forked from ajbrock/BigGAN-PyTorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
make_hdf5.py
110 lines (98 loc) · 4.85 KB
/
make_hdf5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
""" Convert dataset to HDF5
This script preprocesses a dataset and saves it (images and labels) to
an HDF5 file for improved I/O. """
import os
import sys
from argparse import ArgumentParser
from tqdm import tqdm, trange
import h5py as h5
import numpy as np
import torch
import torchvision.datasets as dset
import torchvision.transforms as transforms
from torchvision.utils import save_image
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
import utils
def prepare_parser():
usage = 'Parser for ImageNet HDF5 scripts.'
parser = ArgumentParser(description=usage)
parser.add_argument(
'--dataset', type=str, default='I128',
help='Which Dataset to train on, out of I128, I256, C10, C100;'
'Append "_hdf5" to use the hdf5 version for ISLVRC (default: %(default)s)')
parser.add_argument(
'--data_root', type=str, default='data',
help='Default location where data is stored (default: %(default)s)')
parser.add_argument(
'--batch_size', type=int, default=256,
help='Default overall batchsize (default: %(default)s)')
parser.add_argument(
'--num_workers', type=int, default=16,
help='Number of dataloader workers (default: %(default)s)')
parser.add_argument(
'--chunk_size', type=int, default=500,
help='Default overall batchsize (default: %(default)s)')
parser.add_argument(
'--compression', action='store_true', default=False,
help='Use LZF compression? (default: %(default)s)')
return parser
def run(config):
if 'hdf5' in config['dataset']:
raise ValueError('Reading from an HDF5 file which you will probably be '
'about to overwrite! Override this error only if you know '
'what you''re doing!')
# Get image size
config['image_size'] = utils.imsize_dict[config['dataset']]
# Update compression entry
config['compression'] = 'lzf' if config['compression'] else None #No compression; can also use 'lzf'
# Get dataset
kwargs = {'num_workers': config['num_workers'], 'pin_memory': False, 'drop_last': False}
train_loader = utils.get_data_loaders(dataset=config['dataset'],
batch_size=config['batch_size'],
shuffle=False,
data_root=config['data_root'],
use_multiepoch_sampler=False,
**kwargs)[0]
# HDF5 supports chunking and compression. You may want to experiment
# with different chunk sizes to see how it runs on your machines.
# Chunk Size/compression Read speed @ 256x256 Read speed @ 128x128 Filesize @ 128x128 Time to write @128x128
# 1 / None 20/s
# 500 / None ramps up to 77/s 102/s 61GB 23min
# 500 / LZF 8/s 56GB 23min
# 1000 / None 78/s
# 5000 / None 81/s
# auto:(125,1,16,32) / None 11/s 61GB
print('Starting to load %s into an HDF5 file with chunk size %i and compression %s...' % (config['dataset'], config['chunk_size'], config['compression']))
# Loop over train loader
for i,(x,y) in enumerate(tqdm(train_loader)):
# Stick X into the range [0, 255] since it's coming from the train loader
x = (255 * ((x + 1) / 2.0)).byte().numpy()
# Numpyify y
y = y.numpy()
# If we're on the first batch, prepare the hdf5
if i==0:
with h5.File(config['data_root'] + '/ILSVRC%i.hdf5' % config['image_size'], 'w') as f:
print('Producing dataset of len %d' % len(train_loader.dataset))
imgs_dset = f.create_dataset('imgs', x.shape,dtype='uint8', maxshape=(len(train_loader.dataset), 3, config['image_size'], config['image_size']),
chunks=(config['chunk_size'], 3, config['image_size'], config['image_size']), compression=config['compression'])
print('Image chunks chosen as ' + str(imgs_dset.chunks))
imgs_dset[...] = x
labels_dset = f.create_dataset('labels', y.shape, dtype='int64', maxshape=(len(train_loader.dataset),), chunks=(config['chunk_size'],), compression=config['compression'])
print('Label chunks chosen as ' + str(labels_dset.chunks))
labels_dset[...] = y
# Else append to the hdf5
else:
with h5.File(config['data_root'] + '/ILSVRC%i.hdf5' % config['image_size'], 'a') as f:
f['imgs'].resize(f['imgs'].shape[0] + x.shape[0], axis=0)
f['imgs'][-x.shape[0]:] = x
f['labels'].resize(f['labels'].shape[0] + y.shape[0], axis=0)
f['labels'][-y.shape[0]:] = y
def main():
# parse command line and run
parser = prepare_parser()
config = vars(parser.parse_args())
print(config)
run(config)
if __name__ == '__main__':
main()