1g3byKK|k%+sfomajo2(KHx?qt|43S{4r5C;AP3&eLapnfVLC$K-6aspSq1i41VB`MHn9xOW zgC3n`<_<#(-f$yEGBB3=m)}h!igHA+Ym32 zn?c~elyX^6>L+!uhze$#N8mM_rAsx7Z9HK5*}Pgfyhk`NPsU0#TZF#A*hq4gCVTs; z_W;jh(%3&h%PMfsmB~scb6s`^a$)u?c+S=Vwh97KgqcWfarVq<;B#v5%-A1>MoG@? z+w!WCX!gVE;ct?&v%o^s?Zc%7dv-MNmYbwX2LrkX%@JbC8*eH-J!Ep0wA^@9^ zp$sYygBRg)~Kr2mLj|7*+$41`V=3JuqUU33wKE&_Eg|T|HR1+Q1zEAwRVh zy-e_VkTp1CXa1*pGDO|w$O7cxP?5tyDY(GUksPQIfo*(54Wnu=ck7F|9Mml3fkw7u zR^zK^eFHLJ;EtGxMgFV)-~P>E;GNko4dTt8wMduU8eEWh?~#n(lZf5OTcxU57++Zj zy6|3^kwoRegzUqcmW^a1Gyy)gyJL;oHPI4++d%fP43uB;m#VJl@)89Cwwm08@m&&} z?>ih7TjWL{p%1W}`wT$e1hiSPc$i-aQEb}?2@(kMbT$B$YF3OAyD}q#s)J`T;r++e z_fgFy#FhVPH}Zj+y9lXowiRlmUz@2^8ypdq<)IgwPJ{V(cKm|E1+4DtO769@942L_=IJB$8k|0eV-#2JAqf!AS;YBhnSCsjpu3I17ZQ+J#Z0pqL0 zK(LV@$RcI{-(%)jhB+&$7{pL^8Sp6p7un$7TqmPNJ@_{w$u!{CIOqfEUg#{Iz_Ab4 zFvTNPCa^guwUzHsFC}1;GX{dI(lcqjGjk@hiQU%!&U`to>wo+NsQHXCS++-!MG=3u zlgPM)q7|rcN{pD-v3N$!@i#Cor)95c;etg0A^|}bQ0xfkTtjIQ1S-%u!u*sTy=4ZQJ0ve&?bvql3Vd452doGGXZHi3m} z|Ed}5d=7xP9>8jB*4L%r6=>nfpn@=r0??8FzTz*;z;MKZ+nB5m6h&HB=fC099=qk^ z#=+T}ffGFg>396)6&T*X9f$9rV9iY+SHR~zvQT!$XRBd47Fu~W+J9q!&02&Ui>z{rg7F^gIot1?t@yvk#s;ir?azSPV9*lL=0{&kOW6Oo1 zp$TFH6H)|na3=Q)1*TY|jMW+1l;zIqDxh2KQJ?P9d?U6TOlaZAg~WG)*OT4zY0jQip8czb04)DCrK>yr9(L{E|Dn0;|08W4S z1kvq40WJTumG>sYHc<*5Mat2CC!B+ffQXq%3=4O(Z|TBln8)Y{5tRq@(J%v{TVw^! z#0g=mlopGL0{B>qGA0XVy9nul+H4V2x&Uq97+@6yBJcqlka(~dfSDAI6Ej}K^cP!R zn2f#d2%-a$4QYTL1v{dNE&+TCNr0TQn5MWm3m2X9B0_~OaMk#`o2RC0+znLf95V)C zdIPg*4;MQ{7|rBb-_nbN~&O#_18 z|C6DMpyP|Q*f}FiN&v`17Io;sq6xyV$@M_^paBErIuj+~|3i;U4rpTn6KoA!!=0tr zFA>pqK`$6G$o~a3PUuL{ouHM!`o)A<4>laGW+?tAsA|~!WmlghG`SLB6bS^=D=cY| ze(lu2AYHWmf1wSMAutI<6*X`J#?Hhu+JX5}PzsE5H(}y$^nm09$2Z9-~?HoYf$37wt35AvwO1fp}szE`ymN)dkMzFkSuy_3Fcf zPFDiVVBxCOY%^*8p)WBC@{A2|z-@yo2Fz z3>nTtK&pVcH6J$=7!Cl*h{+zX_y-^oWnBJ_|5xO|MeyuDKUn|u19I<0y<(Y`*2Rcc z;0FsCwPpbS;=f{)SQHfq#}phwI?;E(n&_G6PB%iYb-t3L{N`cWAyo1nuOD7wyd$}kQT`5X8_T$ zSnawFL^RBEFQh;rkupT(RRy(_7JI-{Evs}!)g*w_M)CzR1DZoI`zA^bAomFoJcC_n z5^jY#kU7h?BPfB)mDPW22L{l92lyMDd^#ww^fNL5Tp3ocYoev~*Y`8iX(@byO5w(! z@}h^%4ljtvOSr7}Y&RI-@WCj0=Iv32o%{I7Tn7J=B1nNv70EP@M(3^l@6k-IBAnX!QLJ%J| z9Dt7bXE6Co4mY%RLCR35w%a2HB6$&sSs#EMEaS4>T4-|{xHt_kWPuq(#3b(Vl;ByF z_5wvL%LPLNu8-6#d!@b4}Cyt#f0|WK4xg(s2^vsmO>=Ro$I6q zvxFYa-|7k%J_5r?TCfNAWPQLv0LI#)v|2mT<%bDx&Qea@+R;)x7fUp#(f`VNe^yTS zap(RwM!Yk)p;RDwN+m%u?O`DKeCV2hKO{h<7ERgJ$>xs*ieGThv(p@$mYXUT1~dwH zpdCmbxo$0TFC#z_0@>)p5LME7kw@mHWat97z=E^xGK z0mrsec#H5Mwu>7X`s8+6SMyoM%9Q=wzltGKjTH!Q7o7dagJaUJ;I!Y~c}vt6Gqh@Y#9swL7p9D4?$G!k9hvoroSUSOa8Kv8^&QaDPrX0#<*=J znBF&ESx3NtgVplP=2xI3i$RV+x4vmb&&mSrG(@Ew4*J7~u`*iz6pWF8!@&9M3LcLf z?b)$|F51qR*dWXnJWF)}r&H7%aQ=le4LbCV9ZcO)7S&v(AWQ-Gp@=0KsW6$YzXnrT zOarYF3ioFMsoU7)>m3y4&;#(OTp%ZK4F>2y7s4l96~Z#`^qZ!ORF zboD88k_BzA@u3Hoj%Lx)=qMFw*g z(8fygX)EX%`s-x=Fj-X`qI6r98=_-hZ#`WmJQVgV7MEz=veY2dZpGRkO+MLAJ|69E z^f@&=hIo%2qxbzRtNjihv>$FX9yEyu)8%)oY}}OD)(Jc^_dfOHGLYU$-e1{BnmQir zZmgG+kvJS5K3$|J;$7_aJWB_hmld%C$e*ZJjIU_SUHB{OExtVYnfET53I+^6K98 zMaZyngYdXYohE(D;lX~;$#_8>eOIIYMm=}8M6O%hE`46%)q%osBHuMet?4Q6U4>KX z@gM7pP27QX$#bf|kE!Fur#wH-`8KSTxAL6!*cmMcjGqRx6!W`$k;uIymUwZAZus2m zo?oZFSf8AHAaP%hDY~g40nSr0vSjh)>OCkcaxI}Ivf*b`x6k&csm0#Y2Bp+^$CIfd zeeTl5lMAN`rxGG|bhXcO?yV;u#e@?;f8wCsH3w*GtsDA70qsA9z&(~4PFD<1m&c*K z(IRM<&iDP{O!6$$$4IAetrdLBN1|Qh*k`}-bewJXPq(jF`*FS7UEYYrc_kICF~}%y zsjCXIjDb>8eidgrVl8`y|JsE9B-?n~)ZW~&);ee$_fuj{6AGxnPWn__I!w#?Bbe5} zfl!mKgnyJ)*Lt{aY|KP1s<5E4RZqQMT=LbLY)`W>du2DmEe6TKTU*Q3982@3R)W2< zrLbe`(YO13<7*l5RkcZAe(*IFL=$>jR@{h)ZgoR?z3u8@0txqkCeE|rzF zn!G@$HlNtTEfo6$KC4Pr6&{)x^H7gkG4{^k-bnMl?-3%2@?|UKKBQ@PoR zAr6QqonN}wv(0BMqPiPj+aEG)bF(dF7K$9t=J|U5DXFGOVZ7nAqT(<|GQ|s}cyWE% zORLUa(ve5bx;t^Bx=hh2d1I3T;nQHlx7lloNA0>34otrL6$YQU zg|0QLDR5eJ^tiJK-AJ%@C-r=9$nri+hfvs9`?sv6#nl&7UhAeaqXbG)H*eg3`jeP% z)bbwInyoH_%)}qI@jGS9q;YmNsnDO-$+imDBi$>F3yi07Y$+3^`vs9|+Ezb>vY$!x zbP2lOH(D$b8)>=2@02NKxgb6KZQ=e3mGx|!U%kVK7Z>5qC4vc?pbFQFI31+JUJs+n zrj~)^#4&edhT*_r!hFg6Th9?)+K!E!r#L2dhE`UcuRm*SHGI14@rJf4uC)*PVJ*l0 zjMJ)klH$36+){5My?U8JBx@vd@X$MhO|3-h`V#uyp+x#8l?JNuIEgb<_c9autrKXy zn{pO8GZRSp`(p(JUN(`cy)<9G(`lWUQzMXPm1&2}cxPfjP1UB3bB%$`UgC! z$mL0Y`(y5p2?jmxSt1?v(-ZG%c`~1rtE^(LU9)qv7G1gKGe5A#RX?kQ@}!WiGN9az z{PW6*nETq#!RQ`*x!d+J2FGlQlN3t?IR?Gs(>g(u#l&{YX+Bjap37W;^-wBnV(o(h zp^r1_YDMu zCevs0(Fzf35WOxLRH+I z{QWvb=7~$cbQ4coW3*}wryva-WTL>Kf@P*pcORbO3AN)5U5Amhnp&$&FRVEGr;^c6 zJj?4X^O}4-CT6$$OeE@&HqCv~LiK5D-1R)^Pd?^!j3?{}DmXZ<336*)5BXTZtu)=6 zH`qU}&1-!SaZgTvs>F_eqfjj6!4$7gQ(PvA|BC{qg9x_|ISwV2aRHFKxx;dwX+-@^ za-MtMqoG!r_l$T(?5oRB#(J6CmZxdN4mLbD3ElH-E6~j?_PXNiJpyhZnu_w z?oyL!RU@PinFnoc5Tnvr+`5s^JN&r%bgTTn`h^#O-eQy`wo1z!Hyk#Gr1wgBoxj)8 zKMegK9b?BMk z10%KmE?^xrH4%Hkj}=ns>nFZc@HBymq>bM^^UuX4yE`E|kq$i_>ZAoE0=k)0mPzJ& z_?|v?Y1(tc_WgL<)#h^ejrD$V9nk__dS%iN_vWT{e_r+}8imvq`Hp>5oI1PuW!jmm z=Mb6NSoittl2rscw^4F^9Fz-)9>uBOSqbJ7;(q4HU;7tGLJ!g3>_L{A+SmgH?rNuc5y%R~lQ(`iG z{dUlVV+k3payyV*30_U)dh)dn{gCaq$h(*5%K17Bf{qf9`*rWl7&pxP-w0a=x|_>$ zz5e`|lkf8fudhC0k!1PEI3Wp33wJwk*Qr+%ZTmmDeM@ZiUtfH(YLJD!_HF(3eR9JR z1s2+SZanS{^$dh1BfYbJ@r~Ka*K(qpl}l;9;K{}0e!a})4n@q~{Bc{vIs2g{S7p`S z^w9ob%kHvsv`P|zAj+7FcQqb~-<09P=~H?wp*O<|^~W)>yX#g|UFh01VPW34JXast$ip2F_(V>?F-cNBxDTnn(Q^F}5d5A7aX} zbDw6!#a_K61kq{_qU`#JE)t5@nx~HU*vKZ8$ISUXXnXa3Yg(-|u~>tT`%}GWu%LE9 z#S@wigzTwX@k$i-nB3q;ibwgpkIUPTDvir#`Hy-aIx*7Zm(5{*7C+SU&p#=bzfn1m z`(*Z2xGupf?!%GpVJ`beJ(09x2y#Ul0`YEr-dv4cR276hf&N^W_o$9iSwFTEu^iyp z`9q^(dHr;!T60WVAc>Hcx|VXL-&sYaQ`b3Y#D@tw@Hvc5`vj(gXJDk~N< zJ6=;oMx8*dN^ga}rzO7ctTP3VHxAUlwYJxOLolgu~BK1U?d-Qb5tzlI9#+J_az>3-pC_do-Z9$Ekqty+Szoc?cS-fyT9fC{0Vd1v1D%tdJJ8v zaP8jR9`YYP*oFlqqnopzKg@3?7d@%0Fr(MlK9VadnZDo4BjvzS8(uwHy8zxTeI9yk ztWr^N%YbD-imFZs(m^U4L_(-nTTx6 zsZ!^gBY18Fs%|nw^XC_)f3THO@9T}eDEOqWF@IvMcY2kc(^G!MJpr_Se3b%L0>OWRweh4M^tFKsPnL3qd#wBXV&{!!K8tRC-aoS z2v5=0c*n`mHPr_jL*d>_rjxZdms2Kdi+E7uy2HCeyirjOsO32B-2!PAhvD>oYhl(e}~4Wvr?m8N3Z5Hkzx4mAvjl`G*K3@ejE9 z32tt%f?>!bNX(h-dfDM-KHMzffSc`b^9>i={K<{n=bjk>+pSCaG1#oh--Q^wcYl*1 zmV>kqjN`8PC{7;BjaYz@ojpIDyZiF;teqUZ)LPDWCG$MF`KD&fklS4mlTO3OT5V{= z@*R&BF{Tz0&z5|q*eSjr^t`d_SVHU}W~X7#9^!S}bbJ$4eB%yyIsa9dw)_Y+RasQ= z!#n28#zm&z5a`4h|2t7pC>Dx7GkM{46XH(*uR%JolLXUnd-zvWlVVRbG^WA^~hYI`j zCl01wYZOTkScxcOKHZmPpg zvX+cD0!>Tdz$Nbvst2~Rsk3BB%sNG^hPHyKv(!P;pZ~4c^;WBRfCjn53Nez_r6kZq zBo2b6RkFfBmm`8r?Rvl;#KT4qEdH1p+A8b3*^e3pW!O(5x`kiLi1ta;o8`BciL z%!m(&ck{LUW#+=?W7)!QIXQEJwX=4C8-p_|=Ys9~1CL+z7kDJUz~Cf2YD0>f4?n7l zHnlZ^H)0>mqQoWSz zFYY!qG`40aCO4)1_ctXTBrEa%`;XL@Ak_Sb71G*{lZc95#CDhphw#K=W9C__*LQ;u z2R`eE_jW^?=)Aj_=dr80IC)77$8x^QFZU_Sa>ni7|5i%O94juFK)xI6ev9?GrIyxM z&e!t&9ui&Drxc?Q9u-&Ve3k5R?I%^TH2T8#*lOJwBCrAz7>C@59OA?!H%i+2<~P=t zsaI=9f`ebM!TN7EOm^~MTUsjM~y!!8lnYdkt~T4AdTtxwgZu;?yEpYC~tBl$iS47u!@#S|1u zItWTmik!+_e>|;uiqp8;`wRlFKj3Nk)j3)Ez>e5d@Dg`5q&xl_S2tfgk+|O{*H3@y zj;kTzSbB{sw$P-ichL{#PPQ1whX+-)Ec4_epBLo~nam}01bSFH6-0%HD<%lU9cNUX zg|3oB9xi1v(YE(1$-DZf2r>8Oi8a|i#H)W}d-DVPUHsJfV=~S38Gh!1c`L-&uJzFG zNzP9VJ*y9o{2?>Mn6!3gdQPgzsj71VbI6lT?Mx=~({4fL-em(ERto*kWfSeFKvj}o z(_8UT9u)6ezw2=tiHY<+Z36Ypdqc13VJ*p+e9KSRNjpa(AMObcTpZZlowgqK6T@Nj zo{7x6J7aTwr?{LDeRX*9@a8v10Vy4;^}wgnBhh16bp8-sVae)Eyp0zU#< z$TA*A>{tu$3P=))>&SoR>C0F!3FemWMO0ejFt6}`*J*q83*3ZQbK4)gBzbx?P};9z zDL+BQ)5%ysyG}Q|;OBa({mL6`QO-dt;U@Ka)x#4lJzW>dYD;#u1_hTc@vMGMZOGlD z<2kOvhdydRZ7(&S5@kAEldc9oqvEk_IsXhV+0$o4)755z7nzlsUsp9Z{hU`9U+A57 zOyTnDma0T*+r#zOcZJ(0++B!Hc-|XvnV%CP)95@ugyU6g!@NP7TUo_-pc5#XKcty- zH?c!)tYV#jz^yxQZfw}!hSedI;DXt8L4nCclP3<{))2G#NX;jZ8a>3~ReXQKb9V=lW;;tY_PQ{&~MbPjfuWAn)C1b-G%O#45& zBbz?@b=QvL>E?;l{M_+Q%Ip;HkF^(`DNt&{cfe;}X&^4SIEXFF#WPT2^_5g%)XVX+ zZolAY4~r;6*XN<4D)-``DtGW&Qeb4Qyd|De>mbB%+lTPV#|ractFh%k-F5MY0f@he=FIVTJ|?n34AB`3K#FK!_nc5PTj+uc50XNhG9_QPi7EV8Q}+$&)J9DWYTy~7g(V(#te`& zZPZ`Pk>%7m4M`)Xl;a_T#MXVb61={>`!hQ7{>_Yunx%Vm4u6JjA3X=Bv}Nl?>JIq7 zF1TMvPULCIn7m#q-rL*oE80G7f9p$An&l2;wox36|LIXa)Uv`-Nm`70N_wL-D>Zs$ ziH7<>){YXX;=ZL)!hVCNYpJ^U*CFrffvg#&GUfAT$Ds2g%1`oXzpCS#=}8pRkGgo> z4v?rG#45=u+Rq&~Ilf%!R;}w%+?2f`VQ|~}C^Fd>l@N$uVNWEm`qb?(+t?&4NdaFJ z;-5&c(g%fVX950UP2!rL9c4zfnu}xSijx3dY@%JcHRV%*$W{FtS>tB-(ycpMgkkhH zW#L-*CUaZP_W&&@ZHF!Hx~&mN$(N7t)%cyS#vA`g-gAE>)kC_jQht|&P<-Z5W!cHO zxKgSe=i{`%1c&h*5tGF4mG`FjvI3K!$9Tp;v-&^BSd#31ic}9Mq370Xsp>~FKMZA! zrh0q_rj2V|5f!e8qO^TF@p7`#jZA-ch?+VuE#^!AujO~toPjqguieU#PORjjb)z}u zA5U}zQP^weUhvUN53ZVR@FLkmBzx%8NlXF@Y3G)Ls%D0Gq{bnj1b zV~MdJ@S0F@EppzrVIHKl{g4=C`S3$xN!Zg<011jz{cvl9X7qPOdH%9gzI9RrZBweD zzot+kd&r*XmuMLwXY%-pD9g9fA6U~!h!ANZ1iZ|>i|;O(>*uvp`?!kQ2J!xu52Uy} zeV-az){C~O>lFiSxH0z8?I`FOy|QB3p(lMrN}2;*e^*x8Mx<5H72fw^IZST%X?!N) z-B+&_wT$W&8Tv2vX}P~9Hl7U-rg}wT!6|AT+WS?@oq*znudS$9$nbK2aJZ+_rwni4 zQRKP1l{6!uM3(;;HCMveOko_9CQS<*LE%oWzR3{5Yw~qls!W$~7UTp;_0?cu&ln0cK|KyLF)AxQDt@;9 zH*R+&>U$L-eYA{N;zYCz_8+N{)WD`yRlJbJ-&iw|GnD@3L9-M}RnjzTLF9wm6*-?iNNMayq=DOdTb#$a zZeX6hiQ@TQ6BQM{5O5O!twsBXRF< zUSgLGeUGGHV1SF;`HuJA=UM4N)3k#^d>^eQ1=qO(h6nRkHF4o#W4$-t@=kct)GXMUWN}*xj0k*UzELfJeF@CH{PTY8ee2x zDnyaJXOdYIsgO{VvPoo~Nl{tZG8(9CBD1W7u4HEKP4*rc{XWNe>At`B>-jx@Jg?KG z!+D;^`i%Ey9bsNy9ey$2(8HlTiite3RB$Mmr$zfEKSxE$yLlh+w-h2D$<}vUhCgU}|Jd5&odsQby;~O2pemT`pBy~;CiIf|hNwoWrTf67F+a$5#@tDFBZ zc909}WZOwcUp0Jq=I@sc{~8n92I(s@Y#;khHmpXj@6juduk^CyPX#xAN-D1zi5mTx zR%o;lws(Fm)%R!3be!eHucbVOtExHd-fw>SdM}jBwA#0)Bo|5eHp4m@gk`5;~8Cv3$iWE*Qz9QzpEKJPuD3Z$Pp{++p0}D^W$^Z zf6^~5VR8e94{8}*?aS7nJb5<~d)8nfaYicFj=3fAO~EtX3Dr9NvSxQ``@94->T1Wk z!Gw-{&*WIOgtnylhck0>zeHC?O5P;(^}R|RekU88SfI*#h{$B#|BgwzW$D_mZ0>VE z8wQzCwUK&vt%*xcWpP8VrJD1^cKN%R%io``O?-wq&Pyaqa}NF%Bd>~ec%)>o?%!K? zRoITQHq(&sNQw8Sb#>(S`5w1a-s6{i4RdO!REu5?mArY`{7-30VdK}L=pnCE)0Xmk zXQ}N|;;7zJ^Q5q~-G!T$4XW+NR^j`Z{z(~l={YUGB=CsE)K_j;uRtd$sqONol!Jsv zEWfqnvE?^(Z{m850Ipe__PfQ0tc3?IcU?ZGqBZ+?T7KrBu8m0^<7t((waeFt75m&c z<0QF$)O32->{I3WlXKy~#Aq^K+I_{87c3I*0lWLHs)E1HNptaWm{493FlA8#l4QK)jsVWv#^!%#87^k5AxI0OCvK1IcoOu7i|v(2L6m1 z^nS;-F#(xt@6h8*}* zt_>d!KJ(tGiO|b!rlI*mN3qC#XT9YeD{4R2xh{f`2|cD)rK70#+_YNYw~Ack$0!@@ z;U%;4kDd2b3*^h(8R8zhpqF0nwyJVR{MwwHSmj7T&7MrR03JrdnetoL*7gsq&JE;| z_i|rxX}c@X>5J~y@d12qQ0$!8_L)%?M42M0#&xK>_^SGHRlQP3xT zsL~;n!n&N?TlQ)h_{T_Xl>T2Qet23CpEM0*x=%IY&^Sb}=U5h1;>5-ZGh3f?AwsM{8enPY4 z9OYL^_YtHOce+L>bu;zWwVw|k_4@rS#Vm6Enjbj}^A271u=hL!&u`bHm_eXZLLKK9 zFJwE;_dU`3d~96ApU`=wd#H}?HI~}zyr;v1Qs$FUv&N)tRLw#w^_N&BK}Lo3+M54#KVP;#$h*SkaSe~W!?o|}8>5faIF9|?Pgu8pq|}YU>iVS_ zN~L}e!7LKc-)rql%A%-K55Md7bfb%_jMR3o)$A!M39OWI zYW18R;ZLBie0S%`aieyj6e`f^`*h{7yQwLi>uxv7MTLm(p6sl07rC=yL2W;flj51w z@hF>|e6^#wI0h+itR&tQI})84AsW`mCrj`L3_lJb zlziv;Do~JjTarF0byHTw@&Y^RUWVB}t@0ydg8AI5D0=H6?MkJbxI?07ZY__aNj-UZ z;Zdrg+T2LwpP7T$oyRv}GamxeK|GeqTYAG!#b2d*1#VW_0J)qV;HQX8 zAD$5=%39UF-IIVi$80`DDEX7;Cy7@cGM~CtEr7k8vV@+5iCY9|{l(6XSf!M&(!X!) zGNJdq?tT2Jw!I(O89&|DPH89pN0~nFGCm!D8fLjPUdM8dP%z$0a1|BuFQkW{DM=c- zvcGqp|5+>b`}%D{!6A@>rL6bIpDN~tInTGl-J8G$J|Ta?y{^eRQ7AI{K_CoAz2t$F z3jV+mQb#nRKH>nc(=&<6TdgdQSf1HbU+joA@Eod3vO8ZzSeILV^F$0aN(SmGe`Y9Q zU>8E;UJen~gHsoG+`jW!Vnv4qJZ=CAhT<^IbJR^85#xC?9YYKw(p%(slfH zp8xyaiw7;2MwqK&Sv)iMMJQ3bbi_KK*}qU1giHPQ7^-6#e{1Z&ad@rPd#FwlUPzvV ze*&v&gYAUa-K#Q{;fKcBV9f5EP8{_+?)rlJk)M(4pSgA@f@ROVh~tMc#fKiT2O?PV z_r7{zotrt{V#Hb^Hz&`$q$<{_V;|h2Y;Aq+OV&XihfwCL9OED8dkkkssE_#7|_Djjc%VK>`K55zl_L;lo;+P$@h6Mkm!o}<6zR)UhcJu z$KEHfHHF7X8o7awvD3XQ+RMXqwC~gH9zQ__S%pAitUgESwe!CDo1i& zAgh&?vRVU_=Bhqf_dBq$OLDd95MPRx$6cw%o!wc_s0JD_h*v_)9a%4oKHTGQ0pf|O zCDXU5Y1S1Z5cya=(jksKXa1@9y5WT+c8i^L-#=6b{WAAKYYPq4dB3?MKU5Wa?sDe^ z3U()joK7^lEbxWjdZ7KaCMT*I@@;9Ev$$|)SFf__qD$IkhNxv_Pvm9K7U=SG3YaIO zh^Fug7n#v!9Flf<@3zf2L_g(_i~c#)^5TUX`S3;oT~Hv#Zz$5S0uRg$;K8X*>p|zN z8_%&1=f50##E$LHB8EHZ1uJUL(rHBc9Iq+U-)*)LQw=4#dX5`(?MG1^Fc=nbjv8iw z9m7E3q58mneAoWk#pW<7{L%7Ex?qgKysB(J zRNEewmxWk)%$7YzbwK4jG1z0_t{{kRD8zQ3-H4G>ZL7cVMSs`k^clm>SuWySC{l`p z;a%uYLeQg444rD69sC3_4TN%qS1Q9O4+aK?KmewH(jfJmvMQ}+J?-g(P+Z(Ed_Dh4 zC7mI!Ef)E)to_k1cwxEVn?*gX@4-d&mRYEYek>b(B){t|aK$1(s@MF{>^>+4hK!@3 zTF&D|Ng%i-CmSLG?E9o3{5De{L9(Ombuv{bPi6!PpXd3J3)MtgpaAhPy&}{Z`6310 zLGzM(Wbh+m2)`Q759~07UL4zxET3z;pbR;I%8)BJp$y5hmnn`dxf~TJgWX|XH0*5{ zc9{5BCy8D~1wv35zP?IXRpfHUAlxKE84|)ysXRUk$>;5C<5NBvyMGRR@mYW&!e{BB zxp%!-P4$N0DaHL?lG(E9jiWr$MZaLs6gAe1=A(Z4!RDyZ_@oQ*OmkH+ScCot3wXUM&6d!*yohe2W3Z98^T@D}@rMiJDu+n%R( z!`lji&TMjW+sLm?eX#fU#K+c=UqgrR0`TcvwHsXb%BAv(MaJRTO?ECdp7eD|R;ae) zGfUPWAv?g>COAY?=ofjKGV30BjIQNqAZ+U7Z`f4K$q2oV3aZ)YD~N)L>l+434S0l> z+P~M`BlxSv6Vx{P2k{(&XyQ&ks~vl|K+0_H3&@k?m4$t3CG`3-8_|6C5F>T27XkMrKHr3ObU2!Yb ziCZWop+cTC@xZt|+4v1>yZyYtb3fmnEmimV>VOu8S+L{rz&8zWaRnKVMcdyhFDxwqH&Ql=pU?Gu8-vt!>Si=qF>Sn$st$SlExNUt@^3E!uDY|D{rS=?@FUt z&DWWcX!`lpGmH5T_Q6MnIbq@Ju`|rAVV$AUVyv(FN=}N>*(%u=>+_FDhX=Aauo+EK zdK7z5(4T+bo0)3!GeG5o=-wQO%MU&oPPcye*tPR+l1G}u8;aA8Q&?jl%hS>p#2<#_=x=Z@G&wE#Yt8VAGb)MWmFq^)oN25M)zkNeCuQ}UDyhY9jRVB>!W9J+2igbI`%!HbSFmZn+xg@2OL|B#SjDMv^PA&>tPwxvo!s z@0o-37^@kl&RpH%P0HoR71Yt;o-E^Sso7Zm$7^bEM9p4!Iw79LbgTvj`q?%|0pBB9 zYuRgM_`H9aJl2`J)XqB^`kaxuYy`f0#JtftblzwV^M2H^&Bl{sz|vFs+qI zx0?^ujWLwT#RXW#dxk6dcdvdSEH262pUMKO}K0Z{}UNZ%rc3C0B0NYA{e4^xY zCBu0tVXI7VyC|YGkR?_$622SR&U|^VC;It()rV2bWjQw4>{qfUS3cN5v^Ihj41>=< z)uVIWbG?(2e0=KWF8?mKDFG9D*XoWTueScKA+H#^=!mS;t5n~>@vl2G++RH_6wGHq z{Y7UIg&+9=mwr$;-hAt!_U9yFOra61e$C4&E}$x9>sr(V6L>ZgaYn>jo6oIL*t?Y3iOM&Bt|7BuUc zQ|=J`C*GU`N1SldB1qsGF+o+m*)$>3T;&P%7itA8>!aEYiXE7Bg4)wA=U+#|_a^%+ zy#2N1L*%xWF*P<9>&3CNgbve-M@_k_xQ=g63L{sr_S6gtS&4k&R#cSL*d1J~c zBK25j4X=>zoB9F)Z|Z)>X^o`)b&g||BZ>oZ8j%P5#~)v`P{nge`#;nj>MRdo8hWdC7(<|}f1@mscx&VD)*?OCHo+0s?i7C$dM56V4M zZ7W>`)bW{V)F1T{F}uQOQ7^KOz?6QRrIbcwu*Bq=0hVF)k$9_Msp(_HjmRvjqbnc8 zfH+p!b;lT+QmLP{1uyPsWDFb)X}HGHw{-+kM#-h*krEH$2V&{%{c~FOhDkhlzAhJ; zEbnYT!gSdQO* zyGR*(72QIBihb(bee1;SPcAQw_?$Bj)50KVFT<>^$Ts+V^Vkl*FYf1C5q60jv_Gi~ zx-Zl;e?FGJ8~5b0J;35}l*0ylxANvmk;!9vkwJl|^y6g^ki|4+{-9Pk2vS#b?<6%< zOK_!iLY}9g>*esqtwQXL5^@oyhGCI0*m92+x%JBXY56*D8GoLQa5KjXh8Hd6m){(6 zDct84FA}HmjAujY$vAnynl|eygnlPF@oyzcmWe$YiR`jX-`w`O-JUuBe&ed|O>&2# zu0BrFrW{HeD%H4EX|W!Hed%MnqO$4MW@#pc2I{Ppo|07idOgp(`q(t2HL)XN&lZ17 zZXpD_ohLC)1(>^Sh`l*McJOq(^XQK=IsDNU-swZ+6DJ?RNqUG;I!V7bR>`^ z2NIIEJpwC(&42DwZDYL}x|aJCGK)=n-x!zDSzOGZkq1?;D5#=NY2OD&d#8+4o33*P zOfL02u`42f6St_`&s2pyH(OzTl$q?lVMt9r-LnTi2dR3*xPJ6*A&kQ(3Ov?-%Jkmy>9zSY2!obTl9>X&gFuyWre^i z(a}NQ zj@-AXA|~2<@YuIgxj#6)t)(7Go_p@@u2deJvDCx)=t9oKQkrk@PgC731BztgoS6T6gExQ%Y797s*CEXHwMM~lVMOpb|sm0XKSI;nzreIg0CcGS{^?Sj!GW*ZemBR%E1PQe)Hy9 zdpywWqR@OXP?x7hU@?KX?7R$xG+7Qt?C*z@zC^lrf-O+{i-p?X57k0zb<%-f3b->U zI1CTum5Fq4K6r_`x1HsphLyqmTL!C;xL4DQ+l$uLL~WGwMXwiq+gQBNMW8QWSj#OE zfuk3vDSxHBaJ}=$N^L%6>%}=Yvo!;K-yAwG{iK|*$x5!3#V_?^*xF(S_G?d<#IqdB zN5L**4-4%sSas4JUujx!{dK52zbZ#PB)=nvYUQlMdee)GSN_oMDtz=b=kVzxLnpVm z?mll-GIsLgP4@0Dea){|Xf==b6h7|fE%|*ixM-&n1KDTF15K;@`YayEmHOwD5X0V7 zwikPPN?Uov@XEi-+1l7{jd_z9S;=SdZqLiPPN3Y@?fJxj?73BGWljkPrCK*xDk-QI zVk3h%8bV4)2zd4tL#6EUEY&PCUYwjS;qOcec}MWmA%rg053Ydp#838~?~rsz z2sOH#aZ(c!Z|M0Ji6%W_z*M8^#j|kI_}p1$`1PMhEra-b?**&iCxLyQW*f0Qf%l|#Aqe3$`i>sg(Iy5?H9jkQ4)x9>>{9}jWp<2O+;w_T+#HPd{v{Hx&5$1+ z^0`u#t{H;*uANEVD0|ZW`o{6`8<%H!V(D!oKcBUx%M5f_nLG+*N+MQ`XEC@>FyK)R zN)_<`O#cAW&)=-ai>go`gj_=5{YW^-4EcpWja{wtyfZn$KB}Z2QAf)6o9&yh1q@g}T^$$z?)Ss{OT}eoN7*5u;&`-QO9*-)WvoYUEYg zo?xtpeJATH)Lj=4d#+l}Zg+SR?iZo^`Q%N;;mfBBj~P{N(dPAh!E49IZj`j`Tkp|q z@dxjW@3Kcy(tRk{Cd8h^rDKu%#De+taUDJ4jZy`3j;(6MKGj={JU19AZmZt9BG76b z;G$MO#84Z2u1WLm2jN!Hg$LuSPbo_%Ez}mVsxyaI-EOej%3lp~J$Ue2A&bR>1FcbU zRTq!0x_z8cHNG1tV)1l*wa$|_ph~5Uo6wRxrNmfu=3+)(VB>GMk0omO641>txS1PR z1~=cF7h=!kdXX}vq_{2S_zOLvv8${ApE;-V_5juI406V2ea&gkoH%}#EWj0$&A7WS zAujpwnZ@;QiUQNORlh$xZQSiY&b6KTU0gCRx-B9v#2&e@9_6a`Jr$Zsq~@_RLhRnc z9MN$1<$s&B3NSV4t{*gmNKGU%(+Sr+sH`WpActmb!IQ!b?gPJrb_Ds89`j{ z(ItOn_M3Bz_j|1O)5;wU2`+dZzI=?)%bSnqfEuy9_b7J&>@Yttq*Oth|LHqp8+HmW z@AL;$KT?hD*#)8blImP4VlFg4A4rHB&p;DovBUUwPY>~Y={p-2m_dH7au0ty31Epo+{Bea6=7}~NIgf8@$Y3@&?jBL&jNxNxLc#Nj=sBP|T{mM2M zwG#r01J-q)L$g*Qw6uJ`^~N}!G@BDnc)}D=sxYV9G-Q^6Za^aoORj1*##_l%W;!$? zOe0yS0fU|h6RO1e9BTcDK(*aY!?FHSY(Mu(bW;#jD8JE*; zrs&h?6_6eX>lB>Gg*UQvoBoV9wFoLpd3?pcxoWKT_=-zR&@atnRO zoB#cGUQn4y%;W1)qx!Bsm*RJ0eN0+;te&^adO<;w`$5>*PqWiv#M1Goc zihj*P+2%JCV>u_*VI$eqJtErt-cq7auaHyH&A^gjW5MBOm_xIHz1dmgw!#$cW(Lu! zEzL`xT=ToHVFjy;`GsHZo|j4qiR^#667=fDT$`8lOWo}EZlQBQ=ktHm3R86m@#usW zi*?yB$$m5b=}%sWb%}qkSa{e+$&nCuFY5CkcZmH=$jpnHdfhJl@-&T}ce9!=@?5$m zE4Ek6WNvU;6nTERvZkhLCcR8)l91@V7@GOf?vnI|w!t{}Jxnvc!{%b1LY=lOA(z=e zains2D!qR!`t9ZB*>J|{`V6n7<=;6`ZwCXtPx_vhJzL|t9<9g8(q3{dIBK2pS*6D1 zyg`TY8On`xY;JgJ=~J3%+XQxXV`e$e^v`7JdFoF&tFOA(XL={r*Zn_@E&W*}Up8>< zT;ItUlequ??>CtX2d;^S?Nr<;wpAodMscU*R-qjCuN3gtl7&RV_%wF|-&89)y64;SjhkIfWM#|l1X7-!5it2|$DX_6(4~iG&%NH;VtGi2y^`Twpg;*cQI?$50aiMT3S2U%B)#NL=ZU0 znjPwBa!cBXyG0a*;ks8au{fdhzEE2se zxlkBo*sxlUsVEAw(zOV$*@~UwiVL8yQxu0;w5*u*^dx3~Tie?{ObS#NFcnl?X!=mz z7~2Ia)ArRfgwa<;U7~H*-ULu+6$EWZ-SpBNcPMdih;jX5i=~B2%PQJkPkJ;O$~OZG zgWJql$y@d$a7yaE9*t&#kDaYY1bYz1;70AIDv?(bzr>FB5;{97Hkc949yIm_^DYkC zp8QxyQ$zUBLLn1cE|F4~gJXojO&oe_OjYhyS5#BH6MD|Av{~cF!umjAhc6R#(LK7` z1KTcHMgP!a9d%7`;)w1roEq4Xwd>poQ-bA%1$A}!2&iTn*DF(E7`jgdHyBnFtKuCr zH3+aBb;}Fh#dr?^*!Phd;n*(X?!+z?a^bVbd>f{n(bFxLrs4v8+I-rq8YC7hz5dnZ z#OO7AZHfiF%njTxglye)cZ@z5(fzRNvyYPjLtb%Nd>LosRq`{<&vXQ^JeEoA9mhE0 z6%6ZD6cf56Wb*ABRy7yYsV=|*zwI>LAKxEqR&jJ1Zb4UKJdv|1P=yj>!k2h%@_=`7 zTo9vH!M$9&u=u67h_ttez{iH87rf3oJXPp{Td)ET4G#^VHiMgN$7@=5;%?LZ;l>Sa zv7-r?gCvpz+XwJekq0&w7h{S`%eL6AFrRwv7Y);uy<|Wmb+}8!7e1`z;Oj(wwLwz+ z6fA|6E?(hvb;2a=LLpF2k*D_1P1J48GtDUJQyHuqQS#ChTkJ6;5H~tc;w-5sC6Km< z?T^2h{7I>R7m<@<+-H{1#1i! zmA?!0G@zo}6!k!jAdSQv^_ofg%z?MS(xBDeX9|Y45Al063or;0lro3C zF(hzOBz6(Ef)=vUzts^)=v_j+I7I)7NRE9jV94M$P*HMFCe6|`FZdhTo3Nn_AYnde z{SagdD8T<6M5@_!WPt3_6gKd;$2BjI{{?kFFIo_dgk~v(P6uHlunDax2`VIu&=+{S zEo)b@o7gEtJsxX*Q-0NjRQuZlZX^6>H`Q2S0f-!hATE%kbQGX&BsroNrl(m*g@wKi zU_?8o#+10Xnf*mGgx?8WHxbN$Rv9AJ9s|yV(IALL+GPp!m}PW(fmo+L=_QCybFKUh zFpK+z9@6Zsru((mfFX!hQ~>^WLb+-Gl9+=&3r3?