-
Notifications
You must be signed in to change notification settings - Fork 40
/
extract_descriptors_l2net.py
185 lines (154 loc) · 6.27 KB
/
extract_descriptors_l2net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import torch
import numpy as np
import argparse
import h5py
from tqdm import tqdm
import os
import sys
import shutil
import json
import scipy.io as sio
import torchvision.transforms as transforms
from utils import cv2_greyscale, str2bool, save_h5
def get_transforms():
transform = transforms.Compose([
transforms.Lambda(cv2_greyscale),
transforms.Lambda(cv2_scale),
transforms.Lambda(np_reshape)
])
return transform
def remove_option(parser, arg):
for action in parser._actions:
if (vars(action)['option_strings']
and vars(action)['option_strings'][0] == arg) \
or vars(action)['dest'] == arg:
parser._remove_action(action)
for action in parser._action_groups:
vars_action = vars(action)
var_group_actions = vars_action['_group_actions']
for x in var_group_actions:
if x.dest == arg:
var_group_actions.remove(x)
return
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
"--dataset_path",
default=os.path.join('..', 'benchmark-patches-8k'),
type=str,
help='Path to the pre-generated patches')
parser.add_argument(
"--mrSize", default=12.0, type=float,
help=' patch size in image is mrSize * pt.size. Default mrSize is 12' )
parser.add_argument(
"--save_path",
default=os.path.join('..', 'benchmark-features'),
type=str,
help='Path to store the features')
parser.add_argument(
"--method_name", default='sift8k_8000_l2net', type=str)
parser.add_argument(
"--weights_path",
default=os.path.join('third_party', 'l2net-config', 'l2net_ported_weights_lib+.pth'),
type=str,
help='Path to the model weights')
parser.add_argument(
"--matlab_weights_path",
default=os.path.join('third_party', 'l2net', 'matlab', 'L2Net-LIB+.mat'),
type=str,
help='Path to the model weights')
parser.add_argument(
"--subset",
default='both',
type=str,
help='Options: "val", "test", "both", "spc-fix"')
parser.add_argument(
"--clahe-mode",
default='None',
type=str,
help='can be None, detector, descriptor, both')
args = parser.parse_args()
if args.subset not in ['val', 'test', 'both', 'spc-fix']:
raise ValueError('Unknown value for --subset')
seqs = []
if args.subset == 'spc-fix':
seqs += ['st_pauls_cathedral']
else:
if args.subset in ['val', 'both']:
with open(os.path.join('data', 'val.json')) as f:
seqs += json.load(f)
if args.subset in ['test', 'both']:
with open(os.path.join('data', 'test.json')) as f:
seqs += json.load(f)
print('Processing the following scenes: {}'.format(seqs))
# Hacky work-around: reset argv for the HardNet argparse
sys.path.append(os.path.join('misc', 'l2net'))
sys.argv = [sys.argv[0]]
from misc.l2net.l2net_model import L2Net
from third_party.hardnet.code.Utils import cv2_scale, np_reshape
import torch
try:
if torch.cuda.is_available():
device = torch.device('cuda:0')
else:
device = torch.device('cpu')
except:
device = torch.device('cpu')
suffix = ""
if args.clahe_mode.lower() == 'detector':
suffix = "_clahe_det"
elif args.clahe_mode.lower() == 'descriptor':
suffix = "_clahe_desc"
elif args.clahe_mode.lower() == 'both':
suffix = "_clahe_det_desc"
elif args.clahe_mode.lower() == 'none':
pass
else:
raise ValueError("unknown CLAHE mode. Try detector, descriptor or both")
if abs(args.mrSize - 12.) > 0.1:
suffix+= '_mrSize{:.1f}'.format(args.mrSize)
args.method_name+=suffix
print('Saving descriptors to folder: {}'.format(args.method_name))
# get pre-trained image mean
l2net_weights = sio.loadmat(args.matlab_weights_path)
imgMean = l2net_weights['pixMean']
transforms = get_transforms()
model = L2Net()
model.load_state_dict(torch.load(args.weights_path,map_location=device))
print('Loaded weights: {}'.format(args.weights_path))
model = model.to(device)
model.eval()
for idx, seq_name in enumerate(seqs):
print('Processing "{}"'.format(seq_name))
seq_descriptors = {}
patches_h5py_file = os.path.join(args.dataset_path, seq_name,
'patches{}.h5'.format(suffix))
with h5py.File(patches_h5py_file, 'r') as patches_h5py:
for key, patches in tqdm(patches_h5py.items()):
patches = patches.value
bs = 128
descriptors = np.zeros((len(patches), 128))
for i in range(0, len(patches), bs):
data_a = patches[i:i + bs, :, :, :]
data_a = torch.stack([torch.from_numpy(transforms(patch)).squeeze() for patch in data_a]).\
unsqueeze(1).float().to(device)
# compute output
data_a = data_a - torch.from_numpy(imgMean).to(device)
with torch.no_grad():
out_a = model(data_a)
descriptors[i:i + bs] = out_a.cpu().detach().numpy()
seq_descriptors[key] = descriptors.astype(np.float32)
print('Processed {} images: {} descriptors/image'.format(
len(seq_descriptors),
np.array([s.shape[0] for s in seq_descriptors.values()]).mean()))
cur_path = os.path.join(args.save_path, args.method_name, seq_name)
if not os.path.exists(cur_path):
os.makedirs(cur_path)
save_h5(seq_descriptors, os.path.join(cur_path, 'descriptors.h5'))
sub_files_in = ['keypoints{}.h5'.format(suffix), 'scales{}.h5'.format(suffix), 'angles{}.h5'.format(suffix), 'scores{}.h5'.format(suffix)]
sub_files_out = ['keypoints.h5', 'scales.h5', 'angles.h5', 'scores.h5']
for sub_file_in, sub_file_out in zip(sub_files_in, sub_files_out):
shutil.copyfile(
os.path.join(args.dataset_path, seq_name, sub_file_in),
os.path.join(cur_path, sub_file_out))
print('Done sequence: {}'.format(seq_name))