forked from alfiedennen/GPT-4-coding-assistant
-
Notifications
You must be signed in to change notification settings - Fork 0
/
create_embeddings.py
113 lines (87 loc) · 3.79 KB
/
create_embeddings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import os
import json
import re
import numpy as np
import fnmatch
import torch
from annoy import AnnoyIndex
from transformers import AutoTokenizer, AutoModel, pipeline
from sklearn.decomposition import PCA
# Load the OpenAI Codex tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("microsoft/codebert-base")
model = AutoModel.from_pretrained("microsoft/codebert-base")
# Create a code completion pipeline using the Codebert model
code_completion = pipeline('text-generation', model=model, tokenizer=tokenizer)
def preprocess_code(code, file_type):
# Remove single-line comments
if file_type in ['py', 'js']:
code = re.sub(r'//.*', '', code)
# Remove multi-line comments
if file_type in ['py', 'js', 'css']:
code = re.sub(r'/\*[\s\S]*?\*/', '', code)
# Remove HTML comments
if file_type == 'html':
code = re.sub(r'<!--[\s\S]*?-->', '', code)
# Normalize whitespace
code = re.sub(r'\n\s*\n', '\n\n', code)
code = re.sub(r'\t', ' ', code)
# Additional preprocessing for better context
code = re.sub(r'\n{3,}', '\n\n', code) # Remove excessive blank lines
code = re.sub(r'[^\x00-\x7F]+', '', code) # Remove non-ASCII characters
return code
def generate_embeddings_for_code(code):
max_len = 510
code_chunks = [code[i:i + max_len] for i in range(0, len(code), max_len)]
chunk_embeddings = []
for chunk in code_chunks:
if len(chunk) > 0:
inputs = tokenizer.encode_plus(chunk, return_tensors="pt", padding=True, truncation=True, max_length=512)
with torch.no_grad():
embeddings = model(**inputs).last_hidden_state
chunk_embedding = embeddings.mean(dim=1).squeeze().tolist()
chunk_embeddings.append(chunk_embedding)
if len(chunk_embeddings) > 0:
chunk_embeddings_array = np.vstack(chunk_embeddings)
code_embedding = chunk_embeddings_array.mean(axis=0).tolist()
# Apply PCA to reduce the dimensionality of the embeddings
reduced_code_embedding = reduce_embedding_dimension([code_embedding])
return reduced_code_embedding[0] # Return the first (and only) item in the list
else:
return []
def generate_embeddings_for_file(file_path):
with open(file_path, 'r') as f:
code = f.read()
file_type = file_path.split('.')[-1]
processed_code = preprocess_code(code, file_type)
embeddings = generate_embeddings_for_code(processed_code)
return embeddings
def generate_embeddings_for_all_files(website_path):
embeddings_dict = {}
annoy_index = AnnoyIndex(768, 'angular') # 768 is the embedding dimension
index_map = {}
index_counter = 0
for root, _, files in os.walk(website_path):
for ext in ('*.py', '*.html', '*.css', '*.js'):
for file in fnmatch.filter(files, ext):
file_path = os.path.join(root, file)
embeddings = generate_embeddings_for_file(file_path)
embeddings_dict[file_path] = embeddings
annoy_index.add_item(index_counter, embeddings)
index_map[index_counter] = file_path
index_counter += 1
print(f"Vectorized file: {file_path}")
annoy_index.build(50) # 50 trees for fast approximate search
annoy_index.save('embeddings.ann')
with open('embeddings.json', 'w') as f:
json.dump(embeddings_dict, f)
with open('index_map.json', 'w') as f:
json.dump(index_map, f)
def reduce_embedding_dimension(embeddings, n_components=200):
if len(embeddings) > 1:
pca = PCA(n_components=n_components)
reduced_embeddings = pca.fit_transform(embeddings)
else:
reduced_embeddings = embeddings
return reduced_embeddings
if __name__ == "__main__":
generate_embeddings_for_all_files("code")