`f0P>U07wcvI8&=6(C4LKOO)TL(2b)+TjPNJH}Y}>&yr>M(fT?zMQ$sD@j!X=BftN(*J~J7fj0<=+i|mK<5g_LsY}sB+ zE)ArO$%nxw;@PMdRqAQLxz2Ah7ewd6)o-~0c!3IU1=17@IpvmsOzX1K-}HIr6jr($ zA#BuRcw>xl!y$jRAIIde>)uWrG+7T5(H^ta)zhzNYRp-CfFi=JK#kbv3>#v4J?03& zfwS1upd7#oVG$=ule+0Lt$7F-7xZd5=TEaqIbMJbCST*=(SkNGc0dd&>nrstlm@ba z`7eeCcbKt98*3S9HGJ9ufVmw=4a?b}#3oB|QKb_Dj=$BhO_k>m&6N~q8NKx~>{)~t z0Cvzp#MA~1A#6qOwv+(GV6fK-T|cSG<8=gnA$tv3Y!G;krPBSN8R?fb)ADc=ggA|i zMJ6+l3WRtxv0dbP{T<|`Hb$hY4sx|OeO4hey4JX*a5eToGjb z3sn363#y4r4!^6f`Z{r-F@a#P;1l0Tj0duT?63K?yOI=-#0V#>VnT*QGnbYdp#ag? z0?E<<>XO*V^cPf*`L20dNrKjs!^hXS;YRQ+m8&=nmP!e@QL~CfW`7f@G7$`U*eRpnQHzsk3Ixlz(_y;&??p9S zmGy8Nbw$vNv^!jA)_e57%L=|lECiB*_dujX&QL;^D*>!hqhubz4cw2?NgvfH=rU7YuK!Gmf`W2ygRFHC|O}ZUcEokPAx|5C<;bvrDN0 zcSRJ)71d)1QV)IzK(sqxB|`TVgLBXl%oQfl1z-YDmj^Kmtrf5iEX3>T$b|z7>bU)*vPR3=nhCu= z@h;1C`%278f|aJNd#JvgR5< zSAYgBE#xL3zY2E=P9!oT8$*TQ6p3rYQ!JzF#{T;WIR7lcRbP;AKL0Pj@mNvs*e;!^ zO@_eU8?Ty_JNX0Qkjf$Rgl;K)bMi+@;KZ^1=6{seyBIgOR?+lh!xrDce#%Pg4woq$?Ox0+L{EbdcQrsC3 zbz$BzS8(5)uNn*SsZv6*#V3M)<`g6NGVy+x0^1G)r@OCI`;xKE=a`iMSXi#J_YpaLpq;yQy$-)9W#8Fl=ZrOZ8HptSnmV zlwA$OTHPY)HzvCOOb&a*4mPjW6#YpmT8}QH?s6ckTb)^5c6E|+n^qTS?G3q7x^`4aF=Xck7q}NtToD(=@I}FF-Vz^tl ze!c!Byd)2?A%mMFM2BEk6H8jZZRJr2LB<9I=Y!~shr=P+`@BV*()q_=x+X9p$4vQ|>0NoZd2MNNn=Z`DeQm%NF$5i5qfqBiI*G?s3n zMnXIau%4NEjrBfp;#i0>}1 zh&D!T!b&5I0A5+a5niwMk}#9$U%U>Fcty1(Nn@*@NZfe|v`;N9kATD>&ePywEV8cm z9;ZTt2T+)kS|S`RjOB8{svMdlQorUmzyP2=V-mVoL2=10SzSAB#x?5N%81ro3~xBW zFx?&)$(z^Im_RlNtTEXYcCfo=Q7qm89qHaCsaxQ&3^Z3&EGi&;F#O}0CaI`)17m|^VV>R8NQG${sT}IhHo$He0E?Ime@<7v3Fw}_R~Z+E z!SWv@=2$+P2joIP;+CcpChPPRH-5vSE}g?8?4*cSE0`Q;;G}JYG#4rRolVIFOuOd= zm_|fqfTYym%oL$07#Pq*2yTWsJQ8yjUw1xJ6t7x23@HCUlzG-(H5Lt$=b?rprVKvQfpqLTU;pCgjo0Rax|qQNud>W{!M zm;vH^6D<=!<<65iq+QtObdVq&RtY!3a`|dC?A?qb6nsko?(pQnWGGA#qz-8WXhC2r z*Ld~QRfsr|C|H=}Rgfrg3Ol(i>(d}I{*Ydnu+00*>duo(;q1I%?u&ZOBrCzACmD~) zP*Oyw)gXo&GEtWa%atc217hlczlV}1&ql$j-HFq`O93pwX+e5RHcA5~Ss__qj-{Gd z9t>t5KAuk8IeMg`t#g*1TD-79-Y*CoN{R--&q2=^Z872xQ3Vw%>U!d?7=$sNb!wu-VfnP&rP4a$OY7(ka17hN* zqzA+xSkSVXNboyAN)}jNpcZfP8{?dL-hURJf>k$&AtEBgAE-?1|v#EG`*csZx}QfhntCJZd-PGZlb~-*iUU4EzvCH?TP2qLgkQsNoBdLarX#$4F z5PU#9TnAUaD!wXyUD5XP~g?143dDZ*43o}sRfyNl$)y~;)ymj3>=ho>xZ8L`+FrID}mA}e8l*2 zxZ;;~0Tsz_qtFS$2o!nxI?$)97w~eRd`1sXT)+i^<|`7)Q7TjE9i!C>SL74_?>W9gTGU5n}hC)_F$z?}m- z0}eTHYc*PVS^Sbiluq@O*l-f^Arprkq7V@ZvA~5jzq>6G;w9+$jAV84GP6n3#VJ=Y zIjey!-Q6~~%BI9JUn=zMDJ<&$@oe+wzRh>vcg;<&Fy6@)JgYB}hoK=_rzNY+VTkNG z$?BCbMo5837=#GhKG0WY?e5LV-1V8MhZ{13x<0y74n@&Av-QMb-kjE&qtmtzvjWu% zqsNmSObVQTz_P*VaKYFR-XI?b0!3jI$82|skHgsy8AQkJDmkBkLen- zb_XWmX;(-n#zQ_5E)bl;A)8yo%B|(XEnz7P19>Onh1i-Tg?SyO`$TzwKOlO68 zsW6-6$kJ}64Y$~)1PEZwj`$jDjScK@W(S`i@-u@F38O?bnZew^G>2D_*jia{+AwC3 zoClyk%={q_GSRHBmS~6lz(SQ=R^eFS(MS0ql%?gMr?I-Yh{ripD3j%B<%Q>{aXl@K z)?-IumKnS7n$6#kA|c)}w`A#K=?Srk^gZg5$+qf}On$>XUr!8wEFIit!U|sASaG?8 z6?PFKpZCl>!=+ACbHU(cX~X`?;}@fD=`1h}iTjjFg;Ahyto~KW@P-~prPz^GW%XFTPY9o5t?aO4NQb5)Bna-{Iwv3^1?A4MTVD3^Cvi(#+r1C)#M)@UwOh#q|dg8rD&m8u+T;G_e&Vm z^0G2(7$!_XhY@>u6;Hxtq4=iDcfoSl$ki+Bxgt-xFpBWeRSpE06aEA_wP;YDf9+s# zHDdJzJFlq#7_RRlYagS6L@Na9I4*ljs|l>)1qEQ-Mz0O9Rs%~ zlRp*;)R@pYAJ!vDaR{@}-Z6Psux1cNKm%qkNyv>zEFn6_=IcVcvfA+@D9SJi4Agiu zg#XAC;X5{%TTN)3034Nct7!G>w#n|lnAARlZZ(X`K;Kv0v`cv}IK)ff=eH0SLY57j zJ8QmSbOy zc6SV8@LnfTbQCrTJkAQD@X^U&A%%x1egy*!xMybz2;D*z-O)2TutOA5;`WM;;;>4( zWpg`>sVB2;y-rziVJ&D)tk@)WH8z04MI>KVeY$mIW5k&DmsgGAQpIkWg^dxEO@HZY z$-B@wvJoyDC=0J)vVbwri4~b4xL*2B`mZbvP``qIAs-7vd;@?-SBPMB#ZH;bfr^>* z0>(}j$o5(w3hDC1%kWI=>~M?f$=tODLGjh`A-vf`puTtj|$>#+_nRN&*`mFAFSMYnlqhahEvwrZQ4l1*FA;m`n z-nB&Ua=@doO(=QhG$l`N6bjax-Ao*AZ+A&GS-VY=ZHd@?EQrx(jGmWcBxEgS{=%?s z3`$nnKD1dKVTZyC%ISB=IEfRQ?yio2yS53kD$-J)Ub3cz!CPQ@7VD5x0L~JPIzC`OzT~Yr{f@A zK~Ah7iWMxrZ#t$ZTZQ`*PCU))y?65_E4D(g14%}7A3-L7CR}YURgg(seN%Rn57`sE z428x^6jUWu!8Tn^q>CjW)bZHTE*J+7J%i@nRNzT1GhATEz?C97*8+$gcy+_}0gxDk zBR3Y@%t+i4Fud;yJD428WcVX+4Arqv_Uk_&1+gQr&_-!#a0eY2ftW5yl=q~rX%8lD zh3FWD$G~|<)^0NjvMn5fKu~m9PwtNmDG$wq1NEKIy+ClhRthy0U;LVR^w{aYIdzhm z^8gh9B}mhO-2$0en@e3^rq@!DA3Cp{3x*s80VvD_B$<2k*dKrt!<~9CkU`KVZUNN= zP(jvk_NnP0l*_;EY*Iw|Y!d50m`{vacrgM+|C{92>p`*FEx6obC%2#BK`v-Q@9Mv5 zzPLR-L1?hu%-UPycnd^@S|!Lo&?BIk#AZ?~P>#+ma6*L#Xv2`uTZ5OEp?b>-8bFgd za2Y%cz|QQJQJQ`3rN$?e>Lo22T4;=@v`{-kEX#buPV%4 z!Ga+}nYgsHCCwjPmcRMwj-LMpuRsukIq}&DR6po0twv>o`_DQCx1ge@1X3=Pb;p3R zDA-ZMFX{6EtGOsoKVw~v7fAo@2qP5$mjf7p5|tpb@E%ISARm=2c9Ag)f+Ym6sQ8x8 zqD~TiA(Co>86g!OH{YfOOAyngD-ez49EYkP9{~&sK0Ypso8g|pT`8Yg^ayxB5)6=D zW5jB$AAu~Zu7?H(QQ8OR0ODEvl0*lnK^Thaa902IW{_&SRDtSLdx2eqfTXQtSSN`E zMRu57Ac8F(zL!}};>GuyM%fV$kUYW_!CpjOw}BIPhO_r9M>qW4M6jL6cS1q2JKTg| zBlZzw=lu_)mfR1X9^BHe@dX?+wQSs`-=91R=>YrzLspKDf$w7b2=3{@2Uf)Gu@lVp;m;YAk>#s03ci#gpLEV9xPM zoaxfib}`alGU-x3Qi7OlYg)b14Mznq3tH)@zO}c%GaimP zS0zbf*JPu-*F1}U3+|UfabJeXGsgr@?A?2>#3hEBhQ)NV<+&HMEFzSD&gE9AC`7L) zFLVw2tE05k(n_XgL6AX16N?}1Zr-BaDS{pvX(IhW;?iO%Sz?zn6D%e3w`Rf8rw+{N zHp7O@cu&pg)X~Y2%pcA=vQ0hb3k((woHzruMHAxZ-p^zTxh`i~r{wFdaGUXFjilrg zR=A%UoES|mfZsb^wpf~{tdLT=jf#V71P%4tV%9rxF#Vxxpn+CONwx|{QFAiIp1!bz zFiLJ%N7~h$ePOw0*PktEY7C2ZU|GtnGz%MjD;W=s0-@OV`&cw2INR8uKsa`HaOUjq z%55T)7>h_c4@$Sb(($wK3Y&NXWv1QTEw%S`iWdrQxe`RORSDH9_SPA#65{! z6XQwo$dl02aMLc9fn!oT+K>8jL;m`FL78H!d?O^M?`acEJtncYo<$yJfy_~n;D4;d zwrIIP?zSl2&0Y-^6}!zQr{G8-*`n3*`uHh(Rtk7Xa}&>Y#z<*LB~xeh>h6z3`Xun*V;9NIy1^3-dnd_uX71pzKIVn&1)Iydu77uD?H z0N2u~)k>fku{%b0{6d-BZ!g&ew^p}bHuZg=ulCa>q2?bj8m~VFOAG9IM%`j?Wm9fcyoilH)#@%Bh8rn-VtmwXJW8?M?V0zex{qZzsI zF!jsUt{QEe-qbx(2#3<5KP=y_Ddks&qd@?I+ahAd)7@PI84AhU5#ze4wF|~yk6x?c z@WDk9l3N8sGy$c?F<>fO#J^Xj#&nTT3=54J0w6nUaDq8gn=} zgYVf%)_fUMCEM%wAtP_!jOFM3mD_mWXcg#=I-Gt4AyyZuU5IGDPHq8b17wm(0}9fz z+<<~K-CJ1Z{qah&Pz6u`MI9IJB|e#ttC|{9@O@V z-c9o!jZS`jO9kUKas(aKER_w5xs4a)0Wxw#zV|u32-^wT1bv&ONF}f654i`1-v-fO za9e}+$_&ZKl8IMxY6eEoIP6;ixF zc;Ad%DM)h|1lyPQ=_ZCzg1*5ndK)XZ;k-}!h-)#;y~#Zn3xa4GxW%U|44GjYSVHfs zPnlZiXk;tPB2>k`_vL4X!3zm6yz&I7E2ta`V!N9L$WUdsK7$S%>|nfU^Q%K1#~rvk zHm)y`5Wf`jISiK}_$#jvuVkasBZcH7ZQT!wM2SLX%@HcXAJc|JSpeD3I+X#OLmdDcdj`51Nhiv9RCAMdSdz-5j_7R|R+uPQu?uyh2&T-BWL-??n?8G~QD?z4RuC zW*(`n&B;0Wc3cN?r&q3na<_}F-PiNuiEz^?PK*Z z+yX)#IE(BBk&PH(ShfY@6qXqgTA$ZEs$?QJ+!7LchUQsELO zWjlFuD;&&G)RFputepx}iD%OlN#d_T>p$#_$H!@)>d4Yz_&$m_VX)FY2KInlut1>M zk*Cz4IXH?+xy`%{z-u_IgittPp4N&xsMs5k%OWYy#Ag1OCeY+-5qX> zH;3guqSLk{e#FHLrMcXntc3l7(H%>d(Svf+3DZB{E4CKd&3d;DUXi)Id~-XfC-}Zj z+9*Tw%(Q5>j>zk)rS&I-`leeecr5Kyk^q(P-v=nWu|cDE28#gE1r?x6;6O{6<4yy^ z#_tgS0eHL7c}kv@V)>%gPsLV8pXJh5I!TKdJ(rBa9jAf%$LB?ph;ql$gHm1e1d7maz4Rs&U&8lXPbcz`>|9R7nr<43{8 zx^LT3<>2(kFc@epYCkz-=_b-Wz=sxg0XskhUd?=Ugp*Prcg>DSp(!!uP_M<4+YCf5 zETpd1egm{kVG^-E2WM=PNgmTh<~4o+i4l2;yXFC{EsU{#rr zjExG{^h6nxdwCX7fh|D_MUsqo{fDm4Db2g5ouy$*_ntp9CAq)zlolFO#yguu*DSq| z_w3odo(^)1yge2#@O?6kUwKiEdpArsU*Fn(7zAO-^)}LFF0X~_zB&Rcl-;J*pvxFY zZWFKqaI=w`3q%JVaNqV80x3iXWMEtWS|D)67+bz3&9BCIljVO_$;pdMD;c0qnwKJM zXVJa|9d#$28G*&bwO>b;z^&9lHkp_Or$=CO-HNSB2!C{D+c{TTkeC2Gal_WlUyrU^ z1iQj^6PI!{7C#_yhhyQs8OVPFHy<5#TrGto>?abzG9iuGfY;<<0L2sE|Kq3kr=$Op zz_76wI*o(tXv8d`1EfocM>Yze&T*7c!YC9wCjtgShZ+SZ((Tugtwp*9n*sfVY99Ju z1aMFVIfBq{Sj;X1Mje(ir$&b~HrGpH6$B?bnv6HizQS1#@Y9hNH$6fBDMKL(_B4)I zswIm|9~>{U2u|6L@(<7IF^5{91~_O4C%|TbMhSvmWWco)WVraR+>h1l8^?>KXf7;3`8*)zHwxPk(?nmZU=~} zZpqNbb{wNXKxnShusZv`i*WV&SvbQ#`fcp&A8l$bWE5Lvv%ye75xIn)NR=Nm4nhtl zQ(ELxD4c|Ap-YIj(JmHIR;U8Gc2`Jq1S-QJWrBZa%G*dsLaG|L4V}7hmaaDnOyflI z+nnPD3=pBT>zsund*-h(fP4F<`YI`2ivN$Z_l~FX{o}{q4Ot;sWfsXMm6cVp5{Zng zjxC%+_I9U)Yzjrl-kU?#5sp)YvN^Ww6*3Rb@4CI;pYLz{`Fo_>b*}rGuWP-Y&)4fZ zh8V1ZsgPm7ZwDarzCS9Z>gDo7}ko%wFt?5($buwC4VzSw8a9!vuLdtA+@og7!N ziUL)s^%2S)fm0JiiidG953Di|gIMX|cP_wz0|s~FgMFaMERsxMiW~m7PTYU~O(cK~ zYz25Ay2I+3km_;l9lkQfLjNT zyN|;GB^_AcMY7e4V8Bj6V8p&?oEVY;;*R?Y45wh30vtJ?t?~MVK-hw}HSH2F5^$h^ zyHhY-1;!cHd1b3@Pv!&A-MdkSU{O%R`vX{c=t)!jv~y;NUPmG0~pz z%eifXqmqa1(3Czk#(D3J)@+0wEOG|pcgRWO%oq~Z*Ou>Z!KRy=AkQ6y%lsd(VxFzR zS4s2$K{x!hIk!1?Q@I~_%AAAyW^iJO_}7FBGs)p4!*_-x7J>5sxU6AC3f3<$_}&1_ zSZOPOH}JW79rk^I;KwC~?Hzbg!dv7WgRk(dJ=h~gvJf!e<*;kCvfbVUQp_D}IaGkB zV+MAM-8+T-K{axPWe9jfMhKd+SRM_X==;>Lx__V|4fJTR5U7PArTw&bB%fY` z{pN)rSW=yzY03l8Cxn_ikHFCFL%*S~wE&en>QI3-2X9G0$KV>TX7*0nv^q5?;oIOS z=6b6eaB%R}d%_V_kGC;{nJ@TR3Yefu!D>VS4>;f+Ze*JA?=`h|vuQw+M@||7HU^>r z+b<80F?>&L7Tg{Yc>Zq1bnpaK0C^$akLR!mfr-57)9Ib+umDv29oW|y>~7Vo$`SuA zPx!VFm{IpjhN%S>-u3;FeV*hBblU21G>h1YHz$J_4dqkP;imMdlKWgIK#1QC7FrC+ zCkPM?>gBH+AHY*q>ttmNj_xOd1tWFXKBcd$tIVJr$I}j6tFi*@-+{!B%3s6u{Oc3b zv}pTYV$n;#XjcE3KPT_U!?mzyIDH1hxLJ0L(h@hG7Ir#D8AOf~RF>*SQ*C zJ%qQecWi~>`QRUaIKSh2z$t;DS!QblHyND)hk6<|_DE&a!>9D4fq4RC52mp@KvfTb zsC8i?oO$299F#ONZt<^M|F_ey41qfw^}+R{eKX+74=?TEuVBdBPHYnWO3r(6Eh4P` zUcnQ<1Qa1S$qZkXv?j$}2ivdarjRzcs|zMXu7^bfaCCjZbut%Dwy$GXXb|4Oij~}7 zIP}0O&xe0^z4eKA+hFf`?H2>IIe5brI2qgY@tIOtL16J@gRKfD>3xF{pi;OZc-?SO z4w3%Ph}WLmp4&Wl*cFSmpv|2d0&XwmuVAM4#8}H5?rrk`|A8Aqr7BHYokB(b=PG8` zji5(sHqcBM^oUzOz}wIQ$F!}4Bq71mC^OpU%YAh~zW{vNxk#I~GB>bqk${cJ>P&>z zPT>z!vNy-hJ#p9&NZqzBN%;Al0{luinvwyofBbfAdVh}CaMr*+1w?oqCsH^*2@^%HCC+x1k=Ie2~2*>%D5I6v2=@-jZX#@3i0jo0w@K>-p zgRjW3I|2nT-dKYC_L1PSfO54P(iIPi_Z-hwxAX8OvB&_U4}1&u>vt_zk*=__gcT`> z)Yh6QeFfr&fxE&E0A;YJ0af^}6RZ}t5hN45JM#?yycquK$uSSBzNYn2E+-$fwYE!N z$$bOlC-CEb+5}$1+}JoojRx8sypr@vWgNAQWOLYBf%lv-;FDm6_e58hbKEtO0$y`0 z3jof5L+NCf1@3Ki!8rSmcgh=mYUe$>c#bEKb%h{}TmyxOR z0H={Du)D{B!G;IC&n(67DePKj06a2pXifkhI*K;4l!q{|16IZ@aVtO|70(MkL4eiv zDGaRO|Lu4-eZ<4%iNm$jqYg|V=H!BgjeW+UH*r6KIE^@3BkUg&kJm5+4*xg=5&V^# z65>I1$olJpW41db-l}y_&LD9O{Av1S5oniqxJ^8U_EQl@KKSy^byA7rhJ&N&E%0~j zmx~@lP?_2PZ0Yj#?2NG1SV)die2+) z8*^CfZ_`HPzz~9;b*=j!ZB2k5d69+r-**Yy$6G#Z#OjITcL)qo0@D~Z5>JSVTK4IN z@)p-qCWxIS#I^225zwEb{gMeaq789o;&7k%2Ylng_WE(b1d*J$*Cmm$v~s`^LTDil z$gftOBxK>V)Q1CE2nfZb` zhd0RKsJK3XOCC=RpCIm7Y(RL0-`!nNxQXK<%>LHIv8n&jFow8FoEPyYBoJ2|j}O+5 zr!hyEt(-Z{zc`;plZ}Kij&J`pVfmy9j)NXPDqp)hp)CUD`8rKk>XPP~FOM;gm%qO` zWYoBTkm~J z9v#{q|31!Gzt1)y{e}2q1Ug0>h-~`pX*Pb6U))XeWw|_oKoC18j;fAp4~U0#5D{}E zdmMYvdq{hXn~2^Vd;f>D=eUB{1ATP-1})7V@?oy(uDe1L(K}Ilk%y^-TZd7NTxAN! zq)-b;)&<3^~H&SLlmbn_zjjyF9(+<~O(NZ*sVQAn$}(+FR=(%pB;trQtaGOKKZ6 z(DLaBH;5zVDC0o4v7`04WL>{Mn67(Q;==?nzbj&5C4Vyst)U_=6!8sQ-Evx#sTur{!$2`vRi+C*LG)1mk(3h zSa8&(pOvHS{rs6;?LtGNym6j9+L`XoHr?OJW~yd{H!jfF z;G}#8BiqB<8RRWASSJ=R6Hrg?&i>wn{C?)fYKQ;PgPFQ@rPN!~R4VT?CTdd2#p?Et zd#Vp1O3VVOD#vb`wVy1{CdO{O$gu9?!R8jtnD#Dy$Kk4;!#H|ZsC4ADyRlM*_rAOF z+3M-H?wq^E7N6bg1yXgP%9&(bp~XGvUk&%yP5FLF-aRr>qvtCS)OpH)ed}GcC35s@oV-Ze#5XNWRRPUp2zL_`o33J0){lBZiqy>hIXY z2wT!b0Zy@VH8O;p1^rg#${-p`MC-Xq5zIlG#8>x%03yWq-TLVq(<+(+9`V6m!X-cyW$UpS8#+RmaPq$-o_*50X<|9!@X6hoo25uTn|tM(@~tRarRxcTGpgc=Zt4ZGSDC|X-zCrb z(uy7U#8C*L%!_HP1>oE9VgTARW?Z6WIF0uuN`{!bBw@2`1b%vSm2HdXV9-flVM8l&w>Ss zD$XIl29pOV*W#=KltdOjh3UC9T(L78sQ%34N~c)T@N9CcgIVP7D|hwhj6;;Z9tQJJ z$g>x-zg9~Lk)?&(B(dI&-$ulCC=iANb+2ZU5`-&lIAJngTJR8 zm3Ccz%O7n7qsq=~CWlXo45)b-nLiN;QTqusGX2(e==ib3u9XqsFA_qD&WhiDMWCVk z=l7(~P&^9{>1y?j=DXC>S*Y)R&ZQIP=U%g}+{BmD#fVtC{^+_R>iDqa{p$vbCpVy0 z4n*~AaQnURSEB4r5)Kbv#JzSTaZ#Oa9E(pAU=g4_m-nrWy;KN$XrjqgKHJd zy7-jmM!T~3PCn|vc)8YbfPqYT3}>BCnU1)-&w0Aoh|wyP?N0fW+lL_fQe^M zt_O_f?@@24%O~kRs4&!xpw%LVHqZ?arNIJOO;O*qoi(`@ycgcZis zHzI5T#jz1pYfm?zl?9x+q(KO4Hw7ehWiM>3+U5;L{lX!3E!aX|o6-Gq#TcTH@1RWX zsQkr5%IdNC?&>i6y{EsSNCG7!H?cu>TK~8PGsz-N>$HUUsd8+dmj5Lx`JXF#Y>{KH zbd4w&n9@gQf$QPvmxf5|5Kps!^bbWsf}y?0RW^QyilVzoqnzWD8f8~`9V0WwLQI?t zBr&ZUPi5o-1~jA;Aglvg_C;dRd0d1IneSa6W7^b98NAj;@m%aiUGA-rONU&f=ZoPz zvX)fiLyZxZ3#oLulAZ4AI24)<(|+>-mM4KfbU0L!x?+15xhl|_!(C8r_yetnvqoo0 zyUS!~s8FeK%e^W($GJgU=&o@VpPv3<)i|;jiE|qDyxHnui4P=O(ql*(Zg*m}UQYc+ z?V)(Vil4orisg%5#}Whdbu53VbAa(8))u|mXWM?(pbNDDPK2wA$#|g+l|Ijt5NYQ$d|YoM2BV>Y8~abB~>cZYX6#O&=Y{b7Y#qtUlooHUDb2? zfWk-Okplj4$%m~{!Rc~Ko|0L){<^+nxdXSALMLMT)fO^a=c^h;rp?}^w{elY;Q|dX zs(;EAdl6BM64Nf7;`ML9yHC#;Svzb^KG;}ZvuBs(^WSGsq)@US#XmA;?TB)~t^c%Z z2*%$V%>kV~4aJQV`Z;ffsA>IRTpKGq<0^ejC0-}!^ghe;2cv*lg<*jE;T;KS4m(nx z-09m!#yi$x2Pli~yiR`ck)3Y*51Wx4M~uO*2Y510`h?+WX}f8g<-NVmMA^z!508qT zRP>SE?PdL6;@3#A7HGQlc0-37?Vp*92BXnqmlN4ctD#jNwTd>L&W!umpk2X8wskM* zVg-&1c}>U0dBN}ckxtSQ__re)J{SX8D{23k+xDmXs5v)B3SCgrYi_77h^c4K-9PkD zD`+Y0#X(~`lH-w%qNqBAnW*Ey=`UWq&z#t%SG1kFah-n}B%-Dnu*f4d_FVx?tm+5u zK*T95I|P*!(eDZzTJ!l2g<`^3_8SHA{6|A~1qagC{W%4%>~4j+U9Q)^U-)R@4(4e_ ztGh3XNx-ePD~h3fpH3MYV7a9d9;zhQ70iHXo+P-<(3hhS0cEJFh~Qm**+Vtfq+w3} z=r#X01pPwivi+~hST74ad+inW=j>`=S|9j8=!0K#SJTrE;#4|x1x<4HV-i3(HI6SI z;l*3BSLJsb;(RP)9p-bd&_~b6za=z+#;#+XtL&U93Oiq=@^a41iecGoARctrcASPp zV2NdDg@FedHY0B2`KUU;8s*g*V#v{E2BF1e z^U{qM@8P{iHbYJ`=!dhRTbxn?b1sf7dKs-Xjm^>BjC}W^Wk60YpXM@NeaH;Ys;}XB z=jugv^4V*j#HOtAQ~qyc>9MWhe+t6DPcSNn(2pIz*p>1^q>)vl6-mI(Tvuol;s7cni;tE}GI0D8C4*t3Xj=D3AhX^5ptx zS)_g1&5Tch72Kmp`=W%)!zIcpdAQdCAU)gnk~UTUH<1qEEBY<$=fSI>2%@-3(L>g&b8PLGJohRJ=L^bp)Z-5%26?OYz&YiP9!1xmNm8{OIY!3?W&HqFmg3JE4Z*E|BgH8YANvwC7G=G?+A1!CPU=VaLKj6I1=&D#Bt-gQorsI`-Y6(2j|{_){iWM$Hl!df6!}xb?d)& zE?eF3NJEKanzADfb#tn>xrd`UH6+|1F zJbP0;xO9-O#1(p`8R=qdZ7)$bEsB4|B+>iysPJK#{B$9w&H$T85E8v1-s-03S;+n< zNyu1-CP#?3xw-@j?zNVV+pm4dxuK|a(5a@y zx~1$8`tv6>GAFFqowFMM2koj)agt;L_5*WN+Gsl7tEQ(Uj-rWI$`WoN$H8_ST;{#kMgOQdJlW9 zay_2bpoW-w&-veSJ}o<{9r$5R|Dr*_^uv2e!r5kg&%aU9FN}t+(zY@`8f-nI4~naK z!t8v;WYdo7dw`HIVF%gMz#8*tsj*Bpl|D&dI^}UFDxIyHHyKN7&K!SQ_LH*kl55}x zYeFM6qR=`FuNE3+%lL`+Q3aM%F~8_Grla*0_XadiuOw+M$MHFF`R`# zHKVBby;{?4DyEMWq5Yt^QT4`_^Y%{0Vfx_5z`j5idUzg942Vxr@Mc-Rc z_ykScNq8A<+zn|7i&1Gn{8hWAE z`ta|EBFG8{USn$e6NP-WBg1TKNZrCDjB1{%nCY%`h1?$5=%f@?-}=!S^iK(PJmRP5 z+4LaZN;Z#kGOm>~0R?htAB2isR8D;qfUey!szets@>8_7tVv!`e>)RYZf0ig}XRgaz8`!6!=)+A~!=c4}V+)@%X3e0BHje+p@ zdn02X$RBC}P2^iq#*j0iVM6Qe;${p`2?gi;>Qt9gT#Pf7Sn*L|l{Zbj91Ryjnf0)k0Z?2lR)G5KFU z1TlEtX6l{f&j3MLS2!pI!QnWwkTBa9nODKITV&C?7CvUDNFq9lRP+*!KcKC`{i&sW z^WFVsb_jo8FY8tBCLUmcoB8OVD0%LP)x!jB)rZLz2C;f_h8Cjr4d{%9#)amz6FHA1IEOU0wNoE|=tG{PM%H z&`4efoZsz8{cLj%R^U=6J4>n68(N1{yeF$SX;9D1Xx1IB?K}Fq!jo+kEQsrB)dmfx zcR5=t!*a(OYRZKaX>iY_UeKlo6UUzGy>Rkqe(nN)g3_NygWouy$y)q1sTtZ|cW1O^ zkRSpwc6*ZJD)T*4`=npo)0~GCVfgUli$l9Mw^N%8B{FW2ps|-x0v8gy7Hk9JUMROv z2Fl*5H8Z72{>6W0`FFS+Gue$fcT6prC{@A2=+z!}u$Q1`@&c=uanA2Q{=`-;)^Ir0 z6ya?xCD9*CQv(aG%OH*JXHva?2i`SxqN~>-HB)JFm4`KV`~vaoB%XC&&(?lml=K0b zTs5V}=gPng9^>Ji($&=nx}p88@y0s=N%HHf-+S4zcw9w=ekvJm)w=ndB0;D8R2pg8 zCtC~^?m6wTr~5gqGGOM~DAMO?rtY;Ey%D2G+xFW3MqoS9d7AGzAzfpE z$oOcxDh3*S_L^>J1NSE`pm_F)Jp|gN=tW_)##k-A(ZeB?=8q_lg55my=EcZ3phYg3 zWDhAfH(rGGPjNS$C-384#0Ms!p72O0?Gz-}Hu1qPb}TV!WApUy5LsPrtC`dG;MKc! zH1Vu|eNEx|ahl^q8-zy|f4y2PGDFvuE?P+vetW z*V*&2S{*`BWxe1ohlB!>f?+OkGZ>3U~?wl%ZK6< z&s9Rdn$YHRqe8FV^OhLHJSBD%t_dVUZ#Iq7l_QEkP$8u07o8ef2$^K~Tg#O0n}3yd zm<+|o)B2kK1^ZuuY;U{*R`fMP$OMN=C_GX>Pu?oEGTJHNDWtN*cq>eU8hJiZTS6eb z(G-uO#AjQ3b#pZV34J`6m8D@~npgkkFZQInem-q(I+1+1#Cj=dS4LebyUVNl^$_+M zXi8_F?7G)K^^$hYC;1t@yDb*s{Iv_RH1$lwC2K94*mzW4fB)7cf2Wne?8em z5$%?O`GraI4)lutF7$Yslh7~wv*w$>8_j*;a>Ur{_hBpgTw;Shk5%6KJIeO&FO){PC*Rws;r7xWM2QcOSrq1I~+5zirruX;!|bYoi_brt`X3w zsl&lG$)rkS`pQHCr4)7q9%vAZH!Xg@G|--qW1<5P=vvj9%g5N5Gu98r2*&?dSz==Q zn!2-em8m~)Z~t-m6(0i%VUbUG4U%5rzEzI67i4XTc{TlmcR2nG3*SlqGc7Uve5JN| zd8rR~0JQoE34p|gODpql&xW%ORrZZ`KcT-gT=Exs1O`>g)FBU>nxlK898uLb+f65a z36A-dn)B);X1V*F`bo@KYEH>X%tkkz1-rT|Q6?`a=7@q^3e=!FXJ&~};Jje5SrB_V zNv|9cM?X{%XG)4vzJDrbq$tauFDMR4yB#XPeHw&4aV##Q_OlYrW~*6mDq< zvJ96*XLo$_e?yN@-Vw+o1#-Pw^#OFx_B&jct@V3khyNQ(Tk!IlA^h?|65RLka3MUX zw9iSI8X4{0^(}x(d*HHE>AhNMiw?BRDCyh3;o$iI+Jk?QAHvV?L^#hXTRX+2FAg-^ zvh+gDu5P;tFt*+tN#6@A{< z0ADMRGXR0Kmw-9&xE2h=n{pA*vG?JkYUtT^L;4I+XI){6;Y(lAnUr3D?(=@OKn}+* zgYPE6eG_ZvUAFjrVEz8=O=r~Yc5)z7D~v)KCnztJ^)e8=4rS!#1La~amBm>ldh46z zh_u{y&$P;g1{*Vs-^VN`Y1y@ZtNO+J#Oimg-TRuGXjrb(2B3QSaX9hw1Rz%uOaN4M z?w8}$4I|Y<#*3IYtwH|_4|1$OSvZNE*vhMp-V?fZJd>dEo{}9pNl`zpV2-Pf{;(l* z&Dxjp?d1st^EQmi)r}Ijw&PjleocEM-*%l)C9!;92=h1T_|w3U_R8cVj^BhRc__{8 z3e&yc*&+9ND6tGq3zokUIOm4+4qb6q@G~I~&^-QkZaCXZ3WqN@hebs(R?J8%v09JN z1%N-IF+5&W1GUR8>Bw|n(ajV8aw9vBFO+X&=X`-AYA0uv5X#abzpB5ucsm<%$D!9^ z%BOjE4-K5Eq+dSX7&`md=Qz%eN6KlfXs9EZCLfTej{te<&MMU3#?o<*x0rYKk%-T!Qd^$`KTD^K(&K9d{=-Xs%OVcp@ThU3TJ%jUH;)qn* zbecWXZLa`n}{x$$@ZDDS9zH@=Lk7}L|}^oJR1o$hDxbXEa>^mG6Is3WM(F` z{%>?ic%-_SYFkSF^k&dFUDc)xx-0w4hO4Pq6FuYK-?HsX|M^u&U~OOW z2DRII-9B9}_x{#%R;3dd{Oww16fzmr6Dea1Y59wi{dpC#u+{%aeI`I@ zWv12>NB(JQf#-`jw^l|FZbAD)5mW|VP^9=Stbk*eQA8|0+f6fLFLwI)5%fIC0~=1Vvm>%x|qs*{b}3mo?LED?^f3p#?0V1fkNJQ zQ0O5hFbEU0*iZ{OmWJ$qJ_@aI$tD+jsMVM+>mTc_JZ`}{B?=kC9SxdUhuoj^9_kot z&C&V$PTjyWi?ku16{gh&6oj~VM=Uv2>B?%S(F0E9KXvmqd^%yNW-|^xJy^5$2kt}|I zmu`MM^uzbCBHyQm8RsYJg0sYy5(n7oWUpLFVFj;S))BJF;*im3tc7PSl18z%@GPeZ zW6Y0I`7{BceGALvYFY#sL0%Fr<5_AaYzauCG? ztF(0=yGkxm=vjRy<8Cu+@iC!_S?(Q^{R#*UdWu>@n**MreGn$L*JiU>DJP=%{+~0S zK1ATzBAR2S(Z$n)D(^gv6Y(~i2U!)B z%5U#FIOr1r{p)bi!kr=Qn5!@uNEyo&YTM(kJ{D)i|3%TYA+-B9Rv7~ZFz64z!ja0~ zDrn``-B8TDuGjUF^zPrQk#g@Oo`rv`AL7<`+2+s`?dV~?|5HEkAZq=&SZZ?UthZR| z_b`IT+wMnLx~~_({5*W<>(2iP0Veb0jLG(gj%o5aoflAM0D3 zWL@+bx^H#syF0}(;(LXQd#0sFur@i7u$)KrSh(v_=yJ)nIVL8RzpT4Mq~rblM0PX| zS(dmuw)QB6|w73d~6{Go~SA%*Ri zXV!VQacVUgwErA>sU-a)$R(Xf*3_U`dFgKSi}X{c>W>tCP8Uk?Br=&s$o?AnXSexn z8!1y-k2#&xuiK|=xOfctC)=ccy*O1c{MP+^i0-4?_Dv|a^f>6uzz$smd#SALo92vW z0R@eg=DjytCx_uwyv&%c;aMe~#3xs-9XD_Ac7!f##VZNWvs)R^+A*g$-cmTC`4m-N z=m{bo-JYo-i(@Rg~u?^I1phHxa0&56V!&HeQcQXMTPAeGEDQC z^|$f7OjG(0NNg%5{R=tE*>}6;S-Mu3tTbpv9T}!P?lG-hqQ&iyFJxk!DdzMlnq*?D zK#on%ja9F#2B8D4=i_MBr!H$-He_IW6& z(yW2r7O$juAO9jeFbw6$Rn)Y@y9X!fiu z4;y?g46L{|>RaUSuBr)rF)|j8hj!8alq=k69s*M{<(mRBIMwtMPjxr4O1P4SpGme-#j1>{7Q%cE;)&t27`2@aHzp z*!w$mV)EzYb++)i`x*m>w06fY#h}APkw={g#dDNKTUI6e5A*f~3ic_fR$@!bP)nhz zk@S++(k$`K=sW>V=!