The code defines a function called plot
that takes two parameters: columns_to_plot
and df
.
it plot all the selected columns in the data frame
plot(columns_to_plot, df)
The plot_threshold
function is a custom function that plots the values of specified columns in a DataFrame over a specified time range.
plot_threshold(columns_to_plot, df, start_time, end_time)
plot_threshold_same_plot(columns_to_plot, df, start_time, end_time, existing_plt=None, y_min=None, y_max=None,i=0)
print_times_near_threshold(columns_to_plot, df, start_time, end_time, threshold=3.6, tolerance=0.01)
The code defines a function called plotAll
that takes a data frame as input & Plot all the parameter along the time axis.
plotAll(data_frame)
The code defines a function called convert_to_linear_time
that takes a string representing a date and time as input & convert it into linear Time.
convert_to_linear_time(date_time_str)
The code defines a function called max_threshold
that takes four parameters: columns_for_max
, df
, start_time
, and end_time
.
The function max_threshold
takes a list of column indices, a DataFrame, a start time, and an end time, and returns the maximum values for the specified columns within the specified time range.
- A list of
column
indices for which you want to find the maximum or minimun values in the dataframe - The parameter
df
is a pandas DataFrame that contains the data you want to analyze. It is assumed that the DataFrame has a column named "Zeit" that represents the time values - The
start time
is the lower bound of the time range you want to filter the dataframe on. It represents the earliest time you want to include in the analysis - The
end_time
parameter is the maximum time value for which you want to filter the data return
a list of maximum values for the specified columns in the given dataframe within the specified time range.
max_threshold(columns, df, start_time, end_time)
min_threshold(columns, df, start_time, end_time)
crop_values(columns, df, start_time, end_time, startvalue, endvalue)
function to take an array of DataFrames and plot the specified columns from each DataFrame in a single plot
def plotAllDates( columns_to_plot,dataframes):
for df in dataframes:
for col_idx in columns_to_plot:
col_name = df.columns[col_idx]
plt.figure(figsize=(10, 6)) # Adjust the figure size as needed
plt.plot(df["Zeit"], df.iloc[:, col_idx])
plt.xlabel("Time")
plt.ylabel(col_name)
plt.title(f"Column {col_name} Over Time")
plt.grid(True)
#plt.xticks(rotation=90) # Rotate x-axis labels for better readability
plt.xticks([]) # Hide x-axis tick labels
#plt.yticks([]) # Hide y-axis tick labels
plt.tight_layout()
plt.show()