=J`2)O`0yEw$vh$J#L`XbLlP|?0S^(XGM!oWDxn|HF$W5`zo z%sS9-P*3y~4G&Ham)L$k3^mUKnqUncZHz)z=W1B5F*RGeS<>&blzpsH^KpNa1|7xpo)~2{Lx2C z9t}q-t{cqmAzyw*&eir~q59bH47pytp$8FiCPVGF4H_0uSuJ4-irWLiyDZvEHI*7;wX z>3>1@pXj&F$LyG|le54Q>dyF!{f}Iz<&>k@WAf4XaLDhbEc}wE?d{6#wo~Ifx^8xal;{l+a%N2lEzS6fXUU2=UP-BK_uLhLz263cIQ6fi!;?PNa@I})I7w2r_qC7V*BfhKyoBQdkKnR4B{B+uOm4X;xeh0nl?1{Ad@}Tk znhd6yFNb^2U*a>}p(ir&vUIZ~2))+NVnr&#z znK?Mw9Y!v|Z-AIzVIU?2#86!RFGeZ?)c6*40(*PG6xYnP0M*_cf1L*jr1NZw0%S}c z4U&)t!i|!%1TUvyY#7T9gYTD@7vG1o-r!;Y$lN;92?pQvj{&g}BiH`z)Gckz%iMTS z0D$I46d%*!0k-A`1Y8cA4JcY6{oB4!=5w1^rjcg^Tis zo7N))<8ePxfQ|#GDB9t6h%$qA@LF1c@&PCp0)k4bj|76s@`8(7wtzs39$Wz}0+<{W z6Z#FFh}QH{u#itbfGaWn4l1Fz1qMRnr0Q3&=(W_nX|uB7A^;+9I>%j1vqnGkStcG( zC+`R3YP3yXmm32CKkgxb$v#&yz)TRj=1=){LSec(dI+Fw5Z;&i4Sq9Iz9sIRV08e* zy(!x1$N8CX+FGDRDrA;YyEC$PEI7<@iRY>mfzpjXcpPh z?Mgy;q+3hIFW}rm93-Efb7#37W^!LM2lW$LK?2_#A)VzhYF2aSQqG{w_&vU$O+(3| zkhFR>jG8a+`uWz!<6~^P8q1OgPjuqYT;KF{#5!@-yABo0wVK!`I%23v+p-xeze%rq zTK$y)pL0E=YnIPA6{hFg`h)v+`MB1r;UG*$BNm$PtsW%-gFG7#`id$^J*Pyd2=joD zDo2~^0l)(O7H}*%(6=sAL~Ilb9;{M!Q-+EZHt}KSDzGMK^-GU?L18lSz@4(EAcxtyRS@8Tqyz`P|dd3xAy(4)x*;dFJFH= zPAQG7M5VGTEG$+Ik67eQ--L`L|CI85^PASuDEo+_TG{hIle6DOj<;wm+eliqERXW+ zp7s};&RNqRqxIL_xL!wKXe0p;Eh=nj@vq+BiBS!Wt=9;p?SeJ-f}CFKFcv+{oKCbW zt^^mlrcxKWq(6;lFVzgiljiz!J0<7jRZi2sPkEG7)T-HC-%?bU0zFCswOShigJvS3 zzm)HB!_=>G8kScKGv66>vm$h@hK8{wE9BF`nyL>UD&>e6&t$sm;o3fT*nuSVdPZcMMk2zgpvo4!yK!Ccr>@~%8#3*f3FuRM3OO}uVGK`!x-aMfKJQ2t0;O;FbIPOL0%pkn#mJ!45aqf<| zeV~dywmmWeo$Q(c4Oo+nDyX!OtW~pzJQ(zCS1%d=(lvAnRKrhWAKN+==>Z@xXs4?W z2i-t$iP9viC=v*0U0mN*L?NqzEN+K0NOp$3uh*8h-t*mbOG=m|ASljNB5@E?D$K($ zGJ$a$WGg6K;9qrTUCpnA>z{UgBI{mXU}l%d@rKWxvQ6)b&Ir3mkQ)9^aCSi@_v6p; z!Z@>hZW#UtO<$Im%{Dx!Q!tzf_jps;M$5rr8_}{p!C)J4>;>a<$4oKw-r`gJ5FKM{ z%H3zG_A8BZf|+8FdlWfS53|J?!@1g?F(nYJ!>!_D?`9HK>thCnj*iFB=Bm4F?p#G> zb+^E*rJBVy*A&pqViU^YXEg>qt6F5Sy(JfhC3={#B3*Yi+oJsf z>2C5oEL6J~ohv!g&&ZH4%y}reGxh+PhqK)H$;eQb7hJO#IYyEu#J}d3L%jC3urlQi?Zr<6~>+ zrS`DrztuU~mnSCwrqz>abZ@5B*9^l?|HXKk+2nrO`(9J;Z1x{ND?D#Qc>E00g%94G z{<-&g^c(jhED9}&ml1ET_6mwK_o3Isp2E6Ff$3+Fm-0v+3Z3T#U{rA?Kv^!PO1ZXdP;On~Kmk|ZZ3B>WW$^*PTCHJe*&nN;ZW?EyT4?PI>2Mq8 z|3bQfiFzBw*5_wUA|Kl>y9TNm1#{_)ggv$u82{}YhYkfFMp)B&o&~BcPprGgp&7xp zFbh_XPzNCTq+3ADqzRk8?L&{1e+f+;@czX$p~j}W6EmPi=B6+meE$_3Yz? zs@(3=27hFf2Pm+DN)-a(NG*4Jt>|=_{4CHJKh`wwp*b!)V|I;Bctr{B-#75V}dsMQ&g&0#VDXY8H$Fqz>`*ci zxckj$2{BCRGj(SeM(UaKI+{W{50#kP3smoW1*be34BX_63YB{=@iTaH1n2lGWip*+ z78UteR=7(=Rwr<2>XHVX;B8%CmHiY*(ArS0>tsHSR~zEse&kdYm_s+tc(LOb%c-+n z@h{}hKn^N(MFOX7c}qC+Y(oopWTM({ji7RAhm4ws=^W5wT9-s3VUU~hq9`yJ<>(Uw z453|dFWwc6qOS+^&;fIB*(xgM;*d8m2iGPJu-fvjN8^8UM+a?Ef1xrzErB1OyBUDu zX63%B`;cE-Xg0cUQ#oeo1_O+W#j8fNp!cyaDg$A!Lk+5z^e31Y7^gR)(<=ilt{Eef znA!Qz@ug8GevDuX$m8XjdP<&G?D@I=Rg7IMLteS--@d168>J{aH8F2HgDlC13i;*i zvSKaTNa-nF;OA(CS;|vN-~^iUY6JaniMJh9_Ba3jCq|;!IM}ES1zClf0HCnlM}hj= z$E%@r4K^YQ4Jm6j)>^1*93qpvkeM8>68!&gAc$*V%inWqS^xYmGS_FYQ#n{B^({e|Lw%@L7wm2 zAmSPStqpnME?m|_*ijPN%JTKK5|eKEUc5PVo&!8ox$73Xs1K*oIjD`dikvnhww&yJ zMcf2n={Y)7J1G0UcMRfAZZ-=QSck?W1aigM@=i4rC6s?kxM%NF*8p*^*6ZIAI6^60)O zs_MC-!`~6d76Qbf1^MQev1h{LTB4%N*I zq38S|;q({B=K82BH{OJBocb*>#Z8FIEDoWsISoT_?=x1w0vy}N0L8poh0WoQX@KHg zbD323^jS4vN#B++K3k5ErMV8w=-u}_P#62#}3G*A5VDzqY=jH!JlD&;NnjSC7CLK7`RaF>DKrsvQiSS0+EyLY#6cjIh1j zDcAy-hif{9T%w(0YQtrNZ!qP74=-JSkqj8gnQMWOJSq+t$@>8b~wbV0^%DjwZjWrlSActJ`13=KB5bb}Zc`bfz3y9#6 z6V*1IdGLfrj~Xd66;Q%B0=xq&%LWK z%FhQTazKeFYM!?I?ez$@iG!!y$xXK+1P~zfy2((ZY3j=ay9xf8`l+*31 z0TDS-{~BOhbzsAG)y?Y|e%2w+T0x6cz;$Fbwe`AQ<}2NxN3^x0rS}OD<@W$r1cg@;z|#B%<+CYpEgpW)cXaQ8{~IXK9R}*>y8%wW zxCk4`FUr9iN!edchkGVso zFM%h(-BPB?TI7Jf;8is{f%*V;0~q@b=0V<4!9dvM(ur|;iUxcLg@Ryo{Q@{5yfNnn z%nE40WqP=(G~kkOZdMHd|Zf)Z#ojJi!Aki*!cSinb58x4#V=z@1TBXEx2ciu(Uyk zX$3$la)sblU@PEO{Dp}F`c)XXznW;m7}~F#*tt(ow|PrKNd_fDLP;PceL_(nB^`AA ze`apj>djFSy*CJ;v~$K%ju?7qA=;rM9P@+T+A*9>q@Z^?7vY!e@%y-ca34>o8a%=h zkH}F+nkLDGMG20TZulQUpNLZ5a{7;^g2y_Kj&dID=2V$&1`s9x9LtO^KnIJOVr=@u z3L>prCE$CDqljOQo9`rRnt@A?#yMOnbmCKmOZ~c_Rv6|3)W6MtR8N5byU;dnEw;^|^<4 z^tL6&AKn>STK5uB^6xQOdAZA<VTGqQ*pQs5@f)sM`0T zcPMb-^6#kr`;h3jp6;9dIxFlI`HgOtzi)5kk3lA$e!~0Sui*>Ld)34(0tc~0-}Io4 zSVY`nU^!Yt97}Iwh#NTQc#OE0KqQn94+#^*Y7Xc?gg8#~hh}?%hDh@&PE()4%E8jb z)!E7n1&18X?I>=FiNzjDC6s4TN}du=kW(f>CL|S7UOz1=^)5|@1rob)^Ol?(#eaD` zM^=sP9gT4AN8<=5xe;C&8+M;(OaZ5iYTeKFb-uBZK#@S7zj1wRxR@8KW4Al#Q6xn# z^|vUN#pY7=-3yY}lu`_~hAMVPqApw98M{1q*+QBtxvJ;#gp|!4x;wP>tzAC#nZjoe z1wBL$x|W2qh76$I*-sl6{x8bjGNzB{-5SNA{BU>= zG~_EaSIGrVZVXm!JZx}WuwF)2@L(r~2O?$}o0uruP9f{+#Fy}J4P=d8QBfh?&8F2h^BH z=GIOBBPQ}#YQpvKK{hC%z(_S%>Wo(31J->?Hz5Oia5+3@7X5F`zEL{%k7U8y6u}IZ zLIwW}!ueLh8g8tqa%HST6s=*=i4kDJB>e9l`M*v}l9La_!40c{B**L^oM&oe+ytD4 zFN+7-$c1VJ!xV7{atL`6rZ853VLU}Q0Z5+hC+pT^rmE!9$x>@ig%_jWxwn`$uFz3l`GtQ$DVpJgA2jRE?ZGltuztAaz7bV&dgXv8WCUi?%tmMRG`jaw%v{pKWU30wkY-^wE zX4A0lXhvqo|;4j%ua_vYYZ3T*Q9lHd}eZ)iUs zjS}TW+XN5b$-v++CF9fD(g>o7{4TDkUFHV^p&xGtwRiu+B9A5hg1R)>Lg++%gRk6{Hj6uhHDpS;Z=(!BUnxn90Xj=f>`J+8G;ig`!mEXEq;}&5N5C zRb8BelO&Nl_)KkAh}7$kFt65Ly{b=0Q-B72(LwKi?#Jj++56h1#cbA^d}T=7)!yEt zl8y6)6`&J*IsOSXg(DYvgMwKDR*6S`CS~3o)a#N6a!p0Zydg_6?M5f33F2EiI8Z> zH{97gbzA2Q8##QeccN!n84F`xoQ_n7H?$bAGFf|Y?x85t-v*}|38?9!ReoH=n((S| zvFC>m0jE$Up9F`XttgyX9HG|06jo^Gk|g)K%?5)e#+6B(VWeTl8x{SnLc@$w{YW35 z{JCv7S}F!!z2Qh;5ou4;ost`;>Z`1zK!>jGz?3ZSW{-^jX6~E!*Vn`l^C&PtS*QYl zmRp_=&&Jie5-zqt04bwy!br_5Ud4XJP!BO3^O!V%GE|rx@11u-eio@8zXC(QZ!*DQ z=rYMp3yH40S;V@G((3LXVdAo9wH2)5%k!P5{Z5MXpx67xFr|r5<;Flx;0m5*P&~wY zh`SKZmclQ?sz@imQjOC!acE#DowEpVUDMTYmnFd+fZ%_J(_=?NTc;5*)w?x}Uy(4) z_pBkJ$o|ng?b`0`x@|VS)`(U7GLoS91!~Uy(@D0Y!q2p>IfZ)}T^L++hGLry!nQ)s zsBM%HBlSvgF%rAGPlD!(qKzY^prKLB%8zc`L#vG5g~d+Ty2d&nu(S0o zP32!dH6=1Bc7@m(x+%6SVr5G7xXVi>ymVJ34237yD(adMxb4zRVk&N=nzfZ}!$Rg? zSOixArpfKX#{stlSVovM1nZvf)$re`Ny?dIF85WCI@)20>!rcZv~Ys@c9Hu+q!P)t zxc^QL<%B33u`P6~njhm>k4y;wLR;E_*jS&^2m>!9AF;nvIVic-1>Rj?$~_nnT-6~N zU(u31R>lrS^-iH`rbcg{8e|pIyKz=v^};)h-;rgKMWyfzVV?)wUg{x{or9Z2C1LVz zl4XA=hi3bok;yOVbi3mD{Tc8A2h66ZocNEJ9@n6brBj&e6i~G}HjT~4^vBQQ|5)nw< z%ryzPwaPYM4u=n2eCI_gQs#YCisPVu^bnzB78+iO8+BRA=p(bl0TZjz#)uQDO076w zc?$VAoBWZ`k5ZO5zFA5%QV@bqxFN$JQpV!E=|`n=OUx@mOInuko4*NLud4V)k&*wh z0I5Gwf5$-Y(>gZn`Xws+yCmZGTx21d$ExxdNJ1*QP77&@)66tX%lOtYf>M(Tm|%_Y zQhioU@wn4-qDHD8X3a1L`qD#Ucb{;GGr7E5TLP6HE$>Bwq0|d7^MqTdy zBWGfr6@a@LEd&HJtPm^W$1SzSTxhWD?Q!28Xv%i%^FaQD9P zaYn3Hz8{yydGV~q8F%uFYVRe9F)527b6U!4pRTMz-8VSX$o%A}deM2hFw^Gxjn&E- zXh>NdD`Lc2060a9UgCz=9(rG&$$ZR3fDT;Sj{=z%wl_;3RwkySfqucmJzIZ;3HhfK zy~X!EWBz!%&O;_2=Xdwt4U<@EGHf?4O_^1kWs?fJV~I(dgKwy2*C9?|}Y%lp*m9bn5N~dnah^e)gWwDjS5L8|Or< z{)cuiZ5M<_Y(zW)>82ovT}3Rw$C39M;p6=6qb-@iEV*z#EsmTduyd(r{~FS4G%{KcEcJ-ukHcirq@0q$HF&XghSdEwBTcQ7Ii- zHuX9)*}L^6J<#@5Pm-ew?O%;F)U1&Rz5Rj%V2xg<3^@gDE!pHNj4m_{$BazyZMFlR z1Au~nEr;ug;N9Du*UiSsMQNS-ImA{xo)@z(L=u!nR%W$7VNca`#Xcs9{RybP{ z({W4}J8BD=smL#>Cuo4|gls#*P2WdK1Q#*XJyoJUW2(4d#FUTlw$DQez%Ct7__BZu#USoDI~tju2)SXPWG1kYK+o7`vk(V)VF7u<-14k0StNTNRg; z-_mfUeMm!)tge(|G=+2j5VUIs_$!Zuz4d$#K*3F5DGA7K%r^wk1y zft=eOva?}`#UM(uzdTY8H8uoja~zaWgTW|tCL|2bs%g7q-AI3vC77CkSANT-gJqpT zQba2j;SQh2sFn^fWzEcAg75%io}0&E@<~B5d9BD7wV{D0g^V*bA!kq#p3M&2dZj11 z!-I_Y4Sr)lIoU)=;$1xykZc29wu5tN>qT>8R3OCd^o2KV5JF{5wnhawV1{6$j8=pg zf~MvOg`bS&gh^LTm{k|0;_b>EaUZFt-#jG=sr)>=qWSF{W$c;O5H^j3ZjOJ=aj9yvRK&Bj=B{0QDYGs-*Ip&LpZbg2#a$@7uA zB^WUnvE#7>Nv zLCSw!=r-r)4^>c`HL-R~_{Fx>?I+zHQOMc$mlMvkjKvBB{#7}EMom1@m*XVXfB?)# z2P$I$cc^i^X*kmWho7je&K z*w_Jw=WwWA|b z#v^>*LvaG`FMsiN8Djfo7tVX5Z~7zpJvv^zcsg6~l35Ao?JHkap0<6~_NG1#-W*w1 z5!CS4MP?=w4@W)tFRIkyvVwhB+BXp1oI6t2H+0t!vYy9*S5uDL#<(NP=0ip`NS^=+ z${&>CFG~bqCr>SE$#+ZkbFAn~3L#6c`=+%oJA*I%cgDW}PuAv*+tHIf!$&K@jOuoF z&gV(f8(F>Drm9k?qleycguLx$(NIP`bt0el|mZ&kk@BMn*{ZQvE$ zMd+u6Y1NtlCZTJUK?d5pJCKyHXyaa5apO^UbBDG2nexv>OxwuR-X*&<%=jf?yg#l^ zV)omPQhsL8kdt(xlfkBirP2!AncB{TksTu`*pAJA7~soUY_N)B!_QcWDJW3lOV*PC zeQG*vg_=1VtT}qx`C2h#-^-wGdmLjhC7TGf3X&86T_&e(FkBo4oz?1|XEMM-f?C)C zYb=HxK3h4KJpe^+{edKgU{+Sln{YX=FaBlv=lx4u1YJ+OX?@K5Xxx5(NU7D=ErWdH z6$NSy_{$#M_Z9bOWt2CZl1jYj?BJBT`vpVXFTb3Cd(56p&P?S8_A-D-J*RJ z$=`Xnrm@}rf$b)F{>G)MazDkF{=4Q4r6SC^6TGK9sLc?*oUq$VP+z9^mgaFTo3K4l z28{gvb15qK@(hR~qPd-qC0P-vBaJ}{el{wAw=|uoS3s-Fu|C;~zvsCYU3XiIwi=qQ z1ai$IaGj9gWh)1D&?uJfumPdB_Bw^C!^U$`Q-5QG-Djn)t*y5Q14*7}dSv=e#V2fO z!jUzbVM!Mvu}o_i%5`jSA-~d20+qL;_pjwdV2+TQ{onQa1|q*uJgRm(#5)hFn*@hpcQ2 z+6)V!{((iznI>XydPBAs^VE$wf_0?-kHjl6OO0>&|FQ|l!5oW94luK`vj6wZzB%<_ zTYL$W_5<2|wCpdTXS!x#3h)HDaNAvp?jR@gSUJm>Ed>4ulc$p(b93Zo)S9v0ASnNK z)rDtWrQsqmN{DykKPBWcpiJyxOIVQIR-K#xMJK}_HBOB`H>7fMwTtA+P6lWNZmA~2 zhHu!dK<34&nqZn$o_bxk-T1rn+f++9mf-!ktVub&H|LAzm8W6;o_N&7_OFuOZM%rw z-m9hA8@^c!;co*u``<^6ZQ&W5!&@?CN#^!h6q+Xx&)Zv;j&|iBa|P2^jL~V_z6z1z z6i{H7$nQ(5X9l?aJS|*BqF+uZ9D7BJ_xhDL2s8?X@QvmX+Es0IYgA~QwB{W1rdkg< zr`|qf!uZhqy)Vl&?Y3C1o||guh>AdVi)N^D5U;T{f7l&laKlPWEVsKK#nlmP&&MIW z%^Ed5EWCD%4`~?t(ajomKC`;4-_wtMZtB$Z@7B96FG*-CRo6?x0hyy!MQ?^@QRAF1 z15mGB>31Bkc=}z{T000!B=y*RS${%ENR!vF#$TLT8LEF*&Ulc=wxr=&c~a^N9T$CcvsbC z_LrG*E@U2lYsasbfZ2PMW{8qCl{VeMDPTyE*vLsT^;;LKE#W`knmlS=FVw)KJDyNc z1AlIwAB$NQ_8N$b>g?S>CXBPow`fMC}P&Z$DU`F2e0n?VP2r6O0raGVsYz2g z5Ih))g&gdw5Y?HpId56hTd`~m+B|%)iV8nTn^2#~bx0F`7DQhUENf5Cp!h+1WRS=U z(k~tc@HRf1jpe0!djT>@#rk)lC`s1ou>Q1<$-DPw<}*Y_Tw%eriTIGs26Y763JAnt z9*5w8xpxB33o76}^gl$x0GX19Tkr~}%DJCDn;u4Epk@IsZCcd0$K9*0kEMu5LB0oq zm9!%3s%UGw%-Z(P`w3>{1a&12<8QE4TBh(gpK;gdBA|&aQHea}vh8s>lzbBXS3>(k zd(>gz?l1;*0e@_$YX)~STxzi0!1yC#eA4v~T%Q&=LxHahbp0~009Tw%OKN^7=^_MS zvhYtWR-VtMsnqJwIHIP9qAMlpyPTX>;6XLY2s~`O6M1u~(4Ft1{q1>dq8$>2A39xF zHbP<`)`ms^y3DWC8-h2k+Pfu)v~>okL1LYqm4C9J{&h$!$a+OPpe6ri{xkGv=tEir=yAS%bC3|DH+tUML`Hj+boE(v`=SYZX4CzfKKClg=Uk^P!_=NO zOIN~LqTn3)*)DY}`@RFbizeWh)gq-RZpVdoz4_)%)V#*tk+%+7Yg0XgPY9QMJhZTc zzHw@6n1&NdJ8toa=usGJ(?wDO!fO$J91e-(YtMnob3z|wD0*}Rt!$2M!!CgKRh^l(k2PG zPLjbSi2aj5+PVe_LvU~=El+}IFu6&XNR$OWFGg7tTQg^K5>^(b|IkY4Nf}t+2td82 zRx~CjnvY;-PxPgb-OK#B53~)bxKunM*_pHw(UdV6+_AE9ZIi?8d}LvjdLA(=N-jVE2t6r`q|&`PvacRDi(i^>7}XxNxJ z2QmW(=WB#n0LelCPZ`)>c!HR*{-`i*q5KdhsHSB(`+Kj`Ud~nOgG_BLCvQiasXN6$ zTvBMQmwAW3IHA+#EaRQloh6Ra)U)*^$v8bDqVasXE}D~5?LvUh1=~&@XnzbJXog%p zMQEJ7GsE+Ax}R)x5!=nqVlJx(+;3;c=Zvr=9uD=YHh?z3`?aj~aboPf9^uy{YmUM@ zk#S9{TN2+h9H^VyP7PV41)F5PT?Et$OH$tnAkVaaRKL$Tp&U0-bkVOhgr26{uiYtZ zwS2vt+;+ywe4L&D|J~*uL!CRBaq2M4T}~0LfM-7`+is52>hyBJt)?Z|EI9itdBdrG?|r{CIokK!t!9o~tf6k+HwdwK!MiC1Zo z=D@?L5Hw~2ZSJR;ikr_=Z-ZtJhj(WYCwN^hNy^k{xwfHUYS(Xbts8=EJl3Mx8lNyC z*SNy&^C;S*+uiwf=b*w`4En+gjaMz{198zafewJA)5VvRZcz$fZ*b0a6oEvXqfpcH z__iYCQ#RNRv;Cj|sbv>*sipwg>H~SH#`yUNxKKledfMfbr zsd90DyyW^L&GVB}60E0PO#2d(61lJ3Q8)PXqHrHMy@cZp+K^z4V#)b?ix8!&7v(5u z7Jg2ROPlU}k|aU;&FW|SsAdEo2J=!^7|=6-bjM)jWYu|GP)pl>^nN2WnH^92o@_QD z5X8HS`%LAUiTYe=HnHX~j+d#|-T|HQI1KamA<)u9a2OJ`K+ik(ITJc2^9P@)Z(TH8 zG>(2sXj!G+Q0u55EK#v%?3n28+)W4Sb<3Z+c)Ee|-CjAR?;gW0Ll_5u8kasiIj~d9 z_5+S)l3n0Q!#`c-V!2e3bhQwDdd=^jVqcqV?!SyX_z&ouD{Y90TQ5=FT5>tWr{RmC zLn8Oh{+02jkA%YeNVOlb@An79!0NZLj)_2-Y_(>#jefz7kDH?2HFlYir~9G^sx9*^ z_xp=m05yh&?Z5Z7q|!AIdK~;KBMciS2@4ZvoZu@HBnt<75)mAN91VKVt~P`Bq_!w@ zl2@e=1DIw!4B>x&`~M--Ioba+OS7=E{f}9?Ktm>aWeBz7Kf4aaW_LEgSNBA?;#DFbCpXiS$+qck8F6GxO{ZHggiX(UL>8h z^!+f12}()DKCl1shbb>XZvEF8L-?E7!r8r2`g1R{U3J1!w9Vje?|f z6m{*E33f==>%!fEW~bJnM+FtnBlpe&o&83g;f(j0jMmc0lguLGn~agyqKt6wK~_hi z!{yN}^-g=Bs1h$}RA<6Q4-qq?yDa8vY6a4&#vqeN?Lc&niPme1bRnU6&$vh|D%2yyV*hiJ?rY9zkiMppnY+)XxG2bFBu&8>#ybTk#(lL<%J zD2Q;^7nHsDF4hSDH9WLCJ4$y|aq=xOkUieSiXa5=I^SQfFdH*Xie3LnDrP~(5vjX! zxmhduPcE{OJCevN2j43PHZe;+gR}p_bsP4A-p9l%lKI-YP#sbG4o(N(ykxiJ5N&QB zU5Vq7xJ7+dftLCk4U3Y~f;^dCk51q|9=?_<3Ja^MhkVLHWH7Dk)HlZDU27^ywIjgl zuRHAgDOEJX@;)?L_^n6L&biJBb-(RIL3b1phgags|FQTFQ`$yPTaWD6(S zNyE^|F~~wq-c~yEdpg5v7`H*?^upp62U9GNdj`Gwyf9&UI*27O@(AowF_r$IsT&uT zD2M(ke9t-hW@bV+6%@4{JUX~Hs69ZW`v}U!LWJZ6Iro=VDfts3QJTyHl|!uA(2pvr z{ZlS1*NgR3w&Me^gdM1pdfPgQkuF~<+c@;HMw@fa9l! zWU9gMtSqL`+hxU}x$Wt>zZ`k7y>ia!aO9Rgat=-QL&-Z1yq!T@s;Vr_7C|%3M6z?k z#@o1qW-vl*%x+!nA7xH__uYtt4X4eb=>|LhTv&8l-Vir%u1gCCY4QfqI>{Bym+dK- z2n;LB`|xDR{_gHKTY=ob{a@Aq+bp4vdO9Qf_;&Yzhblp)AYlyLpo3eD?~MHXmP~CN z*LQ2eBK_jI2rl-1B4Bd8S+!_Ts1>AeyW?Abh*gEr8!0rQ&FnPz-=;`-8%cM%G|Ldh z*JdKS{?<26%EsVDb{u4Dlft3*3!7p@yajXu-7)bQpl)2vgJa zj=Qm5ZLMMw>!Rmz1aJt#3(KZ!0%x1d;Rp3!cXYb2A1g`*%J#if zGG&=DQ50^^@j^qpZ_R&1QCUnl;}FS%quvsgZeiA-n+PYCVseuGtudC=&yakUj3k|J zKF7QeJTih>N*b3|b!{0LQYOr|{Ku({v7_6S+Z))zF=RdDgt&+b;KakDjl1hPkNVFD zm5ilP)s%x^27A^Lg>@nv*@V905jv=?J7(EYB%|un^T;GZOPL=}==x&fTulunSFyy^}=Zajg zf*wEGPKWQo)XSO#Drw3Dn;wD%5mcszo>+Hx>lX7}nKk>(A9z(EI%0+KifBRJI?gr< z;D*%ER#*&*xZ7x8HfUtxUsshk-{th~0{ZH<(rX=DE5d%Vu&Hyl-?yKzL)S15V{VQ9u%+_ z9nPj&*98Yx-e(bKW%i=GXF7Ah5a0^jCV9jdF}y*uk*xgU+&FPsK`sAo=~Wf~C;z(? zR2bq&hVH5lnA=ld3IbhIh*QnC9{!07ho@LHY3ucuk2*$Qi)l!lG^VM`G1Qj8Z!fyQ z5Cp#X$=(Am@K;+}=e!SQD=J>_c1(04|Gh7<>>rDdF+_glzaZTu6k&y7eV!~SkTcc1YG**F~h)DhxAdy zpQH9#^pNHdUBM-o`g*a^#{>}=&fCBL>N&6nAXUmIG>vTY$b{*6VhdvHL%&VckNcH{ zY$bEHT(3xxL7x*;llveKl2Iy~MY3S$xRYXXTJPN*CM}ZnclWhXFN0uhhue;Su<{#o z9R;IY0(c+}iV(L%HedVJwr}PAMyjk-k|ns{w1g^&3@V9HhC#vmlZ9Zh$13!q;_oXF z)}nX+FzV;@($gEtTk}nQ0&-<150d1Su}))zhtE2cvcQ8F(7{>D-EX;B%!I-{x?IOEwVu`6Q%1dx z8VFsniJg!a=TRT!tW}%iNuxV9b_>faGT4GWLnF=FNNsuky8}^zDcePZgWcJ(1*RM? zJ5WnSwMouzj;7d?6ppkw^z`E&fhN@)C<5N5I08j zfn4DsIJy1{HkV(6*uc5}3pR5x{RcKvV{x(ke{nNAGyDIGo8{WmN23S_V}l>wFzVy6 zcz(E-jjHx6`s#!5Vtrwm+DM8E#dBzu@^@3*U%~`Q-^cjIO-+8q-HOnEH~GHK%CcR? zhgoP>#Pr7ZcC+7^G;ssM29HkKzX7p=Z#ClGf^Z{(U zBC{mS-l)y$c1~pjr;Rn+1%_nj`1j*CoU_;)ukZI~XN;ZR-25L;`+`|OZEW)ce)LXH zaEibI7qQCwt>1jBq$lST@V5QZ*r+FOk=gOMaH0nQ4|^Mhz`=%NpWrz4S}VPi_A=A# z0l`h)NS469e!Zq8{*4>cVU}s~x!>T<%zvt7|EHSpphHeUgRlZ@z`I585#&ZM?)yXW zRjY#CSz`T@1vG#4J z`-#uaz-`$}%$mZgrN_r7uE(}zZ~y3Cp-MlgKB5xLWLavG{+6?hPRT1R6y@0)opsuD z9F6#~7I%h?eqwyPfYoXhF5Br*Ft?^$e)Lw*51juol)Jc~^XVBL5LVfzl56N#(#`s; z@`EL$NY+L3uH&%Nv-WKbjcVt3{KrFKN#TQ%)I;v)<07NwL6*H8IJ^Bqg%6wG*Q}6Y z4V2vm4o`?zJqsGtvLcP{(Zs#g?BxF>IpJjd$L@arvcgzYwVC<~`2lD0ynWY-?K%gD z0W|p*}s~WAHD4E<~Or0_9^3E7zx5zz6B zrJFRtIi;4>bK<(!tl~y&u3gcCQVE1C?Q+o?OzUMFmwVrwoRz6n>2)LydA4{ztbBg8 zPiuy5%IxdO%F)t;psZlW$hAa5-r90{{KPfT%7+Gp>uO{{CBpiK*J__r3v+YT`z~Rf7pENQZD`$`jVN+6yO$H*-W;)!`(=ELh@eB%VY6T_(_m3?JyKMMM|7ocdH;6lM)Oo4 z{ar6R!#c!(=HI%Va(R(^1BZwAU(v!H2&IMr+0^fiCqTblqTJPnW6e*^fip+}mDd~` zBps!=%bO_%V?0-tCB}E}mqy8mz&+gUZTndDt%t_xqA&Bkb!>784c}S{jk(pPl|hLn zG{?tsBy)+RqscL78|^+T$%j?+vTsL=h2&@ig(J{-6i$V*So9PM8itN#iz}8+hf@rI z(e~|w>hOY{3YT=RV?j#Y4%zaeYAg76YTTqZMfQF$%3cLb>{fOT=X9!0is90=HHU(Q zJzJGOPy>l;3%Tbd2Rg5<3o;&L>Y2)A#QKGXU*%RS2o)Emuh;1%FQ=9lRJRJ`Q@Z#3 z3#8D>4oY?Cay-9mnyMtUc6Xnhk?*wtnurBy&qU%1P?0T2=fC}Z(kf41O4p_@V5r8o ze`#b*sGf1KtsO*j{(IR^RI2K{C^gU~!DFfnOlvSR4jyX5O>H>1$svm=Z4`@RskCP( z0V7DD;eGz4hgel@vfZ+36MWVzP)5Int?y;#Y1L>l<#ss22)kHVlo#6uhG z&VwpWxNOqdy&Cw%p#-lrY@?TxGUDsxk85HLxJMb|2Ap>wpRHT|I^-E7D5;PxVf`M^ z{Y#D)a#=uAlR;?5_DuB#SFKLhz;xc8vO6oEIg)C*=cA3j^)ul*-fFFh*Icac0iIScvDx;7xRd=M<`>u3QxoD&9+RC|z z(|8+1jbW8Y6UWN%wN#lhksymE7lJGlk-TP65+S+&iYo(h`_UgReW2gl6Q`Ia(J?(f z^Tk2l3Wr0J>M}Vjs$2X|{9xnC$Zst*B->RtFeuP82@wyMWrBJ|*J1h~;BDgiMUx9% zU_qtxV%d8IQ3yR$iM(DWTA@|58EhVo5YP#QN>=&Tlz@AB+wnIIfslC-7Se4szPCZ= z0RUSIyxeY&{-z2-a4K`W_~$8fGH3x|v^vifW#OiG+o>-DR^$iHFV%Wqy)>_IOFGKM zo|>82hi;An&vv@6lP;D5SfC;N;0xmCYI^!^164tRkl?C}C(aW3xCeKd=`9!KFu-!W zeMtUQag|Ywh|ET@g@Ow7D}Z>H(o4kORL2<G~jr>?rj|GHcjx1_B~h zMT*s)xBG_RwN29?pN$6Wlq1CO#|&fSZMac>(FOwJ8;z}n+c}#`_T>-mnoqnSlvn?c@4j7*Q{fdX-0go zp4G!Op4(&{7wp2KJ~xM_4ZwEc`9jKM-y}<;@Lg zP(~Lv!F_Yc&#+T$fII&LVgXZ2wd7)I&hz+?t=IK1;*nrd6;5b5`*vz2J$$@nZEB_E z85&M!ey+i0fxLEiP@Z%2eH7eqHZ`_r%~mEHU#9TdUDaF610MnPkPC(~XAp@a&zZE0 zi(Sp8j*(=lvGvm3jC3Vdd)}?^`eK|@# zHnMD~c^_#WUu3STY6x+C&Fk?qc*_wwdc(U-r>mBZA~Swya5b%mo8+w4rggk}!t{ab zknD%9ias87Z@x|u$ZvTF++*5I{%t9yG;WTXk*H_L z;13#IJQG4p6JScJT1b!+JFninZx-31d6{~wqNY9;l>#$x$wk`Lbotc9_BFrL8hYB| zsG@8c&K6SBL}7fF5-yT1W8&BkT_n@6ZOL_LKWd@|3<5TdK?gxZj`EQF6wyf^Ucf(# z^j5s!mVDPknO~o~;cbVRt9~vaP8b{rnFEBNyOYEmAiJDpGqj?KDU6mS&7& zF2; zMM~7btjDwX9aT|vsDEB{@z3u;*hxB~{4lOv{`QL9+(nQ`IU)rMrBg>$vO);Zdj|N1J|WLUBGJ3}WHkTCmZZ4ewlxWE(E+1Oz%Bd4_{&~oi6 z)9F!4P2<;F3eDW-;n9;K)fcH?ApTsRf2Bv0zB!hbyPQz@9XMPbP$^(yOsIlS^2~lf z#59=TI~#$eyVluEsq$kzq93N;zpCi+xt~ZSNr`a+wQ1T3yavv{8pR5)&_k1(bDr=6 zn8lD4_*lVvQ9NNL#H!XVigw)aHq+HK4*K1vJastBMk8&uT$)BnydyCG%g}x z;CHMAw7?l#O8p=*jgO|`+awMK)9;DWKM0I7YXT=-RwF7!EV*8Ky3LW6-UbsS4sgHQ zLYZ%dvT{1+VmB#8CAs~45SZKprmYZ?BF%E}!4-4+pqxeCE&9d?d%h+$5mQqQwwQcS zO^D@YE4K8#d~x0XlH|aD2B|HsO{QJ>$IM>B(Q|bQvT{@28QI?5yb5)j?_BKYi|fG4 zXjA4c__=bKY(DnUS&c}K-oW)Kl8teXHVMb}5Z!KloOV%tcPqIXlmIpvK&1@oZ9>ra z&4d@CGWl8!#VVvuTM(R1OvKzMcm8F_@`kAGbUtRKXR3E)vlxZTrMa&ND4@<_?N|>&Y z{g;GT`-JHy0=^oJeLC1$fP;15B!UUO6A~x(*lza$iZAcgWS8bKWJ(GLftz!|{{xEe zCJn`H!j=`EHLUX6$r2$o@8r*K?O4rJ`kz1SbeIqfvRST&F>WOw$g2}!f0)o0yqVEK z%kRj7Wv2nX-FM}inZ`ClH$%o1rGQnxBQDVes%*hC1p;!{&-V%hAj`M?@LR2!8yLMV z4my7hmHB7UGjw4v`c7_Cw?ipsDDRPLi%4u8m4!M!MQruTUydnzMAm3J&^L6*UA}w6 z6scC@fza1%uA~qi-Bi{_Ou>pO0zPT61AWLgI|CF}0^A z(pF%@kX`Z~kL?CCg&7%Jroc~V>9sVxqgj%B4N<0~u*!Z>x4t!}8bng?5*4z28TGL{ zpd-z^ekHna6$PZ@B*baFN)j_DSzpLr{mI}!RywJ*H!`;+&T6g%_IHxoBMC1;^QBKq zl9X;j2>C;5>xi>*EClVTsG_ulZCi)MwHDU zy#Kp6Rhaqw_n^+TFU#jfa9o4i_kV#5+@BLa1;EMqKPfp)jkwQ&-)FLFYDHNED+$bP z-_8D;mD!JmIxB^KEzBZi0#q{QLdld6vopOc0Wg$*pOT?p%>xkl5}bH?oOtHt0u_DV z`~ky+VU`F3o z2iU&XJa3ua-B@%wQ{+~M!ZW+B7IVqw`FnJDz3h*BknKB{0^_( zG_?zDw;ib&(9K#P{Q@}O1bLpdRBmGt=SoJ&o}MSiTbs{JTSCrC8)i;cG9oKh{MnpR zX%RmEhBy!fY`onjf>gK@wU=E&$l%l*ie5ZcS=;A+=y7P@hw#MjxKxcxRE3n_jt}Z= z;LZbC$+;5m^zJ=UmtQXzXy7Sc`^y>`+oRuKM@mSMc7B#~H~>W9DVZvnkwDn zQ~lh{fzrC<1=Pv#>ij9iL~L7KPDlObVU0PhK$v7(NbpsoRjIV&(%UHR7^@e*s<3S^ zyTRR^03F+apfpNvY6tzj4Vrf51akNR0h)SBsN=m8GMg=sEn2rTj zX?dwfd26Dg6r!_=op;@qOIEBRN8Hn{QgMeFybL^Jwn*0#3 z)iu@Gnj8?J*s=T3*jhp~;NfWs)4QmkrHhjwwxR!9il~rgxkJ(y3x7xApC8Ytkg`rW9)U5BKRapS*ZwQ-gT3QHSBWVmfe1>j%?AKOp4j z9;i+v&X*M=!*B*bn9SME3s&A!XO9)2yz6*XPvGnHN$rPr<9CdcP8FD@&~Ru0-MKS0 z5uzq2+^|;*O-XPBXodv39xf%@)-I(XBbqN-dpcsbY;o<;1Rt`G!oTP(>JlPt|V9un0gJ|mLn6;3>ao+X|k@rZUl%Tw-6o| zoB-n2Jqy>lp?qVt&Nb9>3+F=@l(coED{} z&?Uj|ki5*A37-OVu##lko$8r1fA|~GxGob%kE*y9cW-1lob#as`rC49i)n85wq%Bx zT7B9kdd!E3d^JhuP?V!i?23syvf?|}KLW_x!`pM#E8|F;n8%U#uo+e@X(jBW%@Sc# z;wXuEl(3*9U5JPTs7;|>j!)<>{wUt7V2w|>ieAy$s0s!D#_w78GZcF)FC^k?!j(xH zH!Vjt1&ieOY?m--P=&ddR*E z5bsA~!M4YZix{M?ARM}zY`616CO%Ozpo4oVoGd{O8NOQbs~Y;ELI|_gc`x{>!}sPL zgobPi2{hOsbq~*TuC4v(tte1A4DfDRF4}$FD+E6w$*XH;-7Nt@B2lg5Fnq_7laOvh zgUwJ2#R4AFGGg4V2*U`pXke2rO2RL0Z$jthvThNMoh^|imTfNXGnPhT#VP9-f686{ z&KQwtp^?a9n8=d<>}HG!1QSLp?pRuY$A#b3`ib;z#e%_AGNXYuN^WcG^%X6(Rxg5X(cv*6levOVIHJOw z+XAjun;=jLM6T<>REkr$!}q!JfE(fcqYsQNSSk=zDJ}@oy7Zka`8~;$iQqkktFX^q zv~+kF7ma>c?A)3+E5Ci>0>BZU2UE2g)-Gb^F(r^xjQvr>@ERlCOlY*evmp796!rNK zp`S>TN;cz;jNo5i7OhpLEDhR#^y4L|-r*$dT|kTach_aWYHg)6nqXbAc{J_!b$5sB zF(+Rg!E!4d>g~LFv^t~;fkWYaw?8;@eJd>SYpekgJ^w#c-qfMDI$-}j>xm%9+Qnq; z&-5n4;62z+f~3uyRaEds%5)u5Gi=uT>R(n-|A(z}eD5p%)^u$98{2lnCTVQjwv8RT zvF$WwW81dTIBA?T?CG4D7r!$z|G>UJ@Ambqb+7x;lf|A(!KgPW0$Nsn*!=>hAjEa& zga#qd`C;al`g|Ve^JW4y`|mefRs(A!OFI~bkx9zRfAY)F(D9>?A)+4w3pRMmk=+%r z&JsVgwGy?zTi8D&R$43j0Bhvdl}-bcEoEXHZpSd>YPakGN1vHjvqV`lv|Sa#3%v5( z*K!<5=0RKl7YsFCdAz)i3#uBsl(to0;KcOmNUw~xRX^c)A^wdP=OT@vtvjJ>Bpl0b zTH+oPyoUqT)@f5fFUKNZQsy6;DR1|sSg)2;j(HZZ0s-yqI#TxUK-j?MS7-}njR^JX zK6;h-rRp7#)h1XfEe2YVKZT;^id4;>U*b5*)xwp-2dTAxEI{ynL13LYf);YZN*qs; zj|gz;nFDjQ;-2HkfgXBvX7*d*IKy`=Y-E*hgxxx%^6U^59PJEDCP2LQ;$Ps}aWX^Z za8o+5KslNE35WES4Hz2a9x|))GFOHzST3ml2JzxL%U>}gd>J+D7one3&HpRcF=AMO zg%V;z*H<<3ZN9GWa@Ki@U8u!}km!tlln~#HM)mh!Td`8tN!w}IHYz8l$LZ08JR>2x zq46k6hxp<(ZCPqjD)!xgK-FVspGec@iU7(-vc_0PatCN4{qe2l=u1`q}R*_ zN7!`G?2l)>(OB+5UW^ma?4Cy~F11rw1N8fNsAZ2#?g@X$#;yL>zwEo9Q{qE;@<#Gr zq}$BQ_*aH0!Vy6W!a2hMo_d*Y9eu52g5bODa7Q^-9ijGJw2GJ{n|)N6;qZtiIC6|3nJg)MpTxN^b%+w?h4{mb4^E$zjk4?S*q4#!&$%Y zoqZLw7{^4$*AaV~nTmSHP)%4w#Gq#3j6T~(t8fUNhkOR_#k@y}m7P5I@_n_xl~$Cl z1l7tY8KU4rP^7Dlk_n6 zf+sWVo}>dcgOHzxonK$gdpN2EN5C!xFw%nrIqn+*!ZIOSddW5Qx$2{b*^_umF6QEj z$zu_Oq*cslNTMzobArsJ-h$)*Jdm@5IOeBD24v5A=;0>xPOa>3TITTj8UC{E7r1{! z2Quqifwx}Mff;hb!?5)~u_Sw&?%JfEjnybSJ=LeJuI}hN94sU^nqJy&Z(XPOw-_CX z$ubBe+i649#0KX3VWRZi=`7B{{}35OFm!D3n^vDSg+Zg)Gnz&R(uIBoR#2rt?qZSG zSe%)XsYiQOi`z{+7UB2T+ELwq)oUS#!nt$pz>#eawHi6Hj06A9#T^B1d!k^M7`Uot z2a)XNuAW673yoO48?EH_DwV#?w}l-c<>66x^bA{aoZU{>J@9V^Mm^p?&Zrf!jy*^a zQy|w!eY?!eHyQ}TUCP;ZDfjO`_!uBK5XQD#ilgoxwHiIMv}(_dFDI|o9w9MLDH}tkVQfNa& zx9{qtx5fM8VQhF$EL&y_@EmF8bon>BfF(75HrxUAFlnXitbv@lGxfW|=4v5%p8|%` z`-&g9?!vKS?PIk5l<1<{Lo8Y@*>xccQPDw-S7l`f#6Rq*(^|@9L)sIkPRXOmsc*B< zDrYb81rIGrQ;Fjqf1K2wEGo)JWQM%qs18sUYdB*dx|LK#tp5~*k3QqdR?c<>2X2&G zWAwDlkTIo?ZqN;hm1?8!$d*8k{q0lmhI5MMX3imML@W`~zXY4XXHQGNB_CFK(b>}@ zR*WdIQixRdxRvP0b+6^XS~Acr2Ga@5ZZ!~`-m^L-A|VFIFX&){pA)IAH&We9Vma7g ztV71j-Q`GEfE2PD?*DZ#wQlEO0Q{79eDcAVgpEYqi@F&z9QOu_O}X*<&xx|;!yu*` zl$3Jy2vaVuGj00R0`rXT=umbg&RFHe=6lM zO)af-W#|Krg9V@8Dfe?U%V72Yj3kxkz`XgiwmLFwW4C!zoRvkAtmK!EVE;ko?3M#e zaQYj@AW(U}Iy67Kq;O(ov*m@1 z!$WI5nYd4M5{o$eoU~N=fJxJtdHSg$U#?Ul@Pt3;H!=i(9`7?4QP( z2Q{5vb$;<7L1W@Ui%k9fyg^w{-pK{NT*`|07Cs;_Rh+`vvwn!ugbUki&t@LM{8C<_ ztDohdAp7=eC1FG&c@6uWy{|ecIi=G7`|~!Rba0R-V>;b1k{U)Q8US-~$*j@F!$G<$ zP_ZRO!Rd^OrmYs>lL38CfcAsDJTSRgFTX*0;llWdH*EVLgr3ijvAKPHr^t_kx0O~4#%Y^3RU z>_`*<2QSC}Fgn%zOTmXN|DA$$e^jE21$(|@@i$CXJpSZY4;VWJ7Zasexk>P@_IO$? zXGtiaEMLh^krA(V=EDD8hwAja$-D)9gXo#LVQ#&DGF)pHbVKx>@7a6R6R`Dhv}u?A zCZ09YIeN$(`%bz;cT}zowD?wk9(`QRohw=ZktRovl7139@jh9w+pM?SOV{eh$Ui~P ze*@l6m{Bl$$D9o=i7mdpj~@O`zp!4^$NM9$6v|tN;D>!}^i>!c;r!)FD7HI*xNH$p z4(bTe1^t`BdaI>i2EuL%Pj09{-bLA2!(xPghL^?O>-}6WD#S7v;Q8=rRu;oX^!yT( z4r8{hF6Z-nubVGB1%`~NB6~og|A+Ua5qW;B95PSb7+MCsq&S*I3-7`wa=(tVN=vl=WXq$l^T-Ao0S;TB_~wzk6bPnA7cKL@BVBm!)<(oolQSHB0?Aej&&-FG)< zE3}wbNH$Z@gX@V#64O}F+~{!RzRF~AJt8h4;12z&YLDm+EIC57buvR$O1T>`4PuRH z0bPt@9)k7iUy~-Z@JH$(*&ZjlsV_G=c@+aqu(RS{ub;(x6=U?&J9Xt9=#{kaDVM7E#g*o|eHK7! zc!b^-o*ijlykIrVLp?jX&vt5vb^lf(z8Dc<3r0Oky2oUf-8^L7s|(4F3D$s?<}b5; zU8aKa7wj4D5@k`^ds-6$N4BeO742>H5jFORrI9vR2~;XpW;pebf*{_+x`;)$cS@t) zSs`Pi3`Z26v_h^IO|8|_-`*>;;k$r_HK{PIzm0}hO~4V(;rqLtMB%wY-ZJbK7P84v zBD*%+QiFzw2q$RdYjO-6(&yo3C(VmD>Hz^grzj;ZzB%Qsr6xWr`>k5Y3FO}>L+D4> zI)~X0R%;dPYSKEQygj)fv%(^i(l{4qD68mpR4UW_oa$(VPxYxp-tY(iZN<1km&X+d4_aEwP#^5?_EvLEHpGL2TU6RbCd zHvf12!62apz69a0uPg%1O$xCvQl)gEV3}ay1WeADjxe0<=9d~xghEA7C##SWp6I6- zx*t+daVazv(kQbb4nTX_OQ36ZFv?#})U5;jw*s;tJq%r3up+!4Sr^WgvJQQ>BC3Fi zY`~;##q4Fs3e>nUsWud?9TovRCxHOd53%`)w8<*FVxwW!>Z&979Il0~icKFA$jT&l zjpi5jwiakNUdgJD;g#;*94OyE0#PJCRD$GEeOa~-n8|VpL4eh^%|+gUtRpPQQj3T0 z#eBL!x1`VX6s6=mV!1plv1Nd${jcveYS@ZGAYo}HNojottx7;NrvSzgPv9UpBfUJ_ z4%mCZi2Avp(OE;m?KwBU+fso(M#Gii>c(T;=M`$n0NkBvH3dOeFcxGWl) zm5tb>0VneYJa{19G2j@25I(m0q<;;^=O76N_aoJhyv5|P?}6qv$_Ub>Hi{j1!z15dGFNSrXAG0+*O}Q=sJ+9PtT^y@`7G?a-6Y>pZrJF>LU;TWJH^$>9tU6L86>IM>mv(XRrLL(JLDpV7AkmG{o{fgnN zyNv968@YySQN~*TtH3J=Pf-4nr#Q1iDWQ+1ulh-M7htrQ1NH;8yLQDXM#Wg8WiH}c z4LDDfXKOLcvG;06X;0dtUqalzR3C%O4Yl2{U%JW_P^{{g3oH-3lfI`Sfftuc*>feH zc9zJe`8fbvbS!B;wGMZ-(Jd>!QGv-H9Am^oP`T>GGyHupc6jPMBy{*^_elXCVnoJs z_fXYmI=KW27%tefxknJG_2AxZh=oUX}qEUGcpr1hM7x$2VC1>wji|CawJGhq|6LgbS{z7 z=3{CvfwC`U>zO8?O*m9UInWe&zD7%d@Cae~7r6qs!?7Q>P4cPskn}e%cF|lBkw5we z4vc)V)4z(~e@rS%92Dv6c>hVpa+;8}V>z=Nqae_ro3Xli=Wt0$^7D)Luhbu0Wo)`%zrL zxa&bGzo{RGW*Yo-{G%zX&(-l$)Yq?68vC`3$9y$X3D@r;>@+>Rrht2R^idg%p_}$h zh(T>R`~02yT?2H*)XueqTRI%97btNLZETj~g2sWl`AYXG%+F&i-Q9BLgo?-N$s->o zr&r~)Ch#^nG?PAq%bbS@!Pa8sHAC(Eh0c3@U_7eA?|vE_SiIrC|8*hY5?ZMCG?;na zN%4$9f^S$NuCD3%1Vq%M$$yaJwd_#ftBvb9w4ynp_ykPI7f*LX3>!$yi-Qa&Z)r%+ zlI*AZb7q$rT3wQ>V-8VDmv6_=-hNXSf`W%`Nx`X-f(Hkn86EF^G9=-@q`gJ@@~(I` z+ff!5+ijaDmBHwtWEY7_uKTRl^LETQyeuEc9>B1D3i2S&0eAupF=2gJq^wg5`kjcb zv|(p5HXhd+f8;zX49%3|;NThr2E-A5>+1~7L{P5TeWWowrVbFs*ClC*2DrSiz53Sg z0#dIYK7z%L!=O!H61d@+a<#26#fI#?R023sXN+ti>Mx;r&cX#`Y{L^T58pWZ#?pCm zd=0!@g?Ng`fwDXyu43xyI|f`0={_yWYRa(%!+A036_)Rp(2JRbd{6_POq*=xOdMq& zX;y@eVxLCGV=o0L|9r^<+Y_uY>Fatj4~BYP<(?{kq_Z4+O{L-qnRg|bP$2cmzbC&% zrI@T~@EE36T%90KeAr1=>hJ1BH3dQ58y6;R39{Ap^CesCA3yoh5!jam6fImGKX}2q zpN&|vc67Vy)aLiTp9%9bU9J580`z~Mb+Ykrv;8MD>aO|ktdkq9=UMX<2SLmBF>RR` zp;>ByX-*6R@(ZWn9ELqQLySSvgvI>@Kk7uhK5V#%iv{m5B+DLCI#jb$nKb z{EGb&QQ!^w=i4dWt10F-U{&P4u;LD~_fXcLv<4k{tMJG-pZ&!K*7-gi?>!#^F#UbH z>!KSOt*hvT9rdu)Rm`!ks*?l^%&j-0QJr_9*Jm|`tBPvH>uS!sxRWWipGnSXWs|w> zIhIl+7uyWd3Di>l?+b%$M8y9d=66SuWTOLf*+iW|sXK3VS1ygdoP#Tb0C z56K}ZIjKocW3A(9gxOZDd!;n^*S7k}ZuNK%oG)ZGQn{+-X!etE!zkYv zw$CJVwZTs@#?a%1G;N{==G=fC@!@X6eJ(B%gMQY#oKJ&qNtb$>BemZXx`X zx-=pq`U9K(>w8q|1NCY3*n8_!0ZZRGj>#VQa|$w4$%Vy<7e)2QSKPpL4nosQ3WN5V z;U*LMj1uMnphVJUdPkxq``Py>c)kQBzmjovK<>O+vnSL)+`4l;7{Rv#BkZsSw;wHx zW?q;zf5ZKTXm-|M7+W78_SNGuk-a0F9ZU5mp%x%Kx(pt>53KVU=7$Dhq9pAM>Pr(f z-^=wLdai>u_w60<*l0UkK((rkip?is9Izb-L!U-~9jS>%M&7suuE&M=jqMnb9(Iw; zV#pglhi%m!c{C3r*|<;|-J_gGl-g zh4U54n9PokP%>#-3F9tt_`pf&|>HTO-n4o%Tl@3OwipDB@ATj8R7vR>rvwIC* zbIb&xvyeIX(OMJLq}Jtj{t12uCGg-6UCsei?pGhnepcfd5M`HJH-8-?7+qwe z0H0+9xA%5ok@s#3mm<~s`b+zKq5Fq2?9=5hk8fKQV9DHSYzfu#_Tt?zP+C}LeGo>J z%|?Pqh*D`0to%A5Op{&=tMKd#cZAYF8{A51n>y2P$q@`~uXLn|jDP62TSB~ps$9rQ zb#eB9-@K;E!+~#vP;md{`L`ax=d56t>?%uC;8Fo&(%b1~8@YIn44aRVg@X-4Wj}VK zkX?8fS8f?azcoZ{aE%sSEi3UrE74rw+Zio%KH zBV3(l@x|uv03n1q-_XoVlWC!2<ZFJwEG7J+erjsf;W?6+qsE51seIpgy47ns-v)%h<(My#0fiRAJ?YVS1y0Q12c-uwr; z?~$VAEz}nDjNkq+JeQ-p`@6b|$jBgUQt8*w8PHA1VqAx(-V=fy|7nyHsbkfVY-xCP zm_knZDI6h7tX>Kz5YKaC>%w(xisDaU?Y9B@hxE4n`XQF8ijXYI=hi(m=E{;Q((YTQ z(_C7`EFC4u*if{|uSp`IKvIdfe{Wew4+$J07!T4Bs>WcV5QI`(v@Rw+V>SQl%JK}< z@csoFmEmeB6(Gf-zQWP`OAi~|WFSJSk02n6UH6XTZ9RgWbiMyU#G*=J4>YHS&KO** z-AoYs8zNpeF)3T@J^0I0XrQ=(r`TN7<-vjuJ-hV$u^#7|pfP*7F2o{_M z;QgPM6gsx9n_~?h0RS`ui9;Vf=8(XRi#k1(Y?^0xQgLa@rNyBiUJwNa1BMZpQrg|c z_1PIXiH^+iPubD|qa6)Nu0e+hb%j|urWBNaT5&;Bl!gp7^i-MdwSs(TO zI;!Wn{=0ENV z7=NEwtg{%_Wk)lAKkk!XF#d*7=FE<_|IjeAoma;%x9MTN-$BjSR(svSGAO|6mq3Y3 zZK0j%pupmM6Au)kDH~0kB^S!5z9_UDdNje2m1{w>2diyY9^TtMADA%?aLRV|QET}a zZ?@uvV&-uEPW229kzDg>;?$qy@^nA6AbfPa%qtPe=S5(acNMPbRSP&1%pB%R*hkz+D18eY+`;CVak0ca zC74MShyr8RsmP!ZUX?eV{sH5?A9%&Z89{^5!o>Ls3PNGY^G+p)M$1dRn?;DuaEUNY zw-Z>;78ZXOcEi4?MDn2)=YU0rE%3ep(#mCp(OqBkT8YelxPWqaJZ!S>cDgJ3)Ksww zu)zGJi=2sNT6_mvpiTtk4p?$ zJf}A1&ST$Ju{K;AC+B8zw2%_>=<<7~1>Q0%1=98DiF6$_g`UDqsT&S70{=_L4uaNi zq(#5FV+-dD-ojJ3O<9x*=GX+)?IP9S{+HJR)k3Mh7)w|A~Y@z#wbX zMOp!NyFuK4?(o-qoHMxAA#t?>LJ`P;zO&@2KIB%+;}Xh{D8a|La($yud}gnpfC?5Y zd#F&YJ4TkB`1y-ceuS9>o6HECM|R12BHXy?AE;%Dk|s0g5}f|df4MaFu7vTp3@DU` z7{dMBN4qO^yMwK+J*hV$M1V9Mjl11!A_DOK9{xXw?sG?=c^qwbgb1r?A_! z?$+b-aHzr&I&~+cy!p#o4ePYm0=S&4`iBmr$TBWubKv7$cwK{OUa5)**&DFf4D??{ zeIq#PN4+TR)RKC)$$%J|$-wat7fSlR`}a53F8XlcA>mz2o6b6gW~pGp0dhhpFOHZ> zP^%Y|dm5NXgkaTbQ`kPwi7cPzqzp`Ye(K7wpUB%RiOxKXK00z@y||0F`Wz69`1RI5dBedUhN>wRY9x!7@K9v_nKx_(I zQbVaHdADswr4lLc>UivrVXm?6HydMcD&~N(`qMz)wgG}v z)8leC-t;gXnvppfjl9LW5I^Dho^dM9lUnNZuI&|H`-iL(?8BmmJoNNq zYP^yTSJx2pj5b+vK*Sd6Yu5gac4muM%GhE@8o)9_$rayU*>$LW~}S?H^hPcIqt`rB%h zI60d8u`dKcbU`}E!ihckF7u=yy3QLVRfN4;aFRT)){_W7e5xJg<*HV!0?v{;Y8cL_ zneUXpQGa*d6)3{%QMud(`KB`R?Nq@fhKZJ@M1@>TA1TAoi1?)%OO*|(-J|J=Zv5?p zN*Po>j;IOz_{b&;@+!OEnBO%&}WR3Rk%k&dcgIFdWLRcJGC?HgHw0C8P4 zrVN)-{Jp6yb5lq@h(qG-_CB=z@LucfqzSanlR-g#_$zBKboU4LnebBHZIR&&Nx(V?8 zuq!!Sdm5W#VX>V~Xz;a@m2Wbn$^F8FG;@5<%o%olwdbg$a>93zNm#kD#DQb_V)2UH*3(XfUAX1m9U5Ln@R9Zavmv|Iyr+-lClF&$3 z3mh?-4~Yu5hYpU=!jSJ-zFmc01QUOu=bhYxTl;iwkmq;VhXObDk6etdcb5*_YVpvoC4nn zH(X{#D*r97VP#2UvS^!?Bmq~?*?LJvI3}rwj7$|GwTlcyY}(9*-$;`|9jVwnq*!@1 zxpA#}B0TP_rU`?I4r5~kj+`nWh%(<%z?J?tJC8SIh++;cxlazvUnu3FG=d3s>(EO6 z@8d1#W#rH*iW@kRXRWdGet5Z8#NkMoKd%T6-;&??BqK`>R+Ha9n-3f4aFnoQR;MyT zo~g%-YndjX-)QxA6VaVZj6Gl?zhI=l2=2TOX(`cPVVh{{91uF+lyfGILlwX>qJ*+U_KEZ^Mq{B(^GxKi-pSZW?y@KD=?&;OJQYK0o zBY1NZNjv^&vbY;1%y|yf?%I~l2SUVLWqBWbOP9R9-0gQ88a-=0m4@aZsTOi4s?63s zjJTeE>zu0nH?_k)F_w9tU$KsiyjI_(TX17^$sPV$IM&38!zaAp4-pH3cQEUinMRP<&6hkihfs=4Eb>8*6;7%P=`e z@BZ~>S2Yffk+7>8v`k!KqsyJqpGzE}6O+rT>i!vr#oXXqCSe(Vi7w@Pqx&VI$(@D$ zkG%o&80S~VJ!BV*=c(tzU4V~~s2gohd^Srs%f;Gzufp2lB05=!^KAB_V=oOr3Y!{> zo`=F+Y2^>n`DiwR%n;93ShD0y7<#1)!e$g z*m1tKH~M?|Az_8g?7Yw_%WyKHwGAPtfK*l>`R{7Q+m6^J+VAJxh}&v($}?nnr*7d| zhPSH}5=O;BUYWi8V$RKwR%>Ee7iUz0S=m1B)+;Z|Ye{fj$&@m$mMQ14GEQmo%!s`8 zqZ)Jm^Gu)o63(|NeE|9dY}9}D^^BmzH1X1^fnbkrLND?5S57Ix=@-tCZlIAOzUd&Z zoyW$QPt*O7KYPW~pSGOf#1(Ab?v%7TyS-++uHeb*{ZVxpJ)Q++(Z9&-eXwx!E<=qn zwl(R)5n91khFqhxsUyM#70xKx{x{imZt+%lYP-uBJrbXS3BZ;U`m5ybjYh0Rl;THE zV|KjC17Ag_w{9P;h*2bT>n@7lTSP}DpG$O0vdxAU_awb@f?3~jfC$m;#!vQvqCa9g_E(bQF z(N?cFo#$Gedx$-`&}83M5y)hd##xhJOC5D0f9U7YeQ$DRNJ#_nE5jAca#FP)^SM)U zsALtFZkG-U$6e(M|DF8{zWenb+VLM%dhq{S{l~${`@hbNI63~ui1;61<+>?>5wL66 zU(QrdAIyr2(mUSBxY>ZUx!~ZzFf$lQ7^4*w7%Rs8aq)a{wof-h@h3lX^w^5K_vGTqG^@Mu%!;amUg~`r$^jed2j5Ke59_ki zO3Kk4@!#3v56Uv`Tn(w+6*-m94&=X6H4Nnw`vbhYr_FEf z8ChC1Hf|}=ys}y!O+CHWc|;_-mtm+WS+pZekpdlpEj-%|W69(=(v`oAza~oKms`9s z5%7Paw6J5!Cf7DBH|t+-G$@btsb+Jyl+DZybP=wRHN1t4ly~v=BH+in|RN z$(lkxdNqT9z($znR3$fzuw*$nei@_5#}ao}&F7XPa3cM}tMjPCoz9lbwpzpkd=?Ep z`V(ei%kkv;r1}W~)KjnD7Egtggo_u#Z8O@aweb39v6AT-yCIxpO#rWFD{YL)N9-a@TgF3GR8tG|gxBxkx!Ms;ne}A{-ZyKG zUdQdJ<$_*(&jk9fHh{=CFl<9k(}oh51x{x~6qOZ$?b(5jGGmIZFY z?Q0PU5QHtF*>kfQf#PYH5R^E?FyP4p8fJlku8ZxD_^Z?%!9a)3T1Aq!+Y{#BMwt1v z12C$^Q?9>VCEsC3Si@P318I#0LXRgJ&*Szq+HsM zY2G-xFgU#H^E{UvB%54aaPO~<rkjJoU&A51Eqg>x2B;jHYL=|jmMr;_? z_Rae}i|r0@9RgYI4*&Ye%`7%6u1n|FA13ie7Lztrz1<9U+~kRl4c1$z{3^+PFz;Dh zv6T>UG4h^$Y;17?4Ax(n#~}Xb$B*?l>N!pQ^B!~dJG}mm3m9z5YkR5MsmW#CDOQn| ztC4zJ3eeQKxokd@5mhFGj8<8rXK10forGlBZnoCJ819XA%-1t2}zNjfa$G8^byJbed5CSfhh_cDvAn(k?1TsDhQsogbp$<;D%_qYnj z=cRj}wpC!t8El`hAIvuS(zvE&t}U4AL0Hx9zlUh`UR~I_b<{^g#OO2(0ggR+_0yUIS4)^zYye*l2HR z0Uxfdcho%OQ+{^P%g39)LXkKxn3Wf4!V>~2cP4dqLZPvVSZnx1VlaGf?X!pk9udJ$ zN*bs}d;tOQLer2>qL*``o%{Jk@!#FN;R@$I1;vZBMz7<}q?d<<%TG75MLX4}?%u{N z3V{21^A5q+T^iTb;KeAUzL#m}l^;hL45)kHM<3GCzx8C|ze?0~l zwpP8BF|2r_cjNChzLy;gW$0Ids!!Zr4R2~!4@JMl4c7ad8AtIyY0Hax>$KQ&%V3P! zz6{<9haHPE8_9bNPs7_vQY{M5=R5pU!?&fhaZZr<3N-Vu z)ba2sX_sApSO+zuqL4FEC}*zbX1PtoGj0g36Z{ZGL|(?j+Mbuu!Xe3&7`w&cWRClP zS$ng3V;GSH9m!&jJjB6Ym>dzw4ea!1&#uy#hTadqgIsT=rL2Jp1_e#dALWgL^#IQa zC|=Zt)$sO%KaK^BsNda~g<;|m^+p3CipyKck%#Q@de?DCCQ~azo`TzMNRsRm^*-Cu z(|s;?Y3njl3j%y11*~uY+9+{(y*2kb9dnTwwWkq%yq^N8!j|7|kVbX| z9@gZVV-}qX+ua=N@u`{3Ne?L4NBi{DQqShPUoYd-`%8P({_gl3*r3v{c_7RGs1qm8 zyiwo3P_oO`>KCFmqkFgbp0OUA&4({mj+yUnTCOK=2Bo{;QSTR-;nTC(K$-+D+-V(C!1=zOvamtQqTYieeKLYl>JyZ864&?ILRrSO*B5C}XbZxX6 zy)(@D23uebOz%_FltL73Hh@ltm92=S@?+31%3(f!O6y+7o@95?G~r;raPESc7-5NW z+;Yc!RyCEI(OaRA6blMNDjK*?oE>7ZZ5Hubtw+wFbRC2pcw{(Ig~1w_Lg3Nk_(jux zlX0AFyVCBN^fMC(nYICkm5``%J|sphtt`pUPCK)Q0AbDeQt2awaqax0T3i6OdJ z$qE=uA_eKZ(o}2N289N;y6tc;`sjaGW%n_@SWxdN4yH@))jx?ieMvJa zj_Z<}g1dQ?SS8(F3BX_JX({0Td?0jD3`QBlaEO7dqTrh@yhnRP!iJktK|Tn=Fq6^x zVe`U~E|9+MX}*Yw2m%Q@ep=cd5B{!2y0=`kxUnh3KB*}^r^5VUSdYX*ZxA^7c6?4c z(c<-~aYLUU&>8DWW9y zn&;y`Ic5kASnG?m;a+C8Uda9=Uf^VyDItvpkA%sM)Q!JOQHM&aOOMD2&AP}Ll4Wtl zI2XX!EGwV3np<4l8Q9HgoN~w$ojVlx2Z*uJ1@N*2Jq}0uanphnv5Q!Ho+MZN;X1yj zG)#O@7_3hm0;nPz*%lgaksFv{aPp$4;P;^vx1RQ{rj8RfnJ?r8{7qkR#64o_ha|o2 zNBcXEyD|gB!akf|W0kMBxJAvABg^+f3nKscF{l}YkHZ)@?kvnmP*;m-K?D^zR(>jG z@qK%$`r~yyfn6|#Q}94tAcwXn%hrTQ+l}B8XVesL18ii+325rZ`5E>x?kRJ}@Z;~7 zvqA@vl}3KSgy>p&-bQYi?)$Vm#(fQz-DaX!usmP*tdD@^2x0_hkl&lqL`f5}m9K2e zQaIQrW;w(q92babV%+5P;30}*iD$tS0WJ;q4aEI~Kio3nv9*bDi~5LFD1Wp6#Z*`! zZDrjz1uhx*-55x!(7$&ZWik7EBW?i>jyk;h(PKu;7#Jdn3LZKtU8xjVs#7=oI|?U zPM>je75%tR93l~W`lM(?Xt0=h=(iSn3d+8H!j%YeIHq9geUJ(9ZcQZRdLy}L{s4~@ zpsQlVb>pHr#wWrr zPt!YRZzgk=G4SzbYP32^2C=<5^d?JQ_s>=Hn}1!aTs`NeM;b2oH)dft4YE^RG|^PG z3oYrNCk#F7_t?M*9)P3;X@kpO_XVvUK%3_HY%VyYB-@RRg=2U8XoENj8lwP<2Az1JLE%G4h z?w^0`g!8!iw||)ad9y2-#G(Obkc8hL+NBgU$Th|&E(D5Q_ z4dPmTP@88F7j70GPQ~@-NVi@}tIhuVc6TL*hL76fW#cyOt8G-p{8r;DF!s~xj!#Otgvay3$`tl_zRmT@$H+MdwIi*DW* zT}|FR`m5@D7ODcub)x3V`mSfq28Qh|@h6DMmWgs0MA0OrYL>MI&pd_qlPgT`4x!&u z)tjJECanyvNJ6U8T?>mh+qnX;sgaxL2)b>zEA^g+)wNSUn3hZD&mQ&8PdAv};^>j` znel;)a_^<)syM^!to-uUIQ~2y&RI)7f>!6pwQWb-{9T~aM1AGLE6%hJr`hm!e$vio z17Xyj1Jlfnui3SxIGm>yPgtR~)g3xKojPh~p)$L$M*36bBw+nv-%HJWX&6CMF1}%|$$5pjnQ;oGC7@{B&J)gUF1H+w1`OXbhp=>wRnZ zOFA%L@MJFrYi#$xeSG5V6;SqX79{cu!@Bd(sN1{r*u7=hBX zFqj<-e#GPy@eX&v>RK{d2_;7D#w!kN0H^JkFBnD8FkRhUx0yjS3996t5ng;?(rY6? zAhO9d^`e8-Cc)w4C)sy}jUuFwUfY`^<<-S>@#R~(E>AOtJ(WL?1N{Y$M@hRoOOs`Q zK`Z3`#QCW-JVJ7Rc-ejeOIqpZqL_@mb9nJ%nlzuy&lUFWrrjv=AVT_hx#2YVgG`DC zKjw>Cvd-#)AWL)2Av?HmiGm~GM3M@xePE<2*c0+~jjEtP4j3#w>>%#4@xs+H z>`YTn-x>W~7cqSraBTuKq(hfCi2?+D|JvLw2+7Gqr)8Gnl+(B~x(an?_w0HI z6A{&9u{&(Ej}<+lzeavrE8aac$9zIRgj?igV|yPl{-%|vE4%z@x0_u1odeR7Q61kh z%bTA&H}3Bagmon5iKzJDu(u@;=-DzID>E2rrXoE{1TjqvF>SgqLWux#B2qzc_9cLo z>Cj3fkZ&bwOSRNfP62X;1WF=0(3J27q)U2pwF6!5g58BQn2kN!d6co)6W#7|^5jp& zeJo%*l+H$;7s8+qUiG&OM**tvbJ;-+FgetK4Ttj?0N=GNN-C5Qt zxY(c97G}1Y8v;K(g@72Timl)YE4m_82>TT7psJK?x8}yZQ)iymO@4ka6R%*dp)r>4 z=$-GuzqPH7!%(#`G{Z2^itf|4vyTJaUeqWVDyi6{m{X51dAnZip~jvRH)K$)Q3kG&&M@(mm^kTnX3kh-Igdj| z?QE7-8tpLK&Z)txjAD$#laPy?@xA%pPugYHgt83?j?X0zzMv+*5`b@YQ4*Wl)89^; z!0zQ%vuNd0AjA^I6;oU2kEl>!#?M&f{pBa|7`Rdq(<^nv_e*M&sYBclE7DK!Kn(*W zM41qc+ygbwg}B1Icw9z0*f3*}=;!`<%GqmE3i>I9PP7*<32OndZnI6~Y8Ro`;jkR> zurdDD5&3M5P?YsKR3LqttZ|nVOM(2_^d&k-C5;m~NL;g7epe!@bL~*zbhy_xUUC%< zd9M4FM6Dcp^5hFyrCGeBE9A#jF|eh2Jq;Efy+Lv4keRM~CGSEahnSqIsPtNR|N9#h zZ^{_{Adc7)JDi#sQltAEmUCQ!1>1QVN|)1jEtlL{Ax_FV1|SzxZwo2$=6Yb7>E6px z_SmgI1zm8khR=vj1cdN4>n4BmYPD8BIVRm>JIxp=!$Ba#;yY8|dq_(Fme0LFuY$N{ zsbD6Z3_$~@$>X*Y(jjP&LeG}QhD)&htdi!C3Kn*yP?T%y6puvhm^?)r&bPDqA(q!6 z&p$|Txop=B3_u21JsF%ZLz~*UdfyDNN{7Sht+~V^CADS@4|u9ZRcncOut57LE05HQ zG?kr!*HtXr!u@J#O6+4PN4HUC9TK45SRlx|=!RI9`U$4QbefK!79X8>iW|~>g+H2e zgPr5tbH_<`Zbu`?vtyD#Q*UMx2!$=Fv+i)y-{7jk3ygN3Fsuv!BHX{9xu=kQ#NCEz zl$N=~c;eo8CuG5FW_wiKU^5tWx@Ekg8^dG`eIrkZiXq#S}R}Y@1p`X9#?dbQ|Rub6g6#?r}HvFznvb z6U!dncrY2fJm0;|q{%T;ns%DfomteqpZq-Y2WEK>1T~_NnAfqs!3}Bn4jITwdNMZH z??R+~ME{jg3BmN3vK`7Khg;UIV~EgOZpV>Ix7%s893trJEaB#FL}+AE)7n2T7XbkCI`SEB- z06qWd??Mc-6h!7aWBI$tJ5WV7y@|}j<_9yoak}1qGH%nh;qoTr2YPrWy8wn*NnfSt zEdlHH_odoMi!U5Pi9w2!`Q=^V1A5oCT+$zD}MX}o>}-%n*cH>r5AzvWRutI!Lz zTK2T(Q5_Q7e(@4Shkk)-j!<-g@@9@jK)*pZRy3dbdCg?R0la@r7n*8tZ9@~2F1%Rt zluv!OB-vD0A->U-Cf`EWZ!PNx5V+HAHTWsPdnKl1MwHI;gVx$(4`;PXWVye+Q>FIy za-Tq&BPF6o9IjhfR~f? zNbER~S^@m^d9p#a32_p3BO>}N;<^)kVBY&Rx`$D`^fPh%7|4$H0U7Wvo!S~Ryt*u` z^-k%*@^nk-IbCcRhHIG+>=)v%BfXQUnea)^9opV&r>j^6Z77waP+ezTk zUQKhH48Jl?e|;`76W)b=1a0x|6UT5-1l8w0tN*FV?C&!@?(%-wWmK;zKQ`_38x-$y z4?EAlAJp}E+t0{T%Fk)=u}~5yDaePi9;c|Q@Ve0K6ouU64EzRHM}-HMz-D40uAD+ z^rQWg!Dox2Elfm(eb#!?%M5nzs|}MEgTE@$_TGk!dcFS99<1*Mceb?|Y3d{Mb+?a- zn8Z6Oqo6u3raX?*Qnul`bMw-Xk!P$@|~? z@R_nB81%y~nZ-|-q%P-tLcqrw0J^W&>GfY!BKQBYtyJJ#T&yWyvIy9~9F`j9On(se zA1kXd$4qH~#=ST}e$KW{=x_dv3N*8%C8qTTUBxpbu3?!!&BqSNVEjp@eO~V&@qF;Y zlmmrXWe#ZM6w?0S~f03J*Pv`Otv6*s5Mr zJb6l22j)V&Vk#b2aTkYA&&bVo-2*-4x6aq!25ovi&l{7iBNLj2!{d`LH}i*g`Cj|1 z?i^a1zBVsf`V%c*K26n#+*LMBsm&E(6slo(^3@NTce7`_9hULHcAj1HO(h;Zx;Ie- zPqnRvK=dAnweuGHKTnpH`a7~K2INl5(==P1GiqA8&R5Fdz5eOw2akML8TL6kg-z47 z-NZ1MhA>h)?Wu;s3E!QVnb8o)%YQrL>CK z=O!Ni$Wz64SYylqyfJ`8wz|rOLwXM-)~PIzWbTvLAS?*Z6vJ}K)Ucz9Dn-)F5_096 zhl_Y`!I_!9VCAipaKAP3thY3tzgt;l$x#`uNnCJq$B#Y0cE-(BW&AciFHv+;|FTAB za~>^T7`wS&$q)^ChbPMGL28BlG-i(_d6j>e(An5qg7>eFqh= zjd2zL#LASc(-EU+;@@;$lj-&#+(zx&?OP!&SrTG7+e2(+Wgly(GF*`Zp(%J{+9#HH z8_+}bB&hzbNwQAmJxEafaXm>dAv(>(ILI`60 zB7oN{wiOaMs)#GSd=hkUTpV3}9yj4h89dUd>ED*NmjdKC|pHEjbF6m3f7I zoH9o9?WflxkuS6rWd!>LBWm9Y@57UbQc-}o?sUPedg=bAk4OsvIaE?^tP5K6QeU3@ zh4c96Kqf1D?*-GZMF6+pY&zO^1@0*9J2FX?OvZ->O@$b=qt5!5Yy0+96`1AAk1=0pM@H2`*jZ|lrTEG<#~LlCGh7&(b`#6yK3y4 zjm1ok86WyE{_{4D*j#g6IHRA+cT1*lU+Me;@a z{mGX!Wc?8`YYO-Se`NaPoHKn)j;g(MK<)78TXjS-B*4;0_dqLuq z2rNQ}T5)fdc4arb1CRF@_C);6|4irFW!baZSkM1bS==yk|LyUkfA`A`TPcIX%6;qY z(*LBVS=9{xr~`h*9Yb;XXcvA5^-bW1Q5+n45QxYinJU!_JD#k|PnUB}u4f-hir&)p z`-w5{h5hjXmM1HHhPxtX)+*6hKwaZycF39+X1S~H8&s)4(3G9y()_3I;|MFYB!(CW z7}JtcX z$zj2l@$$u3ij@Jd8@MVsV1jivQ2>n+3$eu&n)Z0sSM1~q=n$*NS0i}vnozVf&y|*|4_mwa+n>jI1l3?ycnOW` zm7t2!cgYyR=@Wf0pKy*wS|?&%Io?eVagj2Og?47upL-g?A#L>Hz)*EJI zbTvjKLv}drF;;vK@Xc9!AIVe+ayDouY28qT(=7}zhB5f$vGqP;R%-(j^kG`LY4c%!Lie9rCBV^s)9Zz9dMqIB#q*mIvJa0Dh$!o( zWlJ+|q_G_aAVCdYexR0Rz)Rt{P9{V1Jr{k89fP*Vd$SC3ab&<)`785kh5aKu14??c zd`uX_Of(Gdp+yFv5=ndBL*;#kWcJo}C+F99eS;fvCtWNF7&=1Xm&G!2F#njObY~YKI=<-Dr%X8kojE zClYD{{Kz`_5rkywr+63N0WDO@eP{fWjobe7W&6b!svPJ!j06M}2O>1W4M&82Vz zeL~|LK;QUz_xXy8J2v1kwgbO()-FD+=M>fR;H_t;7=JW+0Rt<>tJ>LBY8i`p55;z# z7&ur_*XmWRYvt;iY_#Uv902Y^Hq+MDQkh{Vnj|-e&G(brFs@GWbDlTTn%QJyEOoGv zaiERJxs{t}Lkj0ItdFggs}P$G#u8!}!B|@rz!~7Ttce+bxe>xq@y{0^2OEP@My$8i z>5UKfwk>7SkQLUS4vPOATcw00yM#Yv6$xc@p3@RXnk#r&eY@##KzvD77*NO63KNmi z68mPTn?zjiuBMtakz@7qOVYr2{yUMIY^0s4j=K*`6S-t<9jU`wLca4VJ}r@jXU!il z;JI?gk`*Vr%dDl_(6^AKiDt~-Nu1KmfnTTm?<+n(c~oH^{=YtwjZx_x{W$NLF%0Pqq|KU(6`9?JseWl9geDx0c|RsGP!RcVjN#8nV0o} zqg;B}HpNA{Jd<_m>o!(p8SSHpNp9irXM0pmTDERWVjQ5 zTw2eL${)Jqrp>?CKT{08aP5|s9*0jQhpbP+O$DjeU5Btt5#S*mF)}}IEI%9j?kDUU zyrf{mGvt=h3!gr$#2vj#1Cf4$Ng+s&D)JAMHVNs*37a$pP3v$Qcb+_YO=1e`K1m(Z zj#2|t!GS4!O_|h09o8>iTEfwyZ-~VdMLHhVsffOh zzL@d2I@+KeEu~nQbzl?qdfoic4_UjUv1!}&Za#KWKMciPwLf&jL(P^$?fsUY!ZJ{} zg?VG@As)I; zaB=Yb-RoMDEk{Cp3Bpvy@!L76rcUwyn3#wW@1XFe=eF#3R$iW*^NtZJ zPhFe>>LU&Gyj=;!Kaui4viv0WSJd)66C=M$^av4R|vSH}FkB3nJ+Xl?FqIkxUE?a7qJ z-E1k=uWT)y4aKPF>#T5&cxf{68!;KzSuW=_*UC<$jir>XHP5RlDuhNRYIa?{QqQyY zM239D^@$WkTeZh%H(&07`ebY5GN+A|%LSJrc~ruUmY|BGyo*v>_4+3YzE)(lp$Sz4 z^m3aG_Ztq`pAoCTmD!cNP^Vg&Ma{Hj?7%PWHm#-x?5uIEY>pB=&Wny5LoNhQCxSGp znULB}{ggSf*6eTy>TSv<2+LVbI&}5<75dgH3O2~bpWzg~B7F)N7=fKy!My*{Z=V}F z8!w8LfA9ycqh3P8#2CBny4(q#j%kS}DH`bMR5LFqsb_BJR+2 zN?|D2HdVe#{mcz!4^74~XRDU5^AQ{oa}$F-(Hd6uoi6R^D`_uno5)K1j| zuPuiC;>8r(uKm8L)bKL7EfTlw z2nC|*=C+u!lpK;>@3wO&Dg#-9gLT&Y-nz3DGZ9b;fT!*K;(K+{Ns*9dW!yc%kY)uuOWU;B8;K|Lt9!%aXFjQdV42^;UQ9+s6H{QL@h z7~EB^&4n$vcB9d#Nv*5swD!J^dpF9N-Oou8Vw{?--yPuEn+tb~b+;h>H7mJDOop$& zX^wFe&%qX;+ECE>KT3kBwaU5he8H0C$QfXGfTbluMeyw!r5Vm1(LreAYBA@hGp~!L z$lIC*!7FTHqQ>Wqd+$IdJ)7x+j43?tho`n&sw5CSEbv8)m`;%s<5ydT!uV>{ZVt@$ zr>!DSv?SZ5lnA2cX&H&PB+9kt0bo}tDWeT7meIvU43Y8$Y;5{fWo5m5M2996dZ`Zs zc=(5=9yo&YBsb*D_R%4{M=2TVr7kTl86B^n9js(LpwH!oAfkJDyVtVI>GJexwP@?u z=SaBVId6#WePpOf6BPO38}gDO$p#MH_CULP--f?s|C*U52{me=Tf_gn&+lVyW?|t4 zh}%|K&xT5tYxU`oL2&Uh%$(zE-)60nv+Kv6ATMxqhQc$n47qI@8pmAZQlgVRUD6(UE{2geX{@h$_ zXd|mF6oS6+(R#x|UB>N(b*VtY~Vvj?|hkV!xJ+P5+xkp=}X{i$VLqNqQEvl>i+*Lwa=vh-TUECR_P#)j*+V?Uo@gwdQx6_eL z@#Eut6#Z+NG5;xn$dye4q-_TSQaf;3TXDkDH))K&OJp@#gdpmsNPd`7M3X9Q)uN}K z>U|8YHt@^0goxlgl3xWV$QAU48Bh^Ij{I0KIiYE04RHDUp4}`d{o~fP%Ow_!XQ=4} zm7O+CQn;cIg>78m5W6XjTH*jXKT+{dN~sM?W67<$f)88-I`(@QkQoePJQf1}mBkX} zx!GT=aVz(Y*cL`w`7m@fgzR}0hJa%H5jjb?LPH2k>}EcBVf;vPovvI|#ELO9CYpiT zmIar7^|xNKin4@zrDcvJ_;CRX-}eTauY*hd5em^vYB*A@;V<6v&$a|FL)(UVatRRF ztEGkyyT%@?8W~zbAQ8(^-KIu<#TOP^o(x~k)^p_|>hX=tTv-w=!}M2DiZOO;foe^J z)_AB^E$N^U_hn8tHxEdD^lzPTXgk{M*%2!LiP?4V_{aqzbkqwQJUOB%ZwCw{v;``Wg9eiDr_<3L?2+*nyNfPu~f*pC)V)k2E$(YR7j-$(h4 z6U63)F&an#>5hAq5nY5T;3Zz+*kU=u+`<9Dsk#ZlIlmNxI?|WQxRgNGeyY3^cP3ph zR9So_UQAfB!PA&8i`{EaBh9l~E|ow@N`9oN#7mhLIy&6%j1(KF;jEG4{1EMl>32(m zJ(O(O+)SzgXemVwG+UQGj6xAp5gY56!`{%1uQ>c$5`7qM9k64mZA-nZ2j9Mm`XGsx zms6$5d6uU2EUigWbUmd1C7UC{hZA1U1kGeB9MU#c0)?Ci>D-T;7@b#vnbjybnOSrF!jZ$#6NhC^` zh)QYcx{IaTF7Gc+1y+JDBBxYsBwD4hd^#)AHzTA}TIWrwbmPXcGVKIK`KQ9Z&*2kd zh_5o@H;8TEVHqyV#M)wgTtD(PPx8L}UgL$)*8i+#Hxl9fhRgN30Yl?(f%~p*>olxv zs}5Z?vsx&pGy7%s}){4z}%-X*!tzv1J_MV}0O zHWQ3DW6YevZS8&cL0&r^EPKlq(i+1|E78q-2BI~Et_p* zbG}=rsQde1`G~32cgC?rS5g~b*rZn58CPKh*ex+K3S@^Z9Ekl*i+$-O8AHfp?=jCZ zay`r5dDvcoNGMDt<0>6Mrx%djub>yT)t7K1skp%xblJ!A8diLYT|yiw_v7X z%eH5##`K2N02ljjWm`eP$CE=Zb}tAp0aMLipq>?Ir<*N1NtwolakxBx=0HG zaDN`JNMHSj844PeC{bu-Gduo8A9bx2{&iXhvb0~#?^ca!x*4yTqsX^APjeM%Y6<77 z!qx*a%Qqp|go}azT<6X;^vE?~taBJ$*O*#X%K8}S6%3bj zA|$9ka(4GqOTYAH{DaFQ6&IXH$XK6G5Emm)Bg%@##2r)q!Q_ighJ`PyiXi|Tlg(0* zlh%5wSF5jC3M9~?ovYLBX|?o@V9%b%m!bZl5PK#YTc|UZo@tOdvE={GtM=zuP+?4g zt21Vd*{(tVW(Znp-iE#@knVO_L}5NoJ{;bgocO_)VRlE$G7x+;`(=%LnzYTS2_bDU z0p%1V3Kb&qDJwL|dk-Fh84(ANiOBNj{%0BjziFeIuHK7@D2Ge6a_dhF!sWCf50_s|jY@(PYW}W_g&9jfRGdNPAi`ly)%T+HWmSjY%gIZD*bg@0 zEQ?CPfhgqA1U;k|9Q75b5U6odvVS9ky{@n z5V(}P8|WoWSGY^l;QpSSnRh;Z`2_uf#LaUV6(*U;=%&|4ZHfnm>LWJ71H=_~DNykz zXn$(l#S^*b*_utkgrxbX80|%{3FH$pjjgF^eGwY?XMZn+>*?8fDz0*H3|_}m5xMGj z`#hc9DtIzGlTY+i++DWv+5s|TQ02YS@hdQd3HjeYZ=1frJ@^|q|BD{wWh040qX2kW zS^lpCE!441SZn-GYO;NiIYT;${&(}DIY-?!`3y(GH@*{&N9gSS1WlDcz1TU-U7c;3 zC?JY_Kct6D5+FbY+9E6rM0&~$G;Ac%tuaRLgAc=hEo!0Tr#7*b$iJXA{Xmr;0lj{L}oy|ZZm-MmgTZ|3#$G{J>zf~?%_ zEI+H=6i*oTKaAGrY&c=(y5GyKv|p_~7K4Z}tgJ0?6I^Ptoyqn}xAHcU@(s^#zVPx2 zEeN%{T=HAJY^C*8z{V0h{nnur9MXU`=p{{~ELjaCVMttOG@$e-B~hPG`J3pc@Q^FP z9gXm}a?2OzGiDHOq;TrDpyJ_u^4+h2H+0yR>M5(-jdgf-;cJ@+5Umr-oZ>^T6+vm+ z{PJ?N8nZPLx$={IJ;V|;{c9)Rwn$JJ8YyFowq04JqGJ=$T1Awr6Yl?LTZi8`5S{(2 zfN>pYloOq90{> zT0P{3N_xnil1xgAYllBqmHBPPPHNtMsAE<_G}^AcS6+!|)#DhxPiNc^>OD#7)q4g( z4c6p}YFvi95!lsK;2Y7$f?=sY{nofv;vRDPWdv!rxc(&%Xe!0guG2p~=J;={0ACX<$t)C?+3=0QG3-fCyO zWKHCGwFl5M1kvy_0*xZlt0j@`gFo`Pkr5ww_i>DerGC0B9aW_H1geY1HM!2D)p)KU zG@SU!wasO_SEBrh1Y58E$G`uEiXt%=F>tB0iG2CDW2olH&;~BJ&L!B~Itg+O+@Hoa zB}Io{SF?YVSyVMGOk;9PkZvhEBkzD8>#5v1~%0DVaVtRnSx@IyQ^Hxp8vw`_T?BUbmM!(x3*t;_jqA&?q=HpLxH5rg5`Y0I_QLrWxAdZ~8bn3YAJW9G+ z9?q_Y^-%qh{?GRr?+k?FC#=uJEMX>6=deTqiNPRQOmo%?jk#iXrY(cj7KsGCv5dS@mcJ3XMA1q$XUq5& zXyYrQP8Y|7Nw~{4fD?#WP4-`SLhV~>9MfdX)#!<6xGe-)^Wfj;)^=$^g)N)qLp*oT zPniT<02m{9hUjGTVw6D>u+IkD<3CrUI_+=D%suqZO)kKT8CHP~feqH!dQ$NG`c(?{ z!?ZfHBK+$*N$oC-Av zq(yEPj;S02Kr*qeJ??0wCob}|M>8>$CwPKnR(ytYZUS|xr|QQmCae7TExYvZQ)@f7 z5852`ZU66X!zs1;DNC->d>$_|(7d`$p=k!UM|gt_!?m*K#9|WsU`rT@U-(q&m=tEYxSi!u+d~< zhmuaKxq&?{Ciq>YStyzS7f?tIt+bUAx+#B#mgRu7S$Hq2-9O(6thO3f8=v$%Mq0X| zRa#n!$tz>oBH3#ADg(oNG0I|UO0<1kX0$8VSftDA5$jltVO>-OR0r|x7vac&U-y0O zLE-->B#6m!l7n!JZe4W00o)wWi1^qcr*JCnH?FS8B(Wz|g=(8QGIb~puu#~=HRP*J zJ+W|=qKSRdmLkeOIHuuKaxm-AzOE=MBxXBE-gj5T%%b8*fnqaKjf}G00-%@$Qp5IJ zXU9!p%-ZuPkSKxQsU%qC$0VdN)|HY9Hw<;;0C<1rB9YM_$^u4kxg}a0V;IOx@^U_p zvUDWeX>@Gj8eala#MHkPOFUs2fFiU&S~EIE@H)0?CEsj|1I&ak3VLVW@ zznCHdMi66E5m)SXSerN2#{L|Mix6z8*|76RytBVSXd&!!T#78yTrBaN64qJWl{eEV z0lmR{cjp`zOBci)0UD*Ss6iz30-C=CSjUIewsQ=Ph3O$t4^^z}nnn;YDVpYadUFKz zW~o)K`MlBE?6|k6xOBaq{#rlR*h0>S59k?tmuUzCq@t!r7^-rkO{*{NJk8RvJShuk z(68(^&mD-u3to=`$|w3FGn z%|>|nV>AzGTwILoh)3VYeHZ8Zn+bhVsR?Su9djH)Q^(1)dp%?EiPB?;yKEAp0IC^u z>9L!Moi~ikp(gLU>ooZcrHU9W6^7c0UPTxlc>9$@YvL82&YR`VSXRPT#V#!eDK6ry zOg(yLhF7#D5CZohp(VLFwx#KqX8Gj6rzoZ+iI&vE8)@hpvLEMov%Kd~X6yfaod#qk z`rHU~dm97qY97L^Gj#5YP61no5zgCYXg|mZxeVeq?}N{vUJE_1v&UL?yg<+@L+tDT`~>3>a}P}K zEVYwMs6eN@2Ry4{NL>&6M_e<&Xn7MsjC(o#2B(5G945dm8oflTxUB95Y)-d*J}3Hg z8a=PK7fl|FRZ27s(+9F+?XlK=Oaw%`Z2aVCYKy1lXj-q`7Wy!+AzTx1uyfBIzw|y( z;jAOY7qMW?sh;3qoRc2_^1AIqEnM2D%4wI`sS~bDeuT#k+;HmN#d5F5G1gcKV`>xB z5p?ctp>g7&E% zPY+ohQ+0yVEQ;D`-5Z` zCJ<-+dkow^^x5oPwfZd!Llred#^}~n!Q8=_5L!_AJu9%qF}mL{GKPqL}3G&a>#1_M;!u zpF0V>a-%3K$V`|6y_ub@r-n!>Y>}85(UJkWyE<5OX?i_+hkxk;Z!W%y7$F(dC_0{{y??12?X3PkcK`kJb0g~V^GeJm&QyyfG2XyTemZ$owy606}R6~es^vKlppzE)1{N)33Ui(E8LV1-C-)+1Eha`h)h0hJT&rW+jqV@ z%RQTqEq>a3I^}F``8FUzo1^@qIkk_ii0u_$?r78hoxh~P*1_fbud7|I?GvuCyQnF~ zYam$pr?CHLl8izbv0<0T#c@)=S0%eK72wc8a5D0&bID5YAm zWR41l>1r8Xzt3IFO?SnnbnHl{e27~xk9GXI?}{?CSkUC$&_xS`dNZrk3S|P|I`&3hv{o-6jF~AxftAW z`P{<~M$CuzR%y;ZM!@G|;!pouflW=!}Lgb{;ELQ03PNP9wopRUm-eWE`Qupj^)DvzwBgaQD>~Y z#*pfvR0?&!#xuOZ((%Q@xiF;2Do3U6?HqtPr{p3Nyf_~p`d zZ7#s7GF>SXqz7KDGp|g>R!?p+xKk0G6g=3Lr&DACzLB5p6duE||*o9j9k z72k3oLRcHxg?GBnwdSvF)^C%agm%L(OfE}XVqnP=Fp^XuM7WvXfCHS-K@m}Gw{@v${JWo$=%I@{XjEzl$DmXVBKA30n;fd2xsq= z-5}#lVGxlcmr*4kD}N@tFlA0Da9j0zs#gA5{9^5ShTG4%6mIL^U2t23vKkLI<+)cZ z57GuG`}H+~s{Ux{=aLADusr0FDgd;^9c&DfvR&zq&o6fmnO*iq%Ep<_%jy!W(A{_? zt>h%x+mxzCC$oK&I|@v*%T-xraU#;=9igh%^p# zYcXbVk_aT%j4B=)2~CjWtoT_xptV=mAQ3OnZ+n0Yp?A&{ntPL)V&;fhiI?u`? z9G(y^yT#K*ElY|IGjR$b9rGdTDn!gn}u@0rZ>aUQSRBR`lu{eosV1c5HG1#|g5Gy;CjLW><1!D4~6&1UM9B zHLhOxuhMIVH4LIb7kD%9dZvt4rCD`(yx#IG6zVFJIrj6hVXGbFmIS{xB}1lz^4Ntmbj1@v_=F3j@`w8Gwz1Uqzq+FJd*D z7TVL;Ih&IjNxNGFWGi3~F1WyaM35&kD~E?8o0Y@^t4ee#nUqg{N~-B%C~&1TQ0lVb zTDl(0z9>NBQS72l6E^1Fdb`dV-MiceUicKsp(jF0%S2g+8ywpGw22l zFG}dHY_{Xh_xH4%HUN3m>V%ERTI;|9y7+xb$aDC;cZ^S1I`sJ-o=Cvd!^jLX8?!y2 z>#`+4%35bV1wUdHO#8Td7aQ#5OE|=@ROdIb_lwARJ}m6jN;MZCF2uX+w=@mdgo@%)oN$5*CHBSI3T6}?}&oMVMRM5AYKXp1`qjyOcYsmjfZP1ipnl5bl61}S#R z-zYa>`PL(Df5T#5`u9J;4^a=A7+FkLhC!;c4I%dS{F@+4wp4%9MXE)IA7_bF>_n77E6NglJA2NT{y)%a}Xgmyv?kq5(%k7>RWK!ABgLEPIH`6TiDA zXL|FL2B7?>_OP;_^qo@)NwWW`zLw_g$~ra-{#@8NbAS15U9ie$ZwPBaut-yV^Dk~J zNH6_-n3EvD>EVO>xbJ~*e9Oxy^M4u>ZK(@qUl{(TQxm`TniguJ7PA1ySYfa{diN z>kt|3(PN!(%Bbx!VCz!6>1hn1C9cn3v1{b>#p`0SDO7-1>|~CU;K{=?dJR}@emL-g zp(ntMlffzjed9RrPpBAD3&dj-;yBaOT+mcE)hztWpnL5&RUHSLbWO?Hdw~NAV3gML zIX>?`K7Jh8LXmp4ETHf+Vw?MJ<`45apA{JJHo()%0?3m7mCPukobQ}Wpa+@3B0ekC zMRO_lO&b@>ThVVDC-=PX6@N>F&k`%Q22{?Ux`FIl3$S3sk4p0oU!K6Aeqo`@%AqeL zGSQbx&SP|QPp!j-ejk5i5 z1GXN|sqmUHDfA77?y>IUO$Fnk->||#qlbx(*t@*62 zLTguVZbV?v{adFK`S4F4o?t<~kdirrG^5Q8bdEdPbn}`1J+Dm%aE&L2#1v`zSe6oR zMU*=6Z!-&t^*LcwABmX zv%l7z3t-JNv292XLN7k4;fFuSD0sHpf8Xva9F)bVTjvpRHor;i$ZG8n`U}m`4EYV* zxgKZr>F3GsuFfg{t*>9}eTw7l9oXvacB7OOx>7Q-W8@wk+*9Cf6PD1^gX-PP@UWE-I2^(wIxz@hJsCc=<_(I(LA#yePcuw*G z0ovuam_t0HVzKDkzv?IT3fOb#!Ush3!rnYT&_WnS&CS2NwC;{17yRnviSs6oCdMb zGoj2)8N57WfpnZM4P*cm?Dn<2$J+qo4+IAJ7^j3hoMj8VBjW+YMyAV4juyoxA!EZH zVi*G&E07wJSnUCV>`F8oQ2b{j|Gg=XffD@id}eE&Q-fnLTBTfgQLUhfnsS( zh(WL1Mk~;ziFJ4}z)dFNtAt`%xO(ymYo;OBxU1#_RUrRofC#baqmLB=?k!1PgN3jF zJh^mdvI3xGMftSJkjzjTGY}+hah;xZF1U)9ASg7KlO;ooyPaNrg3O5j6M2SwwKP{M zAG#z`cBBwIquH;ZSu!J-qc%nITL-avjC4*lCiOnt0?9uG5W`1-He-XIvJkE)5JOa4 zS%z#7+CdWYvnS3T$iXdVm^kqc-B?MGm!%RJYI^KC`M9VoG-=n$VU8A8udDh5g%N#c zR}QI5{-MoCp&JML9G_Khc3wu|Fc?FfZxDkinj>~WVS-}t1h-wmNHEEg zLxPN1)$0R*X`F55ShJZZZwkIs7Ioc<%U7H`Iu33S`_be#X_)|2QU+P=G9)pUyfc2P zQ=~x@*&~~AWOisGI5j$+cpOKGOIOwdVcy1wT3twBsnmYewsVe~44#<5CF-K2h1nk7 zsup!Ycne*D2XS6xj0(@9Z7&8FBjM&;1LEW;An_A_KFwKyXrN!Pq2 znq(zjNm7TuNT?|g9Xm!0mZcIOZ*E%V&FrN(^>DTCWvG&*cm0`1W+5stU(~AR{B*iJ z`xXE}V~SbeVlV_p#piN=gH5L^&(JEsJ7m9nyBs?eC&%d)A%z*YqB^E8#<(m zwBl?|4RF^rDF-53OEQ@@<{IQ{X~@cs!WX`mSs$JY`rQjE1>vRvv%sN(vN17*3FgE7 z2>wS1KSKNw(vOgTgz_WQAEEsS{YMzBg87*6?7%Du$YcO^_W#Chc2${-U1UPrx<}XJ zL2*RgXfSpgEJBwIVpEI&H#J0QZLvt?a5P(b^{ORgZDyj9{ut{%&UGd{36@svQz4N` zK#N?0VaM04-rXud_39LlDiLK@5^-qWE=)`aB$bYcN2%GkPLI48eM5b#7k8ia0{}j_ zYa}a*VU%cy!;`DaQKa>#%;-lhnM6bhO8^bPKl@Y)fYNoTQ{H!M#g@b6JFQzBZ~Q@ZCm>dE|f37-hsc2 zl*Y#N`l3pFx`HO18+Mp-^R|tDK^ek=Y*_y=H2ymyw|pA>e9GEWw2!qujwC{2_wfuJ zG!OkX(KO2{V0<%bu07>qGcYuz&WqF)@;!ZVe=(Z1hG_pl2Q7yu(UjGRokko5FcS%G zSZT_76bzaiX82s3!DK-Z_6$?N_L0o`Bkhc$$9brGl0RX?|Ghe0*A!kgM;0En72-CK zXK&VvKT!Dtam5}s>iaE;?^L6!FmnVu6AjJq>@Bn(K))j0}$GTni$zP~~KMpV_eqVa(c~ z*au*He{g$Hehkf`q7g%*$UhayP#oSoeIM1$%BREcfCD?w*AG6`)DDpbkR>(P9T(eX z9+S`P&f^lz!epu2>1v`Ni$gyIsi`J7elCFQk|PySMfqx%@NTHC!H7vIUN>;2T;j)i znQO?!1g1+upii%~mKQLlsGH84i0S-chwrYt;L%|>J@ig~&~^KT8BzUHv^&`qXu-2{ zqvQ{l$Rip)>blzyz^v0K}iS9Tf4Heu^1j4b&p z9`Bsv6xG$2NRRIWcbQwYq3#8s>XH+CcB;B>NLD88t1$5Z@XdLX=pd+828kjY*>*hm zkfJ;hL|U}+lA>jthVcQ>n%7t`wd-}Y-ct^SlWg9FMnt!ng(B#+q1~%bI_RSG?T;`< z1-C!qb3)i%nsKI~JKhAN7l*h6C6!(_0`-QJvlwEk9`FwVz6ALdbPv|(?|2nKFAY{m zr7SEo=KebwpzH9L9i27luz}&o#9F6Xx6A1Fi;G`G9PwY~R?L9Gqy+|WA?gsma@#7H z57%3+u$Z<15A2KxQc3(cGq@Db6}I+KSKN#!(3gMZT5Jn&+Jsi2$On?ir#}VFS+tRG zn&o<|zo8%{$lYrVe2q;eg-xt0ZA?(JMQ(1O^6V1O05JuVAt~n za!_S_9I?0ExR7LmpYw%Xfhyv+=18VQ*1=5eK9|RDj1$r3#{&LFIUV1oNlA<_X0l!+ zCb2Q}62*DgCPv9@_KuA<`|iso25QGy8Qg`YHJ;SLVv5CLAGpF^_4%PdIWIv-Mn_(F zvgPeJK&%umP5ZQiF8dSbNNHA?R3JMU{`n?jOF=StE?|8kjS1-ybRUY{M5u+ZORC8y zvU8eaW7vZdBI7xar#M0>R4_Jp2C6|o_nfPM2x!(fcfhZGs@r2r`)n_p?&?mK>cR%* zgrR~mpoV6Y%EITone-Mk6WCvwh`8-Od+aS{+;iK>C|N{Ogkn{ zFc)JJ5=lXF6M?UGi6=Js`v?OREPjT5(G)@nbmq5^DZI4|a9(PAzHp|~!97ugl+ub# z1+N^AsIQM0lB~yGJn9}Xq__ESPEF&T#aH0=)$d%9Hj{pOV-RPwXvw%#6C^j?&|miM z0JZia_B_Gq1cVWf2f9EdE{JOYtUDf>|iBn%gMH&2db zHoGpyF<76HR@*;Qk|Nkd4;RKH960a40fIb)?Z*j+)KuLMTGlUoApC;S3J7C3hzIpj zI0yW;2np-ts6r=P;hk(svF~CuvM&4gUB`*UpL?7(fh%_^%3OFDxac3hk? z>-guem4pFOkVh0~VY0Hv2YcWn%6z|Pg*_n|r&v9ZJX_XIqV2@nd@Puh{oxmY5m*oY zY-CH&6P<6x52xqRai!8*vB+K`1E>we3&NMVc9S};mJ}#XKM|&Z`j?EfQ7d*arGKpT z_r?vm7T8K<7hsCBL5Ef&M9b~yveJ5el}3aOUVCie$KI zG-iU#D;j%(Usz$PC8K!tZPEinWPgQ2q-B84#h@_qKn@yUG6aO~JNJ?4`emtZbXg4^ z3!5}SSh}DhQL9_?1bnz60mZUd3J#JE1mI@HEdtGiH(kH@G4lpfvR|OSrK}$(ZgC-85Ua@G^UWB>g)W8nqK=s3284wTry@nH7+P_#4h zYV6YhX9$VCGRwt)m~a;e8-r@& zA9n?pp?Wdk_S|Mw8UAG-xVRg zS$W*@>_L;1BS#pw+?k7UM81q!I)rZ?^~?h~pnI3JZ6J;_w^opI!$xhfAS)K6VT3mY z2NB9#ATaKF4D9IP4+Kx`pNCKl>nqljn>@%cnN4=7G=-(Rvn@Gy+F&EDzt@eW4L>y! zwV)FLHIcn%Ku1-3(J|vC0*V4n+1KlRT6Yc0GcZ5pxNGM}+&hfVLuoXFNuP7&pBuvd z$d<<*@CnYt%Bj!QCb!lLE03vUsv0^r{7zcE;(r%k0bc>dnIR4+GIX+i1+o+FrqwFO$m?e<54gH>O@_8xMfQr+xC9bjQ^u10AaZ%mg> zJd#?S(qb%z-NlUW`8Hm3eBym@%E9cf7Y}tacTFi`i>QK8c|O~~rcZ51+gqn+d<6w2 zY=#eq09}A7)FS~1Yjj!?hu<)D;m(dlWu7v6X#H9_6y^>Xj}S5$bO`HqkP^ z>7lz&pg1f}JhzI4daYup9FJ{@zH34bAN?JqkfV0x z#5kf$zNLe}tyf2T=;#9$MAI5idPL2?XgPkb@8q?)d|WbqgTj0WZT%041vB%175+Kd z|KGa5@BhtI1L)=WZb{|4F8a^{gr-PwFv7(wHkXvonqwE|ZysL~7N|j~B5SX^j|FBT zK%e~mHwD3x(UL{>r305&Ah+LJLA@Q+f+kI&Y3M?B^YuUn9A=X2%pBdiFhWjr&Qc;# zaI6%U*dS-$;p@G6_)h@sy|-!qGy!Jie@d^$w zXT~h8ikz%Wy>A}6b9ryhx(0Dg|-mOw=$(T=eHo?3#y3|moONQN`^i2!)LoN zzmwc}1BcjcMC<2pvInanNpRdnaRh7%G!wm`z{$3IjVg0PPv|C-9?dOFR1BDH-i_+t zJlg=x7HgaAxIy&zo2w%g>F!hDr< zZ-18nU#!$zU6O6@mSq?Hq=17!v|ES5s~oxv-VmxV$V)k3LY1ghYS%4sF2C0uyvxff z{W^zd$N&EuU}5J@o7ux82WCnt;KK#5Gc*0SEb~%V#~F9r)$h43y$tQPFSkcucU$gK zdbF*(+J>zyltwbdx>BS*1)&2bLPLf86yVU3l1Njy2Rybr9#2zJ zROh0a(ul%DI&y;(Bo-qMvUEa&j)v<&Yt4loi+`LI?$%T)fJru9BAyVD7ErK+up`k>-KAE5n zb8N2ACD7WK&_cWrLOw>neN2IUtx;?j)pe=vnzAo}5fvL8o4}pIcdqO@U=`QczNeoX zlbBg(n<)E$dzGRHS|KKlvxFQJuBi?L%^azu@enZX2V6+9RRgc`ha1?Uqf?kySCNDa z`oGQ7M4SFX$A@gGhzy7q9{uT0bU{bW*e7C#x#yTsmxAoN(oLy880?YG9W%D0c5s2R zkdCw$E;JFx*-cp*f`X#8BoY}>0ipkbJea$KvDnul2W>}0OOZ{_3=pMdTg#%l$754` zqlZQV0%&o=SrYBRD8n=pAEZ|mkO4JHC(Hs9{6kd)!dC$fkxTXXvZp#-5AY5hKs4Rw zm-7X(hJTO}7Gh=~64rpb23GlD4EmePUV-z)!`z4brIAI_1SSLz_~`}^+GF1aRi_~T z12jwn1L{W&MP4kg{5fU@>#4C4h>PJ=TMhc84!DEQ`x}M5rWuS=17_KrU+;vX3;ENb z@-zHWc${8TnR^`+NFqwLHNP(KpApy?!q|xiV!9APKF$j`_c2ti18IHzKVUFzCEmZ% z!1M-*rW=U@24oLW_fI(Wbmm9Yi5MMaUBgp&=6h=gM9>qwSP;_ncLZ!Mnf73FJC;4j z!T_BUEe_$n?FP<*)kF;@ry;fm@HICitNM?XyJOTeO{;ejY5j)vMUW?C6qf|kywT3<`A7SiB z&VglOHnTiCGDm92(3Fe1BLCG*kLckDO#kL?^r0gTbLUK%W_L{YUiT#JCYvRS5zeQ6KSPI5jHo?$*VtyX@#Ak=*- ze{;RNstXD#dEH#LK317E`_!l*p#h-D!RaeGq)Zw{F3ShA?0Y}u5D(V&-1xA(g<(WV z*>WNlK@ziyp?GQ~yg9O_j(T+wCE#tss`Zuyr%GiuzXO=X+JU3=aU5t$gsrDBMqbbJ zX19%~dK|^vuP0D79$xG|r)KZhPSVU?JHB3D5g+TOM@>KXtvu%WXw$AI4*|mv1)i+B zf0|D3_Zqo9zjWwZAiCM`fV+gOB0sOA4;bjW9a?zvPqlvN>kKY zv!_N}XmBeLXXk)us-0ZL_n$*)*yRsbmAzQgbK0-F$@ z)M_#tuoza%)0(7e3NFiLZrLEPaTTTxo3g`ZKrN+K_rVL!h8aDpw5W2 z{lJ!gzX4nmP4ccCUt&7cBxvC^Ha=5*%tOOzMUQWddwA`wF7GzcN ztxx~1F$D#M1VL%}dH zC53|_R`iUR+oJ8~KN~^VTo>W!^M5yI^&Wqqv-0m@Cy!F4+kpM0Zh2hOw}qOH?N4Z?cJnkh2tcK)7Y;W{0DRK~EL8y#t-|Ba5Ykb6 zWKO*Mn(z^Sqag^tnh6DGf~*}4!eiwK@mvBe<6$%N$6FmLigeN+(m^?isOm8wf=6wQRYGe zrySEnKusYh+=+_vjg^8o{_Po2;cU)nr%%>(;#MS1G}L=nJV5`-024&MyUPe?V8jlH z+XJ3r-*;jlv4dDDrd>^Y!>>2i+x3Wl%rXIIaj1O}1~7UN$h(5zg}pisYe|p+-5`j= zjy@`rfoNCuKwK~YW0CQc4t(74w4*RE`ibCoeZd^O#&f8shxc))ygh3$zPLNJ>*_K3 z>8xU2-Z{Bah&NTeeXdLF%Qg%I4UnZhhOj* zZYItCP=qyWM=q;#NmV668&K=OTpcr`-bk*U`gmo+{u1@e>{t&UQ;E;&`93Rm@pR|T zVl79meH22_?-<_g=uU0iUJEiD^Dh5E9%uK-dJbR~;8$=kKytFf-cKqlg>#T(4pZE8 z5n`iDpz}tgEIa_cb7a%k1*tpV+c2cug$^(OnfB#`I@=PM9vn9Q%!Iu15HsbmVzw_t z-!_4L)*2P!!PsAOHC%tBfDOa``#K%|kC}-NdiPmx1&!$5-8I|T5v2V!{ z^A|~~5eukr)M)}0M9jJJ6iJbbgGp)z*#$z;-Iy&5xSaqFu03&!A!&D&;SEBQzxU>4 z0HALJQgp(i&gSzhuFS#dR@IHK&`eSi@j^vjCq20 zyxKObNPHS6jiX$5)Vl*4wtQOJjTmMgi<`C;HAaz}Q>3obtpAxm7D+}8_%d=sl!`*| z@`#(20&rPTh|O?U<5`KH&^Jisf($e+0*BNTEP3`pUKo~=GM1qf&V=z>(c z+LZUp<*^49m`9U(+A36*6EyEYvmGc1Ip;bj>OSuBJ$m-W2H1)DX0aiu59{Bu=QCDD z)FB7%rOLLdm=F%(0vQiCwCba0%Indw7r0m6bKKFT^8cwkbUCIxTgY#1UT*wW`OXZ85?a^Fwo5)~|o zPGgv9r+>9wsGA|Jb5CQBprRY=XJPECGfUTM%)k1cTsC#5F^Dz^mN~}T8pNsWICgls zzl{EUC3a^md5iN_wQq%VLo}3lq5z^fAU4v6WW&`o0@0~CfExsuX#_-NM@Snw>`GPU zqct8U-%3k3~#BCH^x%LAI@nQBpWXzNuQRl zgz1Y#j=hcBCmk~Nq4Y|h-y*rzBEL$yu_Agkkoiz3Y= z(!nn@3@OjAc)RDZXHdFZ{2l}q)aw;<^Jcbf4}f*_=l;Pk>>y);MFGPFgqU3*3Xl(N zAp9Wke9zxrirND7nI0cq+5kX^CO6@(JRZcnBKquygEye0U~6v#%{Oe0k@)=?F}VaYN=U&9vqd{ZxB6YOk7R>ok^4n@fCdt zmbeNgZt8K|&m58LlL9al?EhGCdbxgg@9E90GYwe>+Y>Ri`e+92!h^I~c>l>R+EZ>` zbZbC6zJJpX6PzBIE`Bxh@Y{}M$V&TW>CkIFIOLSH36d>sVw{vD9{~00AJ}NYYqjpP&ZBQJD6sivcxUbECSZ_ABQ(2r=L{bmB$Rh9(FGhb#j(%PxwD^2DQ%#@ zyAd=nAr|~&w+hoeHcTsBofmCtD@_vyE433f2xadWu|<82sTB|*`Np35qtzAW)rbKb zAYY4pA_%eZ(wnupIX|W){Z^_T7?Sl|m-J#Zn)t~`(%nrTk{D_yJ2Y5U5XMYWJa%V3AjD3!Q}1>$x_Hk`)#(SAKo)hziPtmCk9~mtOxf(p-0sZd%9`GeF()j=E>pNXtlZi@W zAGZ?lX!hZglEkb6!hhKN);{^R^Wd<2I;Xn(69OV5vdwU~w&GV6;Y*pYs{GH08TxUr zffqtew*@dhDdiip3LQ|8#usO<*)*_d8hPlzS4&;}=jZmC?R>f<`mUT7wb>nUZC{A` zC;NblMhlOEj(`+%hr4%4D2~(Oo4 zZ^D$)4wdcjc-dP%I;ZV;&H279w6xXJgi63PAE1+@iFfs8Kk|@Ff!`LRP4v(p94Vh` zkhEMkanzm*u%(gFbj^ULqdupKkU%WxB*X|!EneyG(!+Rrnao+wM^V<1IxjmxA;}C9 z0;xRWyZrQ$+VIQ}4~TA@IFGtNe;vjqAYe$F_R$u!-)=2BT8`VPBYaWuUS`0oQ~0+l z3drcs@>!w&Zl=lm&7%aGYc)f^?NTz{*~9keA6DqRn4h6QxeZcFmtThO@^OSob;oPh z*EH6C3duK+lV#YaGSZF>$(NXuW!ZNi;oe6G^5qHn<Yd!+@*8b61DV)cJQEiwf3C5|D|_|HXxO&jc& zg@chQq=2LaEHu012@Ev*$q@`Rv$MtsCs7RT0caq7hZAfUu%X;$z^Fao97Y-<*f}Kh ze}{W#Q=g#MR~7-G8;=$I8`ND+{Fn4@{e$4Ow1W&vh^FTd3W)oAYcM9kUU49j{R7}T z^Oq1;4h;1a(v??U_(Lzu)#=yWAvZRJUR!Q3ufU2h5m8u@(7<|djkSB-(SVX#WWq{|U9Dko*TYz=}4$;kOt*<+>8&H%WvPV|D)74RdpW zq5l;e`31~yCSUrOzGm9TppY>58{+54&JO@ZmHJ(!=RG9s>AS$Dw#RQ8TTh!$3=G+C4dTH87l;dPM92So^)-@ZSjXb^CPvgL?TH-G{}0jh0w9___Ip5LPi;IrcAhieS@y&*7W? z?7AS&2=m={@7ILIbb=q*#ZkC})6d^z@1A*gP>(sT0~MqlC3lBR_w=-WoS%S7%}d;Y zq?ff+Ilv~WADI$U!MR_}Kc&M3^2m=sKQMQ`pw?4H!)f?KjSsicQo&$G)hnHe7Kv}& z9fx$E)?)j(58#C#vdL-C;f1DvbJ|%u>0jnWSqa(EW7*YXRo*-v9ul8<_jEwmA+6~@ z$O?@=vIs?h$;NA1jWu5ZSpgxcxaY8U!LqLNz!EtCoIVwwDfBngr$^u!)aN8~B!%*gFuRoTJIpSXd$s*oX=GMhxJ@c|9ib9 zA{I54wiqNB*+#-DLudZKzQDdn+)28zNNx(Tv`R!Q9soN9xt4OwVj6iy^>7Jm(Ll^= zi1nrV@k^E-Tl+MisNzvX$5jcnQ}Cm6c#1336a-V#qdO#e|~I`*h+Z{`3eyV zQM2}qidqFWfKubiV67T3rH$zq<}B@sOQw z5$>{n33gYPHhcjYS1RiJG9df+3ofTGF{$jwQB&(Od(WJNLvZDxfROPHK#e&}Ot(Wd zCm`S0p&c`_D^qD6tX0c`qLH?#&BKPiQL8EXTDv}h_<}s}%324ZIT zX^R{ZYZ||^WYWz@g%SY-{zZg}%f$;3H>pW+wq|s#?S!t#aK%^M7wefRle%qjYkr}n z^>%lj-~)DBBG6i+t;&JC*65=E+q+;n3P9jt8V{tPc^wGeoW|GvDN)9mEXdI|m#YL= zvluf5#Vv~_+iroqO^qxO#%NdrpP0tC4qJg0B_FXora6wkS1X||Zks?-EvmM2 zM$ovP3|L$DoU2N&3ZCkPi_DsMcc^6>%cM?b!6P7IsD>c7J+0eu~+ymx=KzGyiH6 z8_J^^Pwr&&*LFwAs}S50_$mTWJgdVn(Fvu{<}ZV0@kK$h0mA14;^3pCFuU(OMso3{ zy8fJ)qDcM?NFz95TaA@kuajrV0I-$+E8*ra=P*k==rlwD+p@Y|Y}qTS9VrB4<4%al z3$60S6PNtPg5rN@k8zJ6G#}8K`Jg-62xe}Av^xDN&C2z5g}{~QI4#Q}dgLO>$3SeB z9I&A>B<8ws7eQTaK9)kt;6Z_qwsa-{o*cd~8XpRND7lpZR}9!e)X(j`1N?@_=#vtd zlvh&rM`w6A@Q167R9TyJF^L&gZj5Zt;W8rtf{Y>bWca)wK(yX6t-WA853+v~I)K4y zuZ#%kAG`<^2q~R3V=S-jlYM&Ms^R$yqf59alqAV^zhDXZd%pTf2&zuS}2uQ31&B5CYC;sK)vlxlHNzB*wxM^v|eW|}qRC*OM6&i<| zoGqPurKs??R^70rE+6Oa(y`Op+Pb94bpxSA`|qjSYWrwKhjt4grdqLr$zy~<=?A0bcn+$0~-ZxJQBY=LT8YZaiGas0x+-; zz0fG=H~ZR~oJy88HjiV!4-Y3t44R%I9he45t$RR(Wr>1f$!hfp$Y@QQ)MaFCZFlZc z(<>VND(fM9CO}rI`WOs%gUAb)P%d&2SZ!U%5Roe>ZEA8!8$ic02hdq@912ets3udg zr`;7EDQzbsvgc_F`AX3jV<^?~B!@4Q^c0?nnH8eskn?1@R1Sq20UWzL%3jJ}GVIFj zazzzT=(*(&oZYPfSsL6fZMm(Am5-HX+%QGJYJEpcwDpuP8pV9DvqQ|@fq*~P$#ei z1mB)bn+4U?b7yQ;>vKQWb}=2wz$C}t;||)LjZj6tnC;I*DkU_#|a8?S0hw$Iw{&1E&4gQ z!6(qvOb#l_K;@|lG=$GlW`&T3Z6v0X-yN4UxQi|~J>hQGW2=+yM>OMI!D*bw9+46#&vlDREYVrDl5N|^%s$-PZ>$egq|bcf|Or1I)Ddz z0IY=*e-}_i{Nx$XB+@9FH5>Svtux=A=9B0Bne+qD7B}Ebz`Ky66QSGu(wU15by}N~ zc45H$7gc5)$jk^wqw*kp$|Fcq&pth!gi?k+`J|4D*lZK>zs`+wCXUW z8glEvnL4w*xpGJhn<`z=UA_G8?Ex? z2#E552L1K-4h6L~lFr1EXOyEcf@sfN%}~vg)z>#n@B~*Th|&sA-u=jP#33Il*@LB{ zt{m_ncZ*9hf_g#)>k!N6qRhc`_!Upo4 zP_vJ*2N^7IeI10m6}hXdpVn#n&yPmVtU$O1I-7{L>Qh1l#{>4E9^*5!-Gp=E52yE6 z^jNSkrlU8496#VQi6N(+q^f0khtPIego*Jn;?cK-zj!)Y`@>N7MuhWF0J}a1D9clm z@3TL!w)I7qh@%zecxOC*9SB zG_8SVGnN5$i%Y{A*E_vlhlb~euhO0vcKZTZ-9uZ;_Y*&bvDxkF4ni)GZCc0dj(V6G zb!>eLiJx~J{4bQz#R)8!(f3L=wKLyejW)=vy<}R{kB&ew%vFEfz9{nm)4p-x8QNoE zslts4E964kkz`7uRTd8m0hr>5tJAO@ugSkJJyih6v20d$*l@F-TlQus880rtm?<&! z?Bi|3IL#j)OB=+zGi?(eiv{2#DU<7u|Bov!{ZCwI1rt^ekisw-DxWKtSv@v$fPDxv zTly#BRa6c*ZdVPj692z);sW)Dz;wqLRq6x5$|a|<00j0cf6@3wFojc)+)e8i=guuj z`IEn*+a$nUWuevH{6k@EY`}TWtvZ;SK~C%pVYW>1uR^Q1g~2#Cih}@|e)Fz!v8i6Z zNnrwnJ0R>oh93v1Wc05Ry*c8;Its&>lz95yY&>C?>+28)LZz%X{)S(;>hlm(GpDy_*FZ; z6E8-)NO2DPun8gERDv@(;voS)ZSA|5LBRD}et1E1p#6 zeAKZQMlx(S$y8^6*mFS*kQ$;?RH)oC*@UF+r5MDH2B6CZBrp*K{!8`5%TO~_;rhd5xkuB)ISvAkE zs%LM=Vn=0l;zI*4^ef`HTzSf3G%~&xAfI?r6uR5MbtF6dzigX)x>jUUZ6RTo_kR`C2)p{%qBX)0E+ z2UkE?4*eY=(Dkwrzjc7%d1UwZ&zZ$SZ1}+mijMF7it{Ug)P=m5jqciet!v-&HJ0og z9aSQWHeSCLkntTtp0;0gKrm`jh9QPt%?L-#?s?RefpG`KCa_UySX5K(y#4Ix4n<`$ z3jo0v4mr?TA(P+NHf~!F=_rn4XNgJo-^V0}d;6Q%!3W-Rt0iIJhU$w>Xjo& zmTv~{!L@9M+9;tT3Wg%zNr$$U7=+EB=O>A6o|4! zgq8$b;(j7*jM?xQ+v})O~o};qb@P+Lqu0$Y}tSTjLxu7 z+xk8(GzH~rMP)eX^tz2pFT74$z3UR6^f9=8?~U%xF4Qj(${Bpdt_hHn?ng~kPF}!J zpql{jw4(|GS3~P`a&!Ivipe1SR*ZMz@H`%t?Jw&n-iCq~kb~DTirL7*(+)nJkJbm( zcQiPGSi)*|>1Sc%b(|5wsD;*`uymbVeb_sRqP-@0+DdX~k~Fjrl&k*W`!}gL_Elb| z6>d^I_=GQ@q8$78%uJ9^2rIEpe4E7e(lrKf0@q+Bf}Q5$E}ZYa31VV(x%^UE@~~VN zd4BScdWX*4!m@n2yG0-pyOs!39S5J6AcRA0S9rIXRRSp2Ev8uQ{YOwT3q`}rCM9uS z3wDF>f-AoM&w1P$vArU51923O;ALwpEz(G}yK|p{HxD?3AyP&k6Q_rQ!%BwC$eb78 z2O3J`?bM@94Br+lUrh~XDo9lg@$ST=9wnU#q!#HZ6TUll`cP`x3S#Gdp(U(}7Dp)k zGN}g-3ObCh>iMFp*C7dGPbQI3D*05!X8AqIf6}=#n zpo9g7S???)V&Ma#C)J1;+uD0&u6|hlsQ1uE8|UfD`DK^=xuXt%gy93HPg2O|q!;Ey zvzYzk%j-_Ksfni{&7}2RFB4EJnnv-@RwfO-u+TOPx%1nHM%iFgDf@FDO0XTwMPcqE z4T20y2&8E~O_B^N2yn-3;U^mJZqhUvtN1S%1F~ALpM%HJH~eU-+t?Nnuvx1s&-NWh ze~+mTWrK+l{xJ-DFfY>jkKSewQUGudlqaqDC{NEb4+2sjXvhv3B;Gyh>+n5Wk3bM^ zDwq{SfYtR5E&K0j4R6I=Mb6!|l4#Ij=cuaXG3H(>>I6NmOnub96Gv|;d>vdU!du3_ zpKk6mJN*#*pfkGrY|eHQL~3gMMh3YR>Am9~9**LKaPMMYsIRw!=tL(EuS2VNod;g_4atg8}Ta71p$pF%02EFV>ohMD!=F0 z6ig!Z^d2MhwQ*LrSwIeHAm2SE#y;4JGV=LJz76!d5(AyH?;;I}0*jnz{$mih6N88Y z22so-AB3Kdz{})v{A8f!5ZXMkaz6nvO^pIefznLAcGB0Azr*d{*blC~E}Kv|e<4u2 zFJJ5pUkXLfG>(x4L63GTCvB1fOP%^MR)eBi(=>OV(xo*?>GwHp3KE@j!LgCrz=Xk+ z4LXj|L<&;84OJdunlvSr0KoT#M~YYOhzZ>%R4q}@=t4h&CQt1S)HtT3gs_^_+4NVY z{Togymb*KQht1X{yf_Olj!$zX`T;5bY7v)72XKg;PD;}+YFb%pX?oFWRkc8A=b3N1 z;ET;ec^BNws_|hN{V9Nz6K>oa*P}w|9#B_m_F!*?(5<7HWq~8GpC&1^!J8Q7U8PUD zep_99>iPLh6w};>WqusoTlu5TTk@f4yuKO6t2r)~>eckr1j>_%^_+%4zgytVyKi4F zaP~=N>Hn1Qv;D`1FO0-cF zvIrl=l;M1Xq(<#=a&v+T506_e7S(d8YU2homvC|h-{d3a)K4}h$3i@|2dpV+T#9;E zw1WvVWJZt&l7fvASrWfE|9G)MyY!BmMCZ*;u(`cL;9v@%s2cAr6 z42N6ek;uqnQ7(~xmqw>mp}0tX<$mLx;HX%<8P&|_<`Kp~Zjr$zq*sxc3@rLHArjaH z5@aF}08D(BPagXX`#She0dQTgGvyQKTuZy53B_vH43=SY}(yekNqvPx^K#xFJIP z0!tWu!AlKZA@vn5T4t@2EmE{DCcHwx)v>r)PrLkhjT6lDQ@wtvp5ze0ia^K|l&tk@ zR^*Crovz|S;gjRuLvw2RCGqgFKV=Ov3Fi)>B$uXLb({b1Jt+rlUygoFKTkDB3%!+7_kXc<4pEv#UAE1zZQFKa*mh*t zw#_eW+h&Gs+qP}nmH&Iys2Zbsr+qu;p1tQ>>*C_-0(2kJp6&@>wXN29p#Z zXZ1zNnn@oT(eH@(Bk(ZKK|C%)a+VfmxSUy6AQOwWI^lsA?`Sm17cKH;`iNO-gFY{% z>nJsz-AoXx@NkK|!|&%z_WH8kSi5|m-=i(p?oCNng}e-Q!DU*Al6{9eyXw?e(X2hA#OTD65UeV>cJdzExn z?KL31l_NyfN%?;5XbbBFT$d2=_*qo;*cwII1>a9t-~DR1gsADzS~cpZ*ijj2NXV?vfmTFA=y-TKfvvnU^W$e_PyQk$Bg|jHSwX#KEZG5w%1s%R zpSxx09srsQy0CA!SB)e?DJUV=u`^;=U(Q^KbX>5mH48qgj@Rh-kY}`j>x%CYVj9Lv zZB7ymF z!Woi(GG|FtEBS=wW3;&uXX?@?C=)jw-mXy_8Ora|d1%1i3hkDIg{Q!*dcnk_J@!={ z{7bg^SYw0U2{2X%%TL{>#T0-p_j(+6(Au=waZ077!(>1P4ow4`xB5=Y8J<1>|2($V z6sOwIVNx*0v4zb!3lvHv<_DW*Djpyi)virU@(9Q^GjRTHcEe0n zo)l^fyhy}lIuIPDm2!J)NjFJ}#=gN0etq=aovP>u2fGs8=m!_a?-+Iewx>PLY}jUCHSBmibsE3G z!zS^;8d~b|96qG;r3!R4RRoHy;mu`2D8bazByvS1IxhQb}g z$HFtnDLkPd1Kau+!go|AfDQK{m+In72oj0jc@YKnC^@LG&Dy{hZ$>HBy*V!!Yc57W zF-kB6HS4tnbcVReIj4SSQ0D9ydF%f4sz4=uv~?!yt+kv1*TL?W`oVz73Iw0Z$cRY> z2q2hV%SokOUKk3DH(&5aX3H3>F42pg2+S^IHw!>7(#YdVQ_r~=!Jpu7>wzzo^M%)( z`0z#3DqVEA$1WKga)Q<7}Ml|8KhnVB=u@UxG)rI+QocQFHFB zD>H2XJ8Y4#7y*<(K-4R0e$Z!#svnA9$vwKJBqRWfj^qd5*`+q$&Ht8v6WBwmz9 zux1h=FiUOZVESU>k=fgy;($J}4yXU1L@tBJ<9&juZtQL^-yob%nL<8?-GR7^@1%ik z&8&|!w^*<*p6NVj)IK-w)P_%*f)0>-_@Eh;;fs0A!cM+!cJW-BheyQ6M8x;K0ph(} zse9P6euCD6W~Ew<&rzOQg|MxV34TABSkE*W#FzNdHQIT&N29fDMs~1bhKDjJ3U8Q( zsliVkv6nWI=08bz3^kmn$QX!~gVhgfk`#r(66KL_XCTH%lCC(pFllZI%L0h;2ubgi zF(zkHPP3T&_YP;t)adP;q%}roicD9-)H8)@Nb*S5nC={|)K_J$z~nb&JD907SZ2OR z`$Zn-k*zT^c{T9wbD9=J#p9)Z&6{cDzVfNq3U3*1eYA6UzPc|qbYCL9iM&DCBDxja zM0JmR*qpjm{?vXeela}#m;eM`{X#~(2{yPDFx?Fh`A_c;CJ6Xn2A$+_pS-spf(k6{ zclw9|`S%D8+z=da>WxR=@+(4@sW7NFI+JwobomjaJ(QjgFIw&L7Grkf{1=bOn+#xf zkfGCs)Ce=Np!4(T^f8JBmbZcF_Ivd{jM>;!%8Q8LajzlW++7PWrUBv%!Lf%Pdc!Sa z`OEsSEshZvbLePAKpcs!WC@D`6a&mh{Q%q-5y~zPpLW6E0JW96)c3?VK_Yzj;dq1In&gbX%-fdI6 z#cz&cwcE*5r1|ed4*_<^s@7-$YgZar28OlL6GW-#!Ydm10EaEa{dWJ)`3d-X!Sj=d zV`yWIp{I}lA6X%m)dbpfu(uMPiiMB_=({3Z%RItuWVot+()F`kHoa>#Frvr z_90fS2(>Sm(DClxd|OO9ouiwv3)o>!1AH7a#=-E1LkF<|J^+zrj9}?Zpmz-{&L2ou zR|L#xQP*iQgJV0;#fO!j)3?q)HkP`Ux|*t}zg}>#nj@5RsUj!xeo?piw+<6E7-iyg z2aeIVjM)hUAqXBWLIJAleofGc2fo*Ny?VMAGZ@0+i-HS_35w)8O_89O39rkmM zn}6&&-Z)-qR?X5Ev--ENe=+oG#{2~f1&v9*(N*y>WQ8w%FEBR=@)J`h^%=Sj8J-Hj zzJE$jA1mJw9zJh7Y~4Ja{ZgQ&#@_M!Ivysju5hmA833dUpOm`$(OI~7%7gvTYIHvg zexD|W@F|`a&PuM~b?U&Q)oQ6^X<F1kOSEs?>)aiC|mORRD2_6 z9oTbWX|yN7zTl-MnoWV{6SYzyNJrKDullJ|WDN&H@^+STi1ju+eYioe(;uvll*i;6^?3!o~lsV8|;|3%!q|qy%D`Ey-gl>0NKeffI&g66P%Z57BxaZLa*hvKroJ?j75o_kA zy#?TbbK4)f<>c-m;)WQZS}3s(-<3W7gvg-o6A|$fWe$vC654SrFRln)dB(HW#g}{Z z5qqe0mk%p2EY1xkEiL0)Z##juO5g5pdfe_qIzV(P;eOUl7c?9S!JjsH{5}g0H;9{{ za&)3c3hDP5o|1Pc*_E1xXwh}mZcPSEGyvdy!VqFwqe(s~y}dCrDBu9_w`}!t3a>2R zh@B*^$#2bd?VpIHrxUE-SB`hSt6(ne>#!BgnIEXJEUvYwkyS~GeVD4_R8bk6TC~x8 z;_x89d2CP-xl1Bf@{L~hnw4+Vr~BYyUNJpH=~&>s&ARj2w%#ZDIg8gw5pT$wYWE6oPl94n?L|wcchnuaa2G?czl-{(|60p2?PT;I{4M)k zwGxHTnMxK8>X%03cOj>Qqjg7)iz;jW37oq73s=uLka%_INq@W&&8~4C|au9w#cT~)pBoP3n-eI+NRi-$1jV?Ar`PGfYz*UYhkH1?=qvyr0LtsrROAC*Q@!0)uMo6425(76-7|EZ->b zq4Qup1KETRqmS6CXgY;%+=84vzKoKQ58|OeSzNcP#lO9^@#k@gl!sup{KU2Q{y?zb zL_#gBR-MGT3zK5nCCc8P0gRU(qP*}IZ|HrD9&8sPbE}jMk zi=C0i9*h}7A|e|=(XQvjX95!7){=nkr_wug)zD4R%_A-N3TYJ-^qcXm?P_@7H;)R6 zT!<@Yrd7$JJ+Q?DIE@3=%V;L+1jy`1);vqkJ%4{b_N{#-=A$^_Vy>TgK;-s!HS#i1QparNhFE#z)go31)9R^a^NGSh z_(*bsLJjtYm|6-ARs+0v7qw=nk$)m;QudMKC-W&uX|bU1fcF?tKjuC52p!wQ4MBqU zDRVcUfIYCCW)oFfZ^V%xZ=8P)-vp-Il-AtpACjtX5WGTX&K_$I(;q_A+@nUC8ovH~ohOBTzZAISruD)rfM zraAzsLW;fyzJf)({pbczEkPI}y_lHAnyv10`$cn%=))?p-OaCoqCbBC5ZW}jjLoZ> z)*sX_SL|qM(0xJ!hwQWl*v?WN+$L`3U0*QbZCkNJUOe7ecd<(ZlRpu#wG72U%5NRD zf9lIVaK(-MBmiP?MEKau2|+MHsjdh5=x(Tql7n4ls9?tS4?5cKB+2p{OR0F?>767< z#Gv<;IZ?}A`iQEd*_+qa$i(HnMF%!A5q z4mPm?4=)gR2>4!=FGdtzAq_$@AJN0Cusq`hQYUkli-1#TNHmWldi+1!qWf%S+n-$S zXF1Z=0yBi^vegF9fw7*!C;kOn?$MX7Pfdvkv?+9KQ`JgadVf=VB##WI?T)_V5zk55 zzS1tjxj6@~zW<8lTqc6+g9UVf(kh&)6o)wPv9SlIBuL5f5uYTjo+4vyYZ*Jm>M)GX zT~Wx8mI7%09M$4K3)=->C1uG$RPl?bh9g} zP=px%Zi$v;0F)VV!X7bFSXzzNlk}qiBr(gG1=^equE3gQ?_1gK))*hZOTqW%*Y1HX zrUalsKT*I@V@SR$$>ouMHa&@UBvy9S?I6T|F_*P zQ;bh#ICjZ;G<>nt6Kgd~8Hz)hezF%KIlYnL3Y0!eHa6HizFE%3fNQ#Bs+_c}?>DTD zX+<8;r47HNJoUs*Gy5tRCyAAwNjPAq=`pl=r2S?cB&+bFI)Q{Uv$?&WdHuz2T675; z!WW?7nl@eTG`k@ialKn76{9=`YLr(C1pMG*^k+>I&zx|jemu=+lEsQ@Eik-02A^9| zwxe$Y4T;7g6OQD_li74`E!8$+>NdXWi@NmMr}60Lf72Xv8(2bV}e;ZwJyCuA82^n!vyCxzI*iLPPZ-a0vLWds-OUSR7Dspp5dA-Wwgl z!2b?;UC^-#`J}N#ebV-|Vta%lU)VCx0ObMF?h|MmQKtl)az9#gN_s$96Mx1aLxeJV z>E&b};r?qno#Cc}zAmE|UR9?spR#96e-hlxomGPdMDzy~N-;Ej4gyA+P5>%fyC(A4!NAm_9R2KrQEX_5j&X_TdB z1B}Yiiya4gCub`}dvB+YPkS4*HH9Pfd*EKol0pk_6~kmV%xM?;Bt@SQ4;P%`GjElG zP4d8X! z3Ok`M{?-mNcd}oN`OhQAPy>nS9Xq5Vl#jSrQ}Aq*Z8^axNfO3Wj|LNiDSfTvz1A_i z!|${3`*Y1L`OzRvZNQJajCx+>iDEBm8mU66Sm*)RY8H)jhM3M`!s~RMYTVL$t&^Vq zKt?AH^x4()LIEs7j@Ci1m5R>`i(*VtzUsDUC67p({m~CAf>#I9Rg~O%?#3&hc|1Bgaov|udqG+GaGF?OZQJp=h#p5hXs^_4d_7+)xIuUl zy^06XO9H+;OQ^!uF+nqlT}l6vI4y7vKsB$ZAAWy~?(hM2-NnN#t61)TMru4wehkii z2#UVdTSQ6p7b3ChemcH?(mcwu9Z%>&E5pZQo$t+llizWA$x)<>9#3XUnZ{{k!`MU1 zz4iMyfbH9y==qKD1^I8}YKLm^lYlH7L(?mdNdu_0kL{5i81DJuTO(+ZRQuP1X6>ul zw$Q&BK}x+c+q8XYZ()-ZuMsZxe0d3AjT!IqAf^usCijD+q~HQ zB^3`HW`emTk>6b3@N3Com}&{FKnyqs$kghIy(ljFLfp!6uYJ64h4$!;fCRFY4Rw@J zWaqCCjH`C`qwKaw3A`gh8x%hhX#%wRX#s+w-_5(koTGT#YR(F+z;t&mlFgMrb8FPg zDHhOy(!|jYy*9)Heo?4RtL0|C@PBRwRO%x3VEG-6F*X#x?mGoQos#eSC_u4dV zJU*T!1jY_y1Y~~p9L{By+eMK$DDgcX@ zQ@XVzUAT}=9$7hSB}98Di{w<%#ZAw~;@tOi8bWSup!96Ym7qu3m={DC?sk(2m3++Y z0A;k~V>j2nYlyFxPF6v>3o6)_>-N{;mGK^K)tN9RF7uWgQ~)W>UXDRwY_fd9*&>sXC^EAoqdOT}727AzTPgj8 zeIl_Ur}FKrn6D0=Bojf|T9{S@9hwl5RlR$KjBG2%#D&|MtWbf{+x3r$&1(qdy>@Uj z!1}NB_D7eQ#KQ4(cdi<)7E==UVnN~}3e!>>a)#jeZl_w&^rcFwHR!C2EdUht?9gY0 zRc*bq5#A+OwZBbh!F_@-TW-_rWEL}aGI~$T=;AyaS^jZ0h2IB^7pk?Z7R$?Qho%J` z9x@fyLZGiLQ+l{n@+&KS^BR@&r0$aC`8~SSaC%%$$r62bP68(gmWfpIa2n*MDLV;N zg2*V_k(QG^&z(v_xv`F}Eub6Su`}Usz6|I1bs(_vQ@0#$<)?oXwep5Vhp~1NyRhP_R7hyBv~s$VB`tbX}nTJh%9#TR4Snu6F?nR59fo84;Y;q zXUtcGr9%p86>I9eb6R%O(^)grEs^fK!ZN9>V`9obS;JMJQGooMm%YAh;KimGtkJbI z=F$(efU*BsqQ-NWB0Sv#2b}s&Br-IeQmOgBfmEC@b|saVjg+G$PT z56hgf7- z1R=2@rZJ?jA7X-lA0yo`WAHDi2cFmhN;%FyRjL>2T8%AET{c&Z2wRU^EeM;4BY$2CEJ3?dk76ngZ7@%Bzz9UjV}p!MXzMmQ#8X*b5Y#-i>P%Au&dpvJ0GeLl z5D+5KS;?`N?}0tJ#4_l+UAyuGpF18VtlF0no$lak@o{xdwFidey)2LXYLpQ#o0!|u zi?rVt{VofeR0!h>s?tZd_a3=QdJ6nX1EiL~<%E{7L#3dovP_HWmbh&386v#myz;Uo z)|5nS!N`irwAf0X9I0Q z8An<0BC#dY6M0jRrc{?GUEyW<(IT`ZSyO~(rlxdNDZ2trx$L5;B}`NDx|mI=s{;I@ zoF&E+{E@^}Nmdze5=&F+y7*P8b{R+#&5@Y#OCd4U?_{Aa=`QiDQheo5Kr1JKaJq+; z$2-$P)v(4^U5<6vO#A3N$%Wac!)NNN!{&$d<=sJpvy_tjFvgLy6m#9wUAL7n_Hbtl(F|%uoM~3pc`i$pA|oy zl+%=HlWG^LE0t@(-C%rtkZRVQ#SzJGHC~x&_QlL?!R}eCkL(35b4e4;1>;!N_~we( z#X{MsIzx}P)%yZkOQPCA5v*9KkJ3e_V5qogeZ7)S|f%?|(3o{nJa zR{>8qrwqJ*WQn?cDuV64%@Y?=sK;P*S8Vy^$$Z`r0n@Q@5hDzj)`aGJtY27-nWm)d zpt0hg(Nb)s?-mwowHvQ)_a$Z8p#P`&H=Ox;c9Lc04MhAw-mL}5N6IOAH@%S8+?3STrI-<7l|jA zhzSv%H=$t0)E{{NnRm&^33+XBU+5p|BA&Qy%nm)Prd(&#vpX`c%$vYW8O8u*8U$q8 z##D_98<(DwJR~C|zwc`>qv3AOu};Y~4ZQ$8f1f|wtfz4RaHD0u%>zYkn|R`v@r z;AO>7HXN{2%p;~HtflR&&hMRRBIR`HWvL@!eytMFxq}{ z%ELoGbQlr(3?S*+WyGbuzxqeDrk2}zFtw)VFx<6&jUN)J4yfBqmi8k;eyLiST=LaNxhgev~GiB zI^i

    -(pa3Usr`w2@m+gD*v%6zqetm06cjM+NZ1iLmZ>cKXR=r6%sPXUb zB`cG?{Z!XB>mZZKiDTlL=l zWwjsnj)f}f&Yhk-iOzc+52xF$+84u{KDXP%yTWrCHnnq2TZB(J&^F#W%YjT0H@Rh% zrswVVqBm{jbKRvjAvZqh%s>AA1t5Z<2;$CV}V zG3AuNX13pTZ!h*v`lkXN+2E{)vL6!RCzJl$@kUW+w%g6)igM{M-cdNN!g$a(>g3N^;W^kqRl4V%IP;DNzNU$W0Y6?$d_pHyp6wSjJzXOln=g5Xb0i zG#Yc9sM+lwkB{qZl7YuC758ZO%W&Q*{L%sNT~=p|7FL8TD`D8YaM*k8Fx`Fzi3DMh zz!4^biQ35l+cTwDy;;RWFI)}Yy@Xu-&Gde)paz0EPXq(M7WzZ0(}2p)$;n4#VFy!u z|55Fx9_QCza3lL@a}MX6vh`*F>b_=8lrCyIE(AHp)#3Q|k(8ai{Fz+!I>*NXiOi#` zqG)c=W=>r{)%@sO-!)$Z{8itU{qG56vsHrYtD~FJXEhsISyZ>ruHrp%#z2g$6iI`o zj{uX%JJU`r+yS|RQ%lX&8HTmI4Fr>xV2(NO$GTJEq|!fwI#70Q0aKFz=F+PR(mq6s z+iFN!MXW!)l#3aVJJ+`_#V>mXOX1Tf*(xBn_*pT0NPh@4N@#BxS^7sfx4CW(2txB&=FZOc3bc7jV-B2|3p!QTSJ1Ja zz6Q43!1Ne{C^VY0cWej){C04*r*`}^ZlyF|zkC|+(|_4@QTIauC;4^nIaxN=W8mM< z&VHzx<9y^pwn0Wf#+YHQ^P!DkEh4oKLK;%1|9YsUX9H6r8e(T+`7J*G3lAz=Q^YHG z4azCqqhq-`MI>MxQT3`iRXZoSDDDFgs*9qE?_qt8E)h*^b)~XxE~)=zZ!M#0KANp!!!}4&a_G zA&=^Uz(DgH2nhmQ1+Y0EYoB45=iDd}+(rQ*u z%Ncyaj&nCfXKXuEJHV@?4aSy{z^0WI;z89~htmJ*I4^fwKPcDG(!>3iwSlfzE7;v! z(8mfOuGgoBkLQks+%n}f@CyxeIqfPG-bU|$`8FK1I>iMJkfk5=@^KxBj_~@}?_s*@ ze$v6w&dV;{E9pBbnUV$@mozCE?Yvd#0#|blQxUmGY;410);;%f&^2-DA+Uhe_zA~~ z9(nsZRI_{LK7WN4mXH-#UBHqpe#>la5~_z_Fe}PR8ZcVay2|O1#?hx{8oi;zstb(~ zL7%LOrbYb#u=0O9d{ydK1yAp)B1z~ ztiX}k&hQ1Kum_r#5SvV;_4A8zr{`B0`?J3U=4USK>I4@|tj%J$?ZUvbIfAtB+o2J< z>Rn5`b!Qa0w)jHz!>Xt2Uvo|yoJ{iGg-UV$sGO=fK=>+c(Y_u<=x8n+t5xg^Y@*)2 z<;bhvECPCCd5qh^W0T%_Pp#0{sBY4au7mhR`1ZrE;9@wRVf51=cALn8&6c$~Zw5v? z>vfA86cFqz;CJe{4knQ$vX^Iz{WWSE(-;)~M!j;ZTZ6%(J9vf|P zBmAc?06B_AW(h8f(M;nSX^M}8V2;KaTCSx0iHEMhg*B^v2_QZ$+y;=IfAgdi!wQjV z({;Leb&}wKsD4@_25cHJa>0|%0DWOdb8DhMXgv(ciUqiy>e97%b7kO6ts(ptr*Mok zT5BU!QVnqX{KDZgs)U-anoN?w`I3?d^1eWJ{D-T0doh8BNt>8-{t$cdAdt)VWAZ+xTS z5%3-?*%u=bN6e}M=53|opWNI9Di7e50{M5|)r~e(MlkoycoQ1*t$Vd zbcZZOH;Qo^lF1$)@;|kD`AfuYyT3}{L-$hsq0n0c%v1x2m`KP7BCtTsfxeK^0F7c^ zCAj5i0YM~^=jzd_WU>4bpc;NcU~Fq^OUSG`0y2sv^tyw8pcCdMKKHQw8D%AR=5W|* zEe2;YS=3jnDyTZXg z)TiyG7R^g`rWaBBZNS0u*B(hI0je04yRg+~`hc@tHbNk)mqp9dU+&25;M6o09c2D14F)b3%LBJx+?rECamd>_=PBSx>&yI z8@@|SJ%nk6eiwU(#yI%AeMRl90eXDNn_i%1+LM<$H}#t7JE`VBzUg8R@OSjWKsrYQ zu4|~9VV_IvBTcanAQ@LZLoCR3{#Q%v08dVm13MJ9^uU}wJ60z-AQm~ADN9zb&>%(3 zqK4wcuyt28dEf<>J5(%vfZ{b6*l3NS-wXXU>@wzc3(Eu3A#LD0(BIGjfy>AH&H)?+F$-%PI@+=W&gF~Q%L8VM+@4}1HlAv`UA9?5ft81kD`+1EOLEeky2cM6xs3PTHiN@pC;IW04imgdM;Bq?O2)5$+ zL|dLNe_yXoNK0-TIkWJUqj1;G236Rto}7OStcTevrmltqyJY^J9N3`i#N%f%uWdPx zdZyhDFZ-r^mcR8XJI`WTd8u)?0B0oaU^kL|VUrsR=uD|A zY9P8-U4=5ci∈H+UpZBgD90NV5j|wl)`7gzFkV_G_?(d-(NWU^{Eg;C4gufi}Gh zjz7fr4}N`(owV9n{O)Q-F^xErLqx|k_?7?LG@h1(nV}4dKyYpU zCCUX15WNJaa!k(&w6(q*r>RlugJu?`>3`dr(2bM(?>QoNX1MG~UqeDaLyRdj`|!($ z4{vC1!n^Sgp);1NQEr&!y%X2$q5r@GnLT0ug7_K!enoC-zlZ1ovaNwbY3|VRGD^{# zE@$ADa6hq7Tv1rG3R2J?lfRCb28C|Mb_%(OS5$-G{1O$Rm_Kk-r; z)$BCD{b^MYn=8`jfdg$I=E#MJiw1hW=>n&5ru3AoK;;sW$Dl$LvRg?h4 zgnORU>%!;|`x*iYV(%q#%70fx_6@v$Tv3ZqC?G$%UCuPRe5g$g;TQIIVh;*aOn$w!nca&~7nqpCD$e<%kjYVTW-2B9f>sz21AB|}*CBrH zY`t($=SW%$7)n}5Q%xjiKX8(I2WUEmzu%}wxVwjAGW2_4^dzMnCWv6GMW=6PV$2icp#h?=uyv$A1#Dmx=eT+nNyB9E%8`qHT~DZ<;Nka9muW`n3U1W!)}m@p zHR92!tD@t#3+8zvP-JOSoyyb2gfh;O4G)$}j>RG#v{AA)OYj%?N*d6c0e*Psho)K; zC38uif8cw9bbF@_J99$FxVHL9`yUI^b+f9e{JdbxKh5bQT0dL<)-ME6gfFu{AF$(l z!PuadKc5m44-5$LvdWQqJb+$`J)3n~v}VN&TD__SYXcfUS>GkP$Fc;*M7x0=}+t(9TB~!cw4PL@_v|LsMp-#Eb$D8>B8DHbf6eUY#g3 zeP;fKU&4y=31igBpQ5zaNgUC9*+Ajt&4Ejd8i!Hj?mNiOmG2#b6oqh|({sYr?n7rj z5EQn>N`S4q=oHNllK%BqBt?CeKsr-?N3mK$+oKDeis_xyJ2}s*1&E}mC25Wq#ieH? zTS|<{P62@^Zz(L#so^!M)khA)xc=QonCK^A^R0-4sK=!y$+yBxIr|CYK?Jjr=vNw!KIMVh zJ!`3G*j~!T`JK1S4xr2-kTokc2>?oq+2oWzvq!?aeO(Qe_=JrXWGFmY_GS~WhjIN7 zX=nbZ+>md4b$HYFv&8?k9!VpdkR`PdJ+t+s?+(b#uKAdOYsaLog44}&7em(#;8lkTyt|;x} z65Q5)y&rb?r7##%v8Tc>7$2y5S}qrK{P+-gTDFKPK~BcT*P}MBTa2=>^{2ZXk9xzL zi-Hcv(a&OP2`_#>xUrImGuP`$o`Eo&6-BBO45W&Ph)4_r2My~l z4Dj&woA4vyzQV2U}b8G5#D2P3y)Un&G#I2b6wEoytaaf8soEw8HQA8iY>_x#Rgltvn9`m2k zXzA9Lz`|6R9JWq^FkiJ%+>l)1DE(gT9dfE*AstBtMSuj58^5A0J(b;EnWuO=$}?DK zYpDC+M^UwL$_F552c`FYH4Sc)EpSf6b8XeTbt3O&mh`$93%=cNyD<-gdamxd5?gob zgYw%q%{|rLP?hrg&F@uESRb3$1vb0v~2xEa8~7 zfUtzc5peLmYqUFc>9u>;bV$!rc79`7!C>ph-s)Iur2~#`64?d=P6;e+fQw~0(e;GNSJd=S(v%!!xZTVJ44U66Vd5% z8M^At`un&>I#gW*de+$SG)UV`?rE392Vu)R8vQ-?a0wkw;vUl0Gmr=4Y#5>^WB!?A zzM)T##=O8x2$Oc5^*S(b0AOx8J8&IAfd(S?bZf5mQ%DOshuXO-F@?!^ojmSqXaNuA z2js(D8X)-&q}Pz|sm0mKOn_}fY?>obsV>wCVsxZGL{E#@O+?HbaKVbeXkefcL90?8 z-ZP8J+IVQ#L>KUcc~u1lW`tCVn*;jhzLBp?wnW3RVxZHPnIZ<=R5Pfyl2Ra=kJ_k- z51d#lCE=r^7cW@vuoVKQ^Qfb#R}RHc0H5JX!5?mv(*;ZzH~HyGdoT3DR^I_fVR%=v zow49mu)?au#60=atj88xMFU8zm-2Gkh{A&_8K>I=o*lT-k%n9>}3yCZV zHcrl1o)X6U`;Sb>#n@o!p!irorZWrfeCrg|RoyOMQg${mRa6a(*`SUwPz1}6fOX}E zL;;XH2W(kbUnF_thG%D`c3N^uU$;gZeICHzWM>b8W;`(IIQn5JT2XwZ?dSq-5`5@v zty-bWF8!CGY@@KL41Si;YR%}|7j?RALj)>4%iP(J?{=c#VeglE`dT`%k(it&UtjK~ zIS1ABv3c2x{Y{Oq>|?jH3tuA(pe#M)F^eZKzrM4h6)P==Sr1vl_nz)eILya(X%!#M8aeK1*zB$=sJT?IK9Sh6nNdF=R_5E?)% zGijoSdQ^fXF*C!8k==;cMW44 zZCZH3;q#v1jNl&Rd1-RJ@c!6^)U9cjOy_A+Rd($yeUshIme!{VsJ7z3b+#@8MU}s}TlUI1mQ-}^(TOxir@7*jcf|SV#ts1j7bn>}Vn+M`lTXIV1GltzlDc+VS zS>;2EpexFT*>}o|H0X&bUNKVA7)WSrf3-iVOZx@sx7#TZ39uPtYn2P)aXPt6emBx0 zD$s{Kx{(2fdZP(@X-(eI4UC>R z$E;TYDQh4Bjf7;lv;^5#Ru#VUS)E2yEhi5JPh#F1HAN~MKxuVh_i5E;H?8$|Jtr(M zCIX->au5MHYP>#dyw&jvj2xSR6<f{Y=C%Uzi@XBnjmQb>*}oQOd6k;IivOl?83( zT?(eGHgr$yLiUFR?}@D|0Y>3OtvfAHM2DX{zi&7U`EFWp&nQXwJniH*z}YP z%Hh2gG<)(5P^;yPOyZ53nJ4cjA|WR|CSef7F|*qcVB!+WAoZSCRZypw$q)mna@OyE zr>fRNBYM?%d-t-5muA~L)?ZDzjJm#wEs_Z_R)*#(l|*SDOUC=_9h{*gIGXxh%F!Pl zo{=*I+@nAY1qT-&5e0Hm@u!5oycUypu*Uo}aV*#pU~guR-gRCy0g<3;&hWST`Wk&> zK`3-GNjW9ub0JvU)13B_8YUKQFQWbrow)@2nE+Hfs!oC}Jw4)#SlfI5q0lIqja_&C z??5I447RNl!`Y{4Ar$*iPMzHNIHX*>WV~FsHGRem%{f$OacwV>4TV%DW~pfARzb|N zvyz}r0H}h$CILE5CuC?uDpBxXj9*d4WuqKfjEML6mhEiigv<3Sd90KTh3JMHciMl_ zl2Q{OJerFLCN0KEJDUHV-6!Gdq{C#y^q^ya9-G%o%1$t$|B0`ZLIlJZ!E~`at?66& zRc;o*CmifVNVhZB(*_NVeq{&yEDQ=iDaUt60uX=2ivsbwLpve?qR8W#E6a$cmV+=V z&f1fBcm;3M(r#z{M0{kD*p-ZsCOQf-dLe_wgmtiyhNQElR|MmmzjxK#Q!rs}?|Vtw zgN(+SEm=22CXDK%lt$UpqEbRne-o$al0Obb(e!SF*aVU3z?-q^RmDH)L@OAw5*AYhI{is8OYIb`v0|QdzV7%3)yeuJ@bBC$vz`L?(5wf#i85n`T3izkany%d)N8Fcy2d{}2078TQ z_*e=-3s5uOy0hS8!_??Fw^TbF9Hg0;jXkqIS%^@dD)+%9BtE-UaKtiHC4Uk)}h z9!em6Pl<3}Ti+^P#ay$c=VJ9XMFaxX=$Y{;0`5OQRTPNpqT6WsVDi$@fHpD8`X+Oj zelp82>8OZ)r(5m29wN`{mhC{Z?ka55h;NX^ifjpxzNCD=5B*!y9c~lk7i@UduoN7)Vr$Il6u&bc!b5J;?(fALj@_38q|3Lu#X8f1O zm}*G*&k1H>Wd5HFkd6w}ACwdH93oN{g(3-9a4U+sCCj7mKjkKKp|lYqz*J#k0;r%s zK>61BN?-)d#hU_i)U6CE+Ww^~NTPXVw3319aiUa<1^eZy9dDixKdaq)>L1e=zgb?g zesbG>zOG-kyZ{;XjYZ}e_&0d?*nmo%L)0?(Xx-F3J`z%TKAPWLK97kwKhQ(+MQ>_! z?s9`Pv{Nt=A0l@{;VEGIYE%*5BkFxhulHqmwKz?D0d?y(^5GVm$mvNrEE8)(LrWZN zS6`2VuR$_Lv>2&tET)jlI#>_g^CKGN5xUt)e~%%s-CQS zy9m=QSH@yPiz(7&A~Kgu$(gt=Y5>f~e8g(s>K`hY+xMKKlH-#DPKZvF?l0|AMN02e z+@)Op+BCoX4OWu=bGSP;r5QLYH-T+j7RWR}PR1Xb&j!v@U}5)Nmlyu0LB4ZLJeP2= zE0|0W*KvHe@0c&KW!X?u3$oYcb|NwZo2SJIjR6BoT=halsKayMr&U;u7$-3J@(jON zY<8wSWuliD%c6n}Thd|}OpXAQyhkel70-k7y2JlDy0W)`JORXV=poN|*ACJVyGbP3c6rK0O=kxe|Q1RW$$x;?%-LWa=i)IsW|Or7Ck%(_x8*I zYt9$sR0g&EvqQC5lBMJl?GmM}f&4HK+1BSu9^8d-y{m!0qF#q5_yz=A{3_u-ZWa#s zye*^#9s^161r$2Ng@q>+P;-NG*cQ~cO?kz}Cy7ijiO6zx3aHscZ&Z_2b5Uw=1NN99vBDy= z(Op>)Ka&L;)BYUk2=E)(MQ?C#F%WyRbMBe35@yl4oX*7s*d4h;v6p7>ji@ld9 zE&%XW-hM0XFHC>2a3^4{f>igfJ}e?nP)y9eUK0Ind70;D&qCx@=t;wN0oS z0IOLyvu8JR9PVwE^;4<04|%jEv+KApl{VbPuMOnG9M+lCp~eg{!R|Q+q7H$Pg$OtK z&o^`J=hF4?HQ8Q@Y)-UYOb6>xvU6=cthaXg#%Bw36xpDoae54f+$<6h8{R>{&j;BozRc~h5Omu_n4_OJrfhTSm@Mpa z&lBr%8p!uJr#bS1HzfWg&)J*#gtlqA{ifsaQ}WDWB+A@GubaFwvu8!ds4Lb8Mxe(4 zM>N3XkqB0kZJOhJW|SvnK#x|7wBu4sJG0Igb$lhd_&zHuc)DHq~-`5qKT4J4__ zw-&?e`vV@FdR-??bMY4dnBrCO(i{8KwLJsG`a|r3*tf*3f(D*<5T_ZM- z#fFBX?FiH&WO2>JynQ|1p>2hhK`Ra1PvxnZ=+{{B%BBD!Fo)Yg%T(>{_!GJko!BMg zz+G__M?2d_XXl?;3DA6MGQ+5Eg)1RkmBGjN$7;leY0#3^aA>`VSUWVGGbTFGG0CzX zK=<-7n9@Ac&u(srJ}cx4bm%`neZXxL9+^MM4yDBZC{oo@oU!k%o^1=NVK$sp`b<85 zb_zrxhzBt&n7?1rv>?*$U3%|9oC~So0rwzckuZ_3e2Avc)0+1PpbZbKmswQPI(#cH z^OMjY_Ip%fp+i_)Ap!+*%R~GU<-A&Vh5E#S>=7!3@m3UDpcm;5TPHQvG3!QE#@afM{U)#iej)YP+U(Fw`kH?<7e&~L_C^Inorz{F#z=P5P z$V9Xb+7Plh@h>yHIFSw`e^KaZ`;M48cv0W4wld5it0mX+!b&+gocy8Fl=%g)UKm0F z8jzj|Idg*;M-^e;m@vX;F6OHdai|;wU(PB^`=3nTcqO=cF>V^jP)`wFu;XURUHQCw zUi$uvZ^Fn&TSWvDcc}OxX;lcXkKOYOW^n&NB zUiSl)Z+Ye#M0JS^!lPdrBi!$!dP(c|cmbTB-XKPJ)$uVawxQyVc*+%pz$^5(2H}H)(@DPbMoM9!g6&Q&@Yha1z55I% z%H5A3Ux!121Ki(OmmO~pcu3G&ql6ZU8lu!I2;49F{3DVu7z>C-s{A_uk zvw1gp-zR`U&=w1FzX&_2Q3(g^u-gmMG}Ap{<+86X*auk_U^_us&ZVhmU)6U^ne;S} zX5*1|8ZGze?RWNk#l=<4mg~SwOS^m#{iG*rH|$ii&~((jelIlqiCte@-2dN7C$|61 z00FSGbNpxFl>O7vO>L$58Y`+85tdRDqgj=LG8x5N1_tHVEbJDJJoEt>Hp4`7R5XR$ zpA1Sy8O;Vpx#pwodWHHvD7BzSG5A1XmZAjV_puI{)-jz89l?`rO4n%to`dd}6U5kj zQtR5TWA2lWf6uxJiV{CigarrTE5n|z*-=lx)YZnjQxq#Zv75*AZdhloz-);3XBME- z1ox9)q^CE}$TuqQtsYR3*yG*(S)z)Fw!p?4J@#emntgD82^MF&ZuO9^pp?g-De&Lgq*hwYl_Rzq~b6cTQaG zZgl~hnTt*k2d5g-AXcGf_0JfU95ia=jg;d3iT)UhPBvC@5!B~nV9nTpDkWRKelk7s zMkF>Yx|(_Vek;Enwqpvd0%2fYLb2?xZ*#vAWjfioB&sN&#GgdJ0hPBjV875$!nAbS zY5X>BQ?sS-Ri%^(@%^H;@A1BGBTXW7sfcuRYE+YZ7;dv96R3A5x5Pdig zY^*6fu8W(jHz*S$QVlO?eFUSYdvGid0rQM;%! zs59uI`{pJf^MP>`1uKG9#u2vB;uUWyR4qBCf;{>VsEhF3CL5eImLB z+gaSDP%ClOaQJY|W0a&=rBn)!<6Pq3v)iKIp3wV&)Qw6XmLVkj5VlD4*-w-{kbl1u z_(t^#8zcu_je1!M(MZnA^%dezZ$vj&!m+OF_Dtg zo+jmHtlE-Vn=PpY|2~MrV~XJZEc{73!}#<1{h?M6_&3ymIm_F5AiDH*;|&{_+{ryebx9%zgC;3 zn?Z+fBNNx&)%1sufNExlXouH!OOzuO`OzZ<$Ufol2YYoX33+h*7o`un*i_kr`(mFlTS9Zz{6 zW@GH0B_TIB-mHVC?-8)rc`2KRMvZBGMj*Zwu!`4#lgmEUU0SuaU>M$5v1?6C4ywzN zTU575UL9^aPZ@uLL7hk1f!84HLMB}KK+iTOFp6n?9$4Ji6 z*|gvA$&IOOvzP{7KP(;EIpi41len6fSGZctmP+A==derUNc6P6Vk7`xOpmb zYzEG_)mE{UZIju;Zj`~dom?CMBRiYSlzU5^huM5&hNK-dZMqHxHM2Lj zbRp_fJKFPnQvnfIlbx&vfDs*}fN!?oZA695bOu1GAwKF1p1+@$`E&;=OYeH{viPRy zQ?CZ9P{VA0rGB#NV9@8Sg*Ynxr4;rSFbS0S2h+vbO{?-)MH_CQZa=J zLZgMo6%?QJp!WSazdzULgKR}nicLIT0$Z_cs*AicB2yUuD}p`=5G3vJ1c^w=MhS@t zHZ&ji;tZP?XUfy~)RxMCwJ|6#!HMr>0#X zHWw5LmyIJ7=^X0otj%cmHyawHGVRN7QT9GK?HV*_8_(P03E1tAQ~%G% z;hbgV8<+tE(s!n5;MZRMn7*3x;B8VB(mHH#;iAkWM!~r4FfV25O;U5Qig^zZ6i7Bdtt6lzTkKm3!W_II(tDlFY&g*v+{`Ut&s5?st z)%ueMP=Mt&fX1k&PrM>8R$ww1lqn18lR80&%q~CutAuAB ze>ad>-dQcVz{T)SG=$$d-38YUCl+=v-mbj~L_n?gCB(xnh2gjru|6x$Q2M0a;{0N# zI0;rV=2P&i^A&jxTg*{G4z;fo>+m5hH z711yr2ZhRWH|s!3rf6NLLn|r3X(X1JV~{2Rn?~aY%guQ`<~GOWbnIJx9P$En9UvS9 zVuHLL(gL2ZElU-R96F)8!7WXqPy-PuV+TV5O+`mUsn7-a9ywlq!TS7;6iCJ`20kl8 zZrK6wKAOyL`<1x=?$LnApfQP7?abl{+WhE4R9P(!IKk=7D78+>R&-d6z(hlJK8Vv+x65)Lr&O>X`FijZs2f@S|Y{bdq?uw_22o~8Cc5pO_A6c;M%i< zRWC?f$~onacQ}e^F82`_{&KPJV-t2r!d!t9mXUGX68nZV(z{Fau#K+9AZX&wkcHE? z2q&TmoUdS|7qvL&RX@Ru#5z}Sh5xCWU?Ep;5d4A5WYVdbY#saKm;(cyW+GmsRN|wQkC91!nNC1pdUr*R?tN0dlRJ{uhwiP)wMi0A>tkkvVM9Z?B3k z$(o$JB7;n5kri5K%v@!LbcL4zoYugmH6IUR=%okIE$wgM^P0tvXU~plF7%^8zpz<2 z-|n*X*c$f*AqtA8hwe}sU{t>qt$VaV#T8GX^C+KkWCXKMH3l68hf@nPX)`Gv%3Gqt zAY*iRiRjqp%8KA&|Kd2@>;V3GQ61oP!t6|2>lFHZH0Cj+sog*7)YrWOgrpaZA!SBF z1*2P*Ftu*wx`#iKJo9gi5S7wC*_-Z7e;*GdGelXcTqR#i;Wxay+57{!rq{`fYz0Qt zv9i|&#fZV*uN&`Hk4|`@SMs|Mltb-AMZrbVc{~i0}emc zt0qeRuuwk0V}>DcIBScap*<|IZL+(6L4i62l67Q0)?XYh%}?q}tWR$r;(xI3nw1qd zqKW$Jw%lU{^yGI0mz-7&a85>8z*ce zcKZ2kx!C-BO2wOi(*JR|jtN2-Llsbjk#ZH*+{D zjeGydA&I>ZyE*`y#tX@UTXQLS5$kSv?nD^+6C7(ttH1aBTP6IvMSjlVS)!F|B>N8= zJELZwoXT*fA^0JmDv+7UF1~VEg9q()L}mnO=PP^w2!HdJ3f@mZzb>08Lij?xN>HvE zX*4ij*?znMOV=&bCUZ#Bir&}ychO+dA`jmHTQ~HDpNgV2;6mc5#sv^&sNl!4NvJYi zFfxyg>iL>rGtvX|XITI(#wC1b`3XsaYgMgl zs<_Hfr+}LyoG;$a0@hVy@`R;nO@}s@G*GKX_823=r+P}R?IOp5)q_5Q_ve%nLmlZw zQoU~149`u}A@Q#ZF0+1<{o~FC4tUSp1kiN;SN_^2cW-A1x0ZZ1VdyX@M}~O6W2p!d zF%_5>2vth29T3^~Y^kT<1f*POuxq8o9gC9(P0hbKnP(sW+lfx|#@{rZ$ZW6E+!iU1b-?jcuA~a^CfI;Z0972f zzaQty5>~;!q!%CjPd%O5H2jt5NqPWGx`OrtOplGikZvA2IMI}~*+dQ#h!Xvg$a@ROfap^U z-cTO|Ze<>NAw5S;5W7X%mtR>Tq0Cd1P=`fFwuYDizXQySgOzS(m}ja-8P$9cx_mx# zc1haoHkL7?xwbzNkvlzVw~`L>R1*=XH`UZsfdpWbB+A;gH!57eb)DdU2zh~!L+n<3 zoOU{%_*F84myS&sNYy^@iA0ykYBD~R@ZLtErs+m})n~JEaBb>jXggbZNbK=QH>M8g zXcA@c>zA&Rs#UX_N_s-C$#$&&0E1PmMt;HWX;}2cfwN+NBDy%xJZnz$H`hoNy2cne z1NMaB^!N`DxO@j6RHvHQmglb?jzQz)jc5G9?$RiuRnKsJSgu6JD38oE8T|c^jG(lI z5-`B%bQ!LEbPM43&{~Q$UUNt0ArmCdknQ(VvQ@#P^US+a=OyF77Y5@w=-_1eg-jj9 z?2r?%&=Vk4Mt-|Swo?3uh4fxjOljXl4~Pl%M`wuFx`w6~x@dDVIJ`iGzo6Xx5epwn zarZcIzjV^u2%vlZ7f52K zSZdOO`OYBdS6)NY;x=8p$7Y8vdnSO&q`7mO6M+J6m?vZpP`l()9ruyHtBX;91D95> zSIm@+)$ZV+vhRjd5OGvhxy3Z_`@wVjAZ#%EVz?^KBl!afL;d=j5VE|eRV)$@6D>~y zcb`81qd=70Gud8o-6lZqrCNQvPK ze+}@dZ!77DdHF4YGuP63%#4$jdVdvMma!hAn#>Bf)GjKYQ$wO>KGTwU85#Fs!q2Sr zGsE_V*ALJmq0pnu0>0cx^x&N_;ndk2W*LO0msmZv&%N6|z1icBhF3Ys3dCLfxsHz2 zbDs4`Z@>)`u&(+NfZt(Z9AEg;N^>BgAy7n!og?tVIzo6t$LeM0o!l4$9=I_qtM*Pe zaD|Eixo0aTN8{;NUQ1i0``uZOCgBpBj_Sk%e@%2AFRZ8YswY(0q@PO-qMZP*ar)H5 zm>+}I#p-v+U&hzPEj|M)0ZiQq?{IKdoR4(E(5mK2j}7~$auY_D4j#Kg4N%7REyZSX z#o8c5%AJ$3=h9_p?+R0tSrX|L!^nu`%6qGfA2dSU1lh7j-V4cUVZb9H=jos*UYGo0 zRo43XSMS$>lw*HgA9 zqQD+Ua7njWzls=o+l}59Rvw6V^m0)hUbSTAnoZFx{J?UAXtOWNCz#?ZS}WRgM}6sy z!Iw=PyFVtLJC>vmo?^e}B$G{x;M!wNV938vp^Yskt8kF24a%7HWC~s!LB{AMN=`7A z*$=gqEA(LM_$)XnYM|_j2z&+3lu=($eERL&&E}O#WRyTajN(-{Er?Mw&~NXvQ9D*xX&mgW2~i{eJqP?sZ`O@MTy1VM{iFpr(}TEei`$Csp@crp zCn1C$g}@(>dF|wK1~Ga#Y&UZQ0O5L^23QXlPS0C@z+b~I)w{8-E#7yg(X#_;lxT4F)G=qqfy^kmke0RMkp@IZ zAOe1ip~>tLT<_I7BIkgbX{5_Cf$VRZIeV){(cC=Q@!K@#h0whl(oa@fl?z66L%+;=|? zW__NqkMiuD5Ycqw304L1#ieRUdGFYEz*`~^w2!>;F_st|Iauffto?AZ)Fhz83Y`gh z*d7iZ0#2VlepQu)bP|w&ACoR zw0VUM>Bj!@2m_7ZaoskbCj(^QH)vL>?Y)hj4%9Ou88QiNJenTaE6Wj0*hwGOLRT(N zNviFtJ$j5^u2;x#II!L?KH2g0GW(==Xu{r$bn8^4t=gsfCV>eET^0)dAPjE!43GD7 z0zPj)$z25?yf)!g@nb3E+wjTearnfTY=h$i?-OTEKV)IOt!bcdLjyaP&Y@RRB7!Sr)7{0*Hn@d_YC%jzL} zm}`U*O#j*dV1|>EdHOYzNyUxkPq)MYfqWyoVE11r@R?c>-&_1lbqxsKf;IH+K+PQO zN;Pmpu2BcMkLb19Yh|L)+TKXUd_!snWPEiI4})|SY7m}|mr28v+663{CII(eXNLj~ zGE)qqm9^5#6iJ^N4eQCpOXkUz(<-RS9MP=3tOzCT(%lY&>b}+YDa^6X(2GlOMQjK6MB`vx;k!U(Xu0KrLrIzov{w%iva0 z#|osFkycbz%|Ka_#*TQZKN|A7&d!bcmBd-@z8)CBzuZxnI!6d}W7D}Y2%$p&(mVcduWefA~-;lt|* zydH7>2qMOAMR1t?u5}gjvvkPm-u47*nMX4UWMVkfb=}r1DteR&ZOaRgXI5K!@acSfK1W}H?&e!qiHsgC z9k|l7zn434>BC`f#$FjvY9l|F*c;40 zvL8Ky8aHeZ@K*{1HHbDEsrzQVOAw|`a7xVFB;w{3R@gPRNN(R zfl_mAIkfuUx$TVpQvhP#Zn-|L+DL9`N##e%2*o!$r&LiS01fO$z)YC`VE0Kp+S@?N zbtx?+p~n#88XHRC&rNDbA?sspLI`9ViB0=1idmznhdu2j&J7w0h`Vf@v#UWG&*?ti zub(nVlxRYYs!O;s$1UrOc6wJA7gz7!v4o9`(vm_Ez_(iNZ5(Y0c&;;XG$(^|J7KoN zb;{QAK#Z2$1EW$?H!BbV3Ct=Q*bWZR3e;iW#uj;gJ2+R(o>tR0@>6y!9}TLLRenPL z26+Q1TW0E;4_4S+%a6*@K^IJBb$Hs`TjkqTcR6Pj6;r(!W2-Yg^5pvlSBGzf6|cgyC{dC*JOY zh7JsFrgJXf%5Qf9Ua7j%QIf7P6`%Cd(_@V6FPE|dzp9y$jK`pmIv(_1jatzPImd>r z$eDBfAh`8&*X-TToM8}JTZ*aj)5<$FhSd|KfK*zC%?FXkn?FaxSkdxr5J!iT)V(DP z*_XpIW}k8;b38*&xkVA)$Ji(7-Z32_x1!mdF)-*SjxlO!CD?m4*#>?*-d^;+^nAk^ zIowqC!10bPSB1HS>LyJ=)3r2<9<9WE$g}|oO=@(R6boZ+DHn96uCj~*#gK17Oxd;X zfs-5X;w6bE>!jX4TDi`06`gs5TUo>y_?*Dfy5>~$cTrO$)4C7!bsGa*D0mSB5lT91 z4#>4+%DUb*SDcuZLIgd`co~R#AA%lMU!J_w`r1 zsLmd#D=AH#4e?A0_FfA%&Z9d2J>H{5k|Dj)3f5^q?>;w|ZWmX}6z!+P3OE=w6rbX* z$3HNY3A>KXqjuLGDx0!KF~T@Ry>N1;WSLL=cux(ydDyr0isSSgrmDm_xnS-95ZcSV zx0-olK4e%edhRsqpOJuYH(fZep||?(Gz&`jxMGP%hg72>4>I}vUC_#^+UB%&)!{S~)!u=@PrulIoLglJm0Os?SROUF29EmotoH>KbHK!&6+@HzVwpqWBE zishtud}v$Oed?_3rkDhd%}~CQuI@`a>y7L_^nCK(^8SPSBa%)e+m6*lDrN$9u2R$q z7%@aVz>t1#q!e3&>-sV_PL_+WbkbLv6Eto4g}>U24fo%44;=pw!aL2528TMWGW8$a zOHWxuL4rOSo+&~D#+HHs6b)+)LMeF&CZsN8st%iRDN4IZ6S3J339ixKM(bi(b3?G_ zX8PfMBon6l^x`GMvHS1TRF~^DPtOBikE=vTFgPh%rol9-9cyh>yqY zbXjsMOp3d`;5S=e583{=#R&T||HZ8rP~iBh+PBE{179TKYmY8wun>0nE;Dl3Iguqs z=vopGC4P9^dWb;G?0EB2E~R5$V@@T?EIq#EWpk||)H&bIr`;|xO`hn^ze+V51D`Qk zdX+TE2hw{?lYXf`ckU1FIKc2q>GbUK?V)*shk298xB8trC&D}_^^zFO~3U~P-i zNo7jKYXqRLrg)CWHstWtE&Lbqk2?gtEkTWryMt;$Z zx*@ub*zv|5IQ}C;tbIUZq-9J3SR`^u8&^W5I+Sd#-`i?PoxXr-8TsIFqQ}%-rWRCF zD2O_9pDXwBB0)SF#34PpMr;^5u;sq~S#Dt!Hm_@d7>b=|59|^P`T+R&o0nl!Jjl({ z-wispSia3XR? zDdm}Zb6kgUk1-IOh*1gNvpF*;^6vB`nSDf7a5}JCaF8@1YZ#ZL(^!U>Tgqc($o!#` zP!gWpZdz2(k=`ipwXuk;c+m(De_!Z8@=(oK{tLtD}A7)9xU}7U?&i| zcm)`Wx=`hbMp=&5FYFJw9EMoroo#;Z<@agTQOgyyrCj_Xc|= zc}R&;1>Yp4CxV#)vo%MF5>v9l#Jy6*JYz7orOZ5H>XyNwu(qfX1(bFh@^CH=p25R4 zT~PG}q;?K2uBG{Yk%X@yj@5DJjMK+WD)-+lAn1pHx5chikCjZqMfty)D`i7^m*4EP z1!m)1D%t!ZVd}=MSUVm`r`tf_Nm`nkUCx2P(+oAK`Q<(fgd&uU@?T7VqeUT|rRZjA zrrNGL13NcaNDJ4w4E{<8vp2YyVvu0fl72tFGQF`kq4Y{bsQ~MUuRmh5HXSi{Nk)WB zMS*X(b4I_f*gNIeUS+aZ3rvj+*ed?{mllJ%o8X->r`;ZpA(GoV0aB1a^ z<*Y^^QCY1baEQ^g9*CM#hiakfrr0a-b|a6Bko?l5*61j<8QB#c$i^+q7mfW*iisk- zm8dwUp@OSNid@!vWgw+}`rQq!K%WocIa>$GqbuIyR3^Whjx{7R2a#*^J#80MeKzNe z@hf@*9!Zj2PC8aLpi)A5Y9xL_nzP8mQ^b#b0pFPe*aA*N@qR>9uof`J{(1BjjVY94 z95#3|lidyQbr|Cx_8wosnnMZy<*@#cC{4jhEeu*1xHa^49#qvhd!Mk+ zJI~_wwIBk31gHB{A0O`kg?DL+n5DZ;BZkn}pOI!}0GldkX_+)#{u!0q`@?+3(aV^( zTp{GO6^lMCWAq#=P%bjhytELMqFx1F?tQcp_#MJ!5$`YM=~p;6Ded$QdHAwciapDR zz0cg*lp}W#1ZWJB<8KMq^NGumzBTXcXk@JxNFEEU>(VQrU5}hqr#Wv1;q*zr@x^Lh z8dNV;X^a@1J1i0Ar$M0eEFdD2*P{9gN`J5KtbL87|7ga&|8vBB$@|kDhv#4gNLaY2 zlrm(!C|3z(30G4DONm7ZAhol+HS4xxP$brK&L4|suYXK`i=~E+$;UKt=JUhi(Ialp ztwm!f7R3mL8+rPT*4MS;Idm!ZY*>uOa%JQE&@GqDar*5)UPlf}Fw zM!Wn5;Pn`XNlXm6eNSz7Z%c{+!?OC)_c@kU|5c-0pF>!gnL#-rPLCsz^|&(mRffT$jFvh*RGyS67EdqvTf>=>N9$ zaK-{;o<$mn*-$Y_9kk(GQYjzzVMPnAi|165yt;u#o!`UgH{D^Et8z}ABa6~|t1R`g zDbbQL!G5n}^Lcfl@SlgkV4*Fd!*3Tyz?khX9o;c`j->~;EOW6^kwqK8n9VbA^16%{u*mm5qFzQtLJoktQr3 zL4r2fJtJ+KC`JRrvmE6=ooI2&jD%M&za4u~dW2Nc>X{1(%N$sMOAT48FjIH(XqRIQ z)5zSR@Sc)z%(8|!L;V-X><*UCCk7Ki?&@Y{G29KfLGx>YRTww81O5 zB#|Wz%$0zPXC@5^5V>)Viu`w{zm%gyF9pG7^G6kQ;i)7hw-*sC9F1qM&GNRx)TS85 zCEy3St_+<_84$~XHWqvQneX2b(WB{U1z};e#9d=C9xtGvYgmVvy^ti#x)T?nNVznd zzRiLuO(y_ih51j{?a4SlcwRo7#n%&y=%+(@ChLf^(CuIWi>U3YXigDEWwD}q9jm)v z8S2|(WHzGsj(M@qzNkX(@&?0eZ01z;F!9Eyc+MO`3vt81wSPZf+{Cw(t({2z)`XBl zRHAe?>ZZLVHWHaxN=Q0Zw@~s_3^Mc$@@`yQf$B1h-%rzAGi4nEu|v3AW?I=6U6mwz zUfniE9x^#4HLWRKF9r%gqd!scr}EFaTE{NR@7P$*r=@B{WjPray4PY%D`yEA$T0v< z2#vvTN(VqNFuGwV(pAuoVL=C2{6uNa#I#l7M|srFyVb{@4Q(*|fSB|J4%3}*{@<$V z|0N2hu@vAC0+yI?4`@1YRiKkScmpB|u<~Kttmu<9%QP}1=SvvZxa>0o=jTg`DYJ@X zWQ}Bq&w{BqVIvyV#M43xaF~D(XP1O}p2Y%= zM@>)$D$Xf360+mtMHH~a8kox!%hZ+gOBt%u>N*u_PKddn>p3%jRN#1>6hkX-?GoO_EeUul}t%4VsbK^`J_=1T_J%S zznWBCT2Pz^y~$!%<;~F629e0pyi!NW_f27bCCJp0x^SLF(MF_tA^V3j-PucO2fhZa%4x>HeAe zhOw~DJM=o9O^+&Q69Xv|bh90NMUpbKej6?S>8ZwL7~QXUW-SCdy-j9n?Y!FUy0!+O zt-mr5F`xA8qbo_&v5KC+f09bn5uD?)tBWa6_eB%m{&8Jd!t=euA#h4)3tS z7z8k7GmM!HHEF7(BTt}gC3`a+@ReXQiM|2~R$|ZkQNRv~gHh;f2139p@^no_-O9?Y zA+4Yv<$qZH3QY$R$M0^~&&l8FB`fEO&Lg*pyKtK*m16ubA#!AKDJdh z1RC9vd4Oy}6Ye&xBds$K@*27JQ2biC_|!<1+05~s%T^F%`hj7|~-2xa=7@a+k)aE2+VEjZRMq!2!98%*! zQmc(K_IPME&D|HXCKJt=t>?5z-WQ%>(HFt!@+Xg!b=knAbXXafxkP2kk@+vNlSiQY zXb__p4j(6v%9E0|yTcG9tCI8{e~B%g_6x;)jT{0kGG6;&vdI?VrCA$qmN+LpR(0R> zk>EzpT=P?z2+7B3*gXfDazDipYP;G7f|Gqj;f4d#F-`A8qclIgp5dr|BUSe_Da|{2 z_0GupJrKp~bVn)q=8kOfS7Ue_h(k^$L(&Ok3_w}_lDb--2OpXBn*FAHpmaO6ljJ)I z77GAcEwSPdn*8MXEQj_jRwZt{;+t)^q(MFhiNv3zC4g^BO6g*hs`#`QT8eKmvI#LL zlQ;T6NrKJzv7lGI{Y-?EfK?%H7qy9SBr*(sJuUXN52S$S}oD~5H9-V>P> zpA|7{&ONSyWMRSm712&AO1ISeNx1{7A~y$QkLPbwdZCbqz~LwRt_=;A<<+}Gb;Y2{ zUSO6fJYKyB6%od!Z4s*Q1vZhKjIrkPYXV3%@ewsC?-1{-nQ1$WlPQkRm?!N_5VAf4kR7Mueq zps?@^5OX|AHB5r|??fnHoRVs$LXcFe(MuLEPb!af1yUY}BA3i>Ts@uxpk=-@*UNmm z1kVl8vq?+cMcYvg8NR9-bqHfg1T<`?ybC3F%<4RlXse|Vw^Zp}n>dd$g!`o3o(Br2QH98|!z*(3 zpbT-$MOinjOIAm*A5}Ly^e+bbzhtef^BSL;=?`jC<`uc5uAu%s#kMLW(w&Ru;|l^O znr;15iH(_{Rk`gcZWPmYR$o^XLSubwLfCF!_*7yH{gYD)w4 z;#cr`bbICh_VqmfPp`=>&7KB_GHtCK2M5~q>DdVuZocKU947)4S6Ve)1b1n~x}hmH`M@jHr+VT{yIGKP&rU1KQt6 z)*&>rV&9*azn|*BZx4t3O{t%w-<2b| z5OOOt=Vo|mz<^6R9F^L?LhmGp>^ZJq^Ep(&bE(6Q1uy)s6 zBq6%0!UfswuI={;;5q<<i<&Pt5@X0$igmQNtZ&Goyb^ycsc$j?le%>L`%N4NZ!Ssr$=yW z0TB%XG%9&nV-714^!WVX!qGb{p{YbUl(Pav4L}I*2w$q6$iJN~ni2}I3gMXLIcG1<%cOoEm$-Yx2%~Y!uo<% z7U3&>xiB+?@*45XSx8M%D53L4ICMc8ixbh?!HVYqv;k!GvplJTq8Gu%GWFnqc#Tu+ zTPuv@ngHQ(0PsF*AaN`u@*^55Fa(hh$tGom23}Wt?lMkZ!K?3IYp4s1H~bJ$eY9&- zU@`hKhcG_i57C^t>NA8wR81sQM`89{II2cpqG>-}7Q9F#UIHnHGQI+!S4IXjkIoH5 zH?@MFR(PBi52FWWfymP16cYQCwJ+=#ENg-ikCO(15Lf^KmLG2%cY6y}k6czn4GzeK zLk>}gKp;z!H>o#P=HQ66w`m`pTCMoIV!Ns~w%3Mm%~I$2c#h2y8}B#6-= z)%C*Cz?CQ>)XRWFF>v(v`qUblRBDilfKxH)^21R!44Bv2UO+F1@RJH|HRE}F7pKl_ zp+KWb#B7Kb3E>>IGn3eig2L3hy^CxzB5^D)*)?k-Qk>E z&MM4ZAgP#2)L>wnx>`>qaK3owl-T33p+rNece`dpnYjrc zNVF5g=xmNtwbM)tdEfo!`M1MLE@tz`x3$`E?5F$67gtEvv&b` z7t%#|(Q3`k*-koerF*;iu1W1CmXYu>eP`(Z6n0iYZ7|vvE)*#i97^$`KgEItr+6u8 zDNYHn1gR5HY6a+yRZAhvNhlCme&!b zF<9@0BF)&Po15cxl=?*v-FPqa2=gHGM0Qv9P&V888>SA=fb`rfC)u*>vz&fSRNpoi z#o4bEJwNQsUVH}=)-|*4ekn{mzv3kHYJ7Wm-2~@Y7nn6JJR;Ul2;{#<9NV_SXO;4Q2J$3THXg z2q!q036JkDg0#cp8E7QMam|OVGt?1fXt+5`jUCZUQzfa%CJJ)8iHqKTlBrT z@|DoCiH|o+!u@%u#|IjZ)hH&2#8U-LakpKI!F0)zd(6nZjXsz%2uUq{Ll3X3t$#H&Q#pj#)bSXV$ zJdV$UH~zRZSVkZ6&DZVHAmOLZb4@w-0(jY3_mBiz8aOIj@f!MJe2>YWkNC53?tm}b zqc$SLc4M(x&65vU$cwxXdVD4u>UMl0^+i$HQc@Xjw}rOIK+by!HdGrjv*9m^Bv09X z(o{S`z1T|Y7`K~Yk;#oJF-;@^Cjkzu0{^b~p!>jZxkFlGxj-|r<@{;g_i^%G%Fq3@ z67xL+=6j|ToG#q4A*<8JFFa6P092F?>XomTDUezx@^mCv&2>iMNfF~9m-1K#2H8N529Suo-j^A`CQ zc*{l0Pzg7)&P#YI6(SMcJhbmu$=B`_iAy}mqg|7HAu(?c?FrI?O*~y!gLbV&f1f0? zP43yU6e#1%Ws|Oyq-)SBoPRd^D0#k8v=+2KMVvet#q#BA!fH`lI1L%3S9OI^z4o^U zLquEwU$nwfk=8HQUS9tdg95oWS4cB~29g-B{ieIG!>G%14KeE!%adl^t7AGsgRxwD zCgjM=ESZ+bGCYu21l9TlOo#V_BOn7jePAmf>jj)tO^Qq7{(noCM#O@k$)fGP@_B?z z(-)FGz%@$#f&Zp{bT02d(Qz_7#Px@nfr3V|52!O+=!MqGUx>9qQr&<<9S^~E3XBMo z2QA^LPySb=f>s^tmJj?FmRCFc=(<*;TPMu~l-Ld*r`{))tAsFz?Foiar;&x*hjV@8 z8d_s&jE@lRe;ooA6=gZnkz=&BU98$-+M% zCV!+`CeSI&Mpz4-mdGKrSLcQC_qZnBm8mR|n>;Gt^>`im8~oN=L3AcTK|TM79rp?| zB_Z0b?fjGVP31e~LJ%)u2tG3J$I{bAkE9LpEHzr7c?-XN1&or7IRq>QlSOmBz6D@v z(i*-V*7>^cOEuKY`~TB?S}0JY7y8y7A)4dX7r^ZXcQgM5vXA2qBHY_WJDyu!T*+ns zWOZe^9Q^G!+BcaTYjs0HlVMT9<7Z zW+kfnCPK{3KRKHb<8lYX{DahjM+w?POc4^1Y)!~AGW>AiO+jNzNN7U5ii`*6dp7Y% z_1o>*c{6IE8G#9onO4!~AC+Gq6wta3r5@;1nt2EK_@fh$`nq|jZcWJ7Yxa*{+2H4H zMJ~&ab?0G&GDUqV-Ru|IsAhqrf=q+{JB$tTht|~UTse*f#b}pQ?kQSjX@f&4)ut#{ zW!@mVFO4gE+VWJ#=*pMPwQnv3DZ1Z1(QjjTFJ@Pv3E<0)ke$*sm2*X?HuwM%kox0x z^WGucv$Ne{^XF@(d0qJ`757|7$+29=(yAH->+T~w+ow66Nbw?Ly3*$tmA_ZB8rjVc zX`I!{0@nZ^8~A~4QN}z_dNxz-dMC^5w6pXV-vTS+4;zOZ#MmTK1}T)`yT{yBEuu^RimyGWEjcNs~2bd-|im$!K^TsD|u9eQ_g9xP>n z_VhNkSp{n+DBktL18Y76_l#MDdie!GJ6G@F!1;Nz>18QT;E2P<)~5C^NrH^us513@ zz2~T#Yd%@7nl6XS6o~bD(}Jz>=h032#7oM(>d@V zW4HP|nIiV-C3KR{e}peMx!G&@=Wj=StCyi=Ws5|h)q_tqr4+toa(1eKH#wa)`@N$R zPT3-7IVV`!Q}p@bGH1R_T8Z7+vdYMB?u(C{3;p!hV+dV~Nu?bS`H5vLcsq#iP9 z?U&-Yzu|_*n?tKI$uH}j3FXMrf?d^zs|vOasWT2_GD4pU)c9zzH-Y&wSOb1fdH21$ zCYA5;yKjyNd3tv_f{f9d0Hv+u>kYP9pCAy%QZ9QAhQA1Io>xW`dqyWy|8As4FMfEO zifm;Z2isUxOTc3#CvRK)=A9!`hr_$l%+AY3WVH; zGwwyPh>@z0&%$&rcjpUFTH%JM3T0s}=DTkuX2gHh(ShoKr9nWOS*4TTxa@o8Nm5yoXhWz`<6}Tg$q`zf=nWGkq*OdVJd%$Pw!xfYw0M04QQGd z@OYK>++trm;H$e9x&NenfOdtKPG50Y%zFb z50+W4BbbiiBzuD*dBg;I+WT}5NtzGO(z>2F6gZE!{Bn~r9m)#zzX!Eh+Oub%4TojQ zFI(w+FYDDAcRYNf(12KvC2g(Cxi!aP@u`EmV)>{*!L$SJpv$^;mV;^#4}9hVR+oNz zA^+Z=$7GN8mqq|?s_HxxGml}WixNq2fDAVm#?U(fWPhDzhbTMrwYCdRJA;- zHP12e6I{&tCq9gpUFoxHY8w5Kgw)N%0gZfu^ODR7cFb4$%0$X7$5WS;DM!lfOU%H> z)f^E43_d1(M0XVK$c+8Pu9o4$Cm-j`smYLPZh3e6-7fIUs;VasHaB_v!|^R?h(EvH ze*vHW@E#eUbap}KLk1@U505{n=MUC15YusY^x%^Cx7Dyvgg63$5`TEIqdia-1eB40 zI@(FfNy~s7ARwRv)B&XY|4&$n89Kuq$Yp>s*=$`8`4Eya(*I48q~}e*ugw?+PEk*v zwrlI_AM4lH9T!40^%)2lSs~i5gd-jcaWTEpFE6pZ-xkXlbPQ3K`WUDDf#-zZjGoGJy(Ohb98oJFZwdU!})AsY%GEMWm~*z00Y-*JR7>j=)I{ z0JRifOAn+H-%N6{+TJ69(8%=Jy7CT0eg|;K2lTQVvAHI`5GTrkNV+B$d?&P+w#)u7 zAlK;gL`Z4K+P6l!vAgkM^kKDH%vfdg=|L#giPsdWw{&i4#8*;5l;6e?xM2d%~ z9HiVACnVkEVoQ84OBC~`;$8IbV+78hipMmHI%m3kr*Mt=b4hnGHq%M= zE0#9!m;enrbA>IFTs%b_p@5xDdB;QU-3|E4J613H9VmhOfJieVg%>N@T|{lwOu>u! zNDH-PEj$p?Y%{tnjE@6UH_~p?32WYH0XFP_oyRp>DYh&e{oX(olGzZOJLN`ba@^H% z`PkroRp&H4j81RESrHN8R6{sn$Co!q@wmIrbt2(Bk%{bX%vf}Tu|4rMjInCNuRRQ; zxf0kRts7W!=t<$R#onHPJ5g5din)xHX28qO=F_Eo>x*3xs?8L*q|D#+2@adPG}taY z-p+b=3Gm~en+S>WIFat?e-s?kK$rRowBYkoPXVJ8`ePKdd4o`BsyrHboX6ZCgRdDs zZMIS5)OB6uykAW~5??%ExNw)vpuqot6;cfgO=`eu`6e(=FhiekxF!N*XeVrPLRLR_ zffe|Pa^mTwW{f{gIX!NXi-u6R##KxvRLT|@9klwtxN?@_K<%W%G zzwL<`>Pg;2b#^}&>fW}jP37DK1}8h6%2xIo1V{cH^&8e3ZuL1kk;wZ}i9Z+O7(kdb zb6`>WCZT|oS5sF0bX6N#?R~F9)G508XLX0*5_=XUM@MJP%(xAL^8R4O*y0n)`5%ne zdmW-(V@AFKD%=5TtJna2y=NhKH?7cj4yK87F#4uVk>Kcsk7WX*`n7r9QI~YGifk z+b3QtS*>pp2ZyzJf{ti$!4)A0ia|!%hYC==Swo|V(a`S{_#a#cDYUW#JYKwj{ta0Y zq^H!trYT#Dk2ruHNFcC5Icuo94t0Xk@k2?*`;9)Q{MAe};|WBw)H0aFA#fONynSsS z_O5$pZd2xW?~e3l^bPdP+^fyKTFzpn diff --git a/Papers/Paper/r-references.bib b/Papers/Paper/r-references.bib index f10cfba..6b5348c 100644 --- a/Papers/Paper/r-references.bib +++ b/Papers/Paper/r-references.bib @@ -2,7 +2,6 @@ @Manual{R-base title = {R: A Language and Environment for Statistical Computing}, author = {{R Core Team}}, organization = {R Foundation for Statistical Computing}, - address = {Vienna, Austria}, year = {2022}, url = {https://www.R-project.org/}, } @@ -10,7 +9,6 @@ @Book{R-bookdown title = {bookdown: Authoring Books and Technical Documents with {R} Markdown}, author = {Yihui Xie}, publisher = {Chapman and Hall/CRC}, - address = {Boca Raton, Florida}, year = {2016}, note = {ISBN 978-1138700109}, url = {https://bookdown.org/yihui/bookdown}, diff --git a/Papers/Paper/refs.bib b/Papers/Paper/refs.bib index eee187a..50ba426 100644 --- a/Papers/Paper/refs.bib +++ b/Papers/Paper/refs.bib @@ -60,7 +60,7 @@ @article{batesFittingLinearMixedeffects2015 @article{boyceMazeMadeEasy2020, ids = {boyceMazeMadeEasy2020a}, - title = {Maze {{Made Easy}}: {{Better}} and Easier Measurement of Incremental Processing Difficulty}, + title = {Maze Made Easy: {{Better}} and Easier Measurement of Incremental Processing Difficulty}, shorttitle = {Maze {{Made Easy}}}, author = {Boyce, Veronica and Futrell, Richard and Levy, Roger P.}, year = {2020}, @@ -87,7 +87,7 @@ @article{burknerAdvancedBayesianMultilevel2018 } @article{chmielewski2020, - title = {An {{MTurk Crisis}}? {{Shifts}} in {{Data Quality}} and the {{Impact}} on {{Study Results}}}, + title = {An {{MTurk}} Crisis? {{Shifts}} in Data Quality and the Impact on Study Results}, shorttitle = {An {{MTurk Crisis}}?}, author = {Chmielewski, Michael and Kucker, Sarah C.}, year = {2020}, @@ -104,7 +104,7 @@ @article{chmielewski2020 } @article{daiTransformerXLAttentiveLanguage2019, - title = {Transformer-{{XL}}: {{Attentive Language Models Beyond}} a {{Fixed-Length Context}}}, + title = {Transformer-{{XL}}: {{Attentive}} Language Models Beyond a Fixed-Length Context}, shorttitle = {Transformer-{{XL}}}, author = {Dai, Zihang and Yang, Zhilin and Yang, Yiming and Carbonell, Jaime and Le, Quoc V. and Salakhutdinov, Ruslan}, year = {2019}, @@ -188,7 +188,7 @@ @article{futrellNaturalStoriesCorpus2020 } @inproceedings{gauthierSyntaxGymOnlinePlatform2020, - title = {{{SyntaxGym}}: {{An Online Platform}} for {{Targeted Evaluation}} of {{Language Models}}}, + title = {{{SyntaxGym}}: {{An}} Online Platform for Targeted Evaluation of Language Models}, shorttitle = {{{SyntaxGym}}}, booktitle = {Proceedings of the 58th {{Annual Meeting}} of the {{Association}} for {{Computational Linguistics}}: {{System Demonstrations}}}, author = {Gauthier, Jon and Hu, Jennifer and Wilcox, Ethan and Qian, Peng and Levy, Roger}, @@ -239,7 +239,7 @@ @inproceedings{gulordava18 @techreport{hauser2018, type = {Preprint}, - title = {Common {{Concerns}} with {{MTurk}} as a {{Participant Pool}}: {{Evidence}} and {{Solutions}}}, + title = {Common Concerns with {{MTurk}} as a Participant Pool: Evidence and Solutions}, shorttitle = {Common {{Concerns}} with {{MTurk}} as a {{Participant Pool}}}, author = {Hauser, David and Paolacci, Gabriele and Chandler, Jesse J.}, year = {2018}, @@ -252,7 +252,7 @@ @techreport{hauser2018 } @article{huSystematicAssessmentSyntactic2020, - title = {A {{Systematic Assessment}} of {{Syntactic Generalization}} in {{Neural Language Models}}}, + title = {A Systematic Assessment of Syntactic Generalization in Neural Language Models}, author = {Hu, Jennifer and Gauthier, Jon and Qian, Peng and Wilcox, Ethan and Levy, Roger P.}, year = {2020}, month = may, @@ -282,7 +282,7 @@ @article{klieglLengthFrequencyPredictability2004 } @article{koornneefUseVerbbasedImplicit2006, - title = {On the Use of Verb-Based Implicit Causality in Sentence Comprehension : {{Evidence}} from Self-Paced Reading and Eye Tracking}, + title = {On the Use of Verb-Based Implicit Causality in Sentence Comprehension: {{Evidence}} from Self-Paced Reading and Eye Tracking}, author = {Koornneef, Arnout W. and {van Berkum}, Jos J.A.}, year = {2006}, journal = {Journal of Memory and Language}, @@ -349,7 +349,7 @@ @article{peer2017 } @article{radfordLanguageModelsAre, - title = {Language {{Models}} Are {{Unsupervised Multitask Learners}}}, + title = {Language Models Are Unsupervised Multitask Learners}, author = {Radford, Alec and Wu, Jeffrey and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya}, pages = {24}, abstract = {Natural language processing tasks, such as question answering, machine translation, reading comprehension, and summarization, are typically approached with supervised learning on taskspecific datasets. We demonstrate that language models begin to learn these tasks without any explicit supervision when trained on a new dataset of millions of webpages called WebText. When conditioned on a document plus questions, the answers generated by the language model reach 55 F1 on the CoQA dataset - matching or exceeding the performance of 3 out of 4 baseline systems without using the 127,000+ training examples. The capacity of the language model is essential to the success of zero-shot task transfer and increasing it improves performance in a log-linear fashion across tasks. Our largest model, GPT-2, is a 1.5B parameter Transformer that achieves state of the art results on 7 out of 8 tested language modeling datasets in a zero-shot setting but still underfits WebText. Samples from the model reflect these improvements and contain coherent paragraphs of text. These findings suggest a promising path towards building language processing systems which learn to perform tasks from their naturally occurring demonstrations.}, @@ -360,7 +360,7 @@ @article{radfordLanguageModelsAre @article{raynerEffectsFrequencyPredictability2004, ids = {rayner-etal:2004}, - title = {The {{Effects}} of {{Frequency}} and {{Predictability}} on {{Eye Fixations}} in {{Reading}}: {{Implications}} for the {{E-Z Reader Model}}.}, + title = {The Effects of Frequency and Predictability on Eye Fixations in Reading: {{Implications}} for the {{E-Z Reader}} Model.}, shorttitle = {The {{Effects}} of {{Frequency}} and {{Predictability}} on {{Eye Fixations}} in {{Reading}}}, author = {Rayner, Keith and Ashby, Jane and Pollatsek, Alexander and Reichle, Erik D.}, year = {2004}, @@ -387,7 +387,7 @@ @article{raynerEyeMovementsReading1998 } @inproceedings{shainDeconvolutionalTimeSeries2018, - title = {Deconvolutional {{Time Series Regression}}: {{A Technique}} for {{Modeling Temporally Diffuse Effects}}}, + title = {Deconvolutional Time Series Regression: {{A}} Technique for Modeling Temporally Diffuse Effects}, shorttitle = {Deconvolutional {{Time Series Regression}}}, booktitle = {Proceedings of the 2018 {{Conference}} on {{Empirical Methods}} in {{Natural Language Processing}}}, author = {Shain, Cory and Schuler, William}, @@ -431,7 +431,6 @@ @inproceedings{smith-levy:2008 pages = {595–600}, booktitle = {Proceedings of the 30th Annual Meeting of the Cognitive Science Society}, author = {Smith, Nathaniel J. and Levy, Roger}, - address = {Washington, DC} } @article{smithEffectWordPredictability2013, @@ -475,14 +474,13 @@ @article{traxlerProcessingSubjectObject2002 } @article{vaniUsingInterpolatedMaze2021, - title = {Using the {{Interpolated Maze Task}} to {{Assess Incremental Processing}} in {{English Relative Clauses}}}, + title = {Using the Interpolated {{Maze}} Task to Assess Incremental Processing in {{English}} Relative Clauses}, author = {Vani, Pranali and Wilcox, Ethan Gotlieb and Levy, Roger}, year = {2021}, journal = {Proceedings of the Annual Meeting of the Cognitive Science Society}, volume = {43}, number = {43}, issn = {1069-7977}, - abstract = {In English, Subject Relative Clauses are processed more quickly than Object Relative Clauses, but open questions remain about where in the clause slowdown occurs. The surprisal theory of incremental processing, under which processing difficulty corresponds to probabilistic expectations about upcoming material, predicts that slowdown should occur immediately on material that disambiguates the subject from object relative clause. However, evidence from eye tracking and self-paced reading studies suggests that slowdown occurs downstream of RC-disambiguating material, on the relative clause verb. These methods, however, suffer from well-known spillover effects which makes their results difficult to interpret. To address these issues, we introduce and deploy a novel variant of the Maze task for reading times (Forster, Guerrera, \& Elliot, 2009), called the Interpolated Maze in two English web-based experiments. In Experiment 1, we find that the locus of reading-time differences between SRCs and ORCs falls on immediate disambiguating definite determiner. Experiment 2 provides a control, showing that ORCs are read more slowly than lexically-matching, non-anomalous material. These results provide new evidence for the locus of processing difficulty in relative clauses and support the surprisal theory of incremental processing.}, langid = {english}, keywords = {read}, file = {/home/vboyce/Zotero/storage/SN4J2YI6/Vani et al. - 2021 - Using the Interpolated Maze Task to Assess Increme.pdf;/home/vboyce/Zotero/storage/MR57FEX9/3x34x7dz.html} @@ -490,7 +488,7 @@ @article{vaniUsingInterpolatedMaze2021 @article{wilcoxPredictivePowerNeural2020, ids = {wilcoxPredictivePowerNeural}, - title = {On the {{Predictive Power}} of {{Neural Language Models}} for {{Human Real-Time Comprehension Behavior}}}, + title = {On the Predictive Power of Neural Language Models for Human Real-Time Comprehension Behavior}, author = {Wilcox, Ethan and Gauthier, Jon and Hu, Jennifer and Qian, Peng and Levy, Roger}, year = {2020}, month = jun, @@ -512,7 +510,6 @@ @inproceedings{wilcoxTargetedAssessmentIncremental2021 month = aug, pages = {939--952}, publisher = {{Association for Computational Linguistics}}, - address = {{Online}}, doi = {10.18653/v1/2021.acl-long.76}, abstract = {We present a targeted, scaled-up comparison of incremental processing in humans and neural language models by collecting by-word reaction time data for sixteen different syntactic test suites across a range of structural phenomena. Human reaction time data comes from a novel online experimental paradigm called the Interpolated Maze task. We compare human reaction times to by-word probabilities for four contemporary language models, with different architectures and trained on a range of data set sizes. We find that across many phenomena, both humans and language models show increased processing difficulty in ungrammatical sentence regions with human and model `accuracy' scores a la Marvin and Linzen (2018) about equal. However, although language model outputs match humans in direction, we show that models systematically under-predict the difference in magnitude of incremental processing difficulty between grammatical and ungrammatical sentences. Specifically, when models encounter syntactic violations they fail to accurately predict the longer reading times observed in the human data. These results call into question whether contemporary language models are approaching human-like performance for sensitivity to syntactic violations.}, keywords = {read}, @@ -600,9 +597,9 @@ @incollection{mitchell:2004online-methods booktitle = {The on-line study of sentence comprehension: Eye-tracking, ERP and beyond}, date-added = {2017-12-18 21:14:04 +0000}, date-modified = {2017-12-18 21:15:20 +0000}, - editor = {Carreiras, Manuel, and {Clifton Jr.}, Charles}, + editor = {Manuel Carreiras and Charles {Clifton Jr.} }, pages = {15--32}, - publisher = {London: Routledge}, + publisher = {Routledge}, title = {On-line methods in language processing: Introduction and historical review}, year = {2004}} @@ -660,7 +657,7 @@ @incollection{mitchell:1984 date-added = {2009-10-11 15:41:36 -0700}, date-modified = {2009-10-11 15:43:55 -0700}, editor = {D. Kieras and M. A. Just}, - publisher = {Hillsdale, NJ: Earlbaum}, + publisher = {Earlbaum}, title = {An Evaluation of Subject-Paced Reading Tasks and Other Methods for Investigating Immediate Processes in Reading}, year = {1984}} @@ -668,7 +665,7 @@ @book{wood:2017GAMs author = {Wood, Simon}, date-added = {2015-07-14 22:48:32 +0000}, date-modified = {2015-07-15 12:28:18 +0000}, - publisher = {CRC press}, + publisher = {CRC}, title = {Generalized additive models: an introduction with {R}}, edition = {2}, year = {2017}} @@ -706,7 +703,6 @@ @misc{levinson:2022-beyond-surprising @inproceedings{hale:2001, - address = {Pittsburgh, Pennsylvania}, author = {John Hale}, booktitle = naacl2, date-modified = {2013-04-29 05:57:13 +0000}, @@ -738,7 +734,6 @@ @article{linzen-etal:2016tacl @inproceedings{marvin-linzen:2018-targeted, abstract = {We present a data set for evaluating the grammaticality of the predictions of a language model. We automatically construct a large number of minimally different pairs of English sentences, each consisting of a grammatical and an ungrammatical sentence. The sentence pairs represent different variations of structure-sensitive phenomena: subject-verb agreement, reflexive anaphora and negative polarity items. We expect a language model to assign a higher probability to the grammatical sentence than the ungrammatical one. In an experiment using this data set, an LSTM language model performed poorly on many of the constructions. Multi-task training with a syntactic objective (CCG supertagging) improved the LSTM{'}s accuracy, but a large gap remained between its performance and the accuracy of human participants recruited online. This suggests that there is considerable room for improvement over LSTMs in capturing syntax in a language model.}, - address = {Brussels, Belgium}, author = {Marvin, Rebecca and Linzen, Tal}, booktitle = emnlp2018, date-added = {2019-05-31 17:57:21 -0400}, @@ -848,7 +843,7 @@ @incollection{levy:2013sentenceProcessing date-modified = {2019-02-14 13:31:07 -0500}, editor = {Roger P. G. {van Gompel}}, pages = {78--114}, - publisher = {Hove: Psychology Press}, + publisher = {Psychology Press}, rogerslocalurl = {papers/levy-2013-memory-and-surprisal-corrected.pdf}, title = {Memory and Surprisal in Human Sentence Comprehension}, topic = {Sentence processing}, @@ -862,7 +857,6 @@ @inproceedings{mccoy-etal-2019-right booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics", month = jul, year = "2019", - address = "Florence, Italy", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/P19-1334", doi = "10.18653/v1/P19-1334", @@ -876,7 +870,6 @@ @inproceedings{chaves-2020-dont booktitle = "Proceedings of the Society for Computation in Linguistics 2020", month = jan, year = "2020", - address = "New York, New York", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.scil-1.1", pages = "1--11",