Skip to content

Latest commit

 

History

History
156 lines (120 loc) · 3.69 KB

README.md

File metadata and controls

156 lines (120 loc) · 3.69 KB

Signature validation using KNN

Vietnamese version here

Idea

  • Convert each image into histogram, with adjustable bins.
    • From 1 photo, turn 45 degrees and 90 degrees respectively to have 2 other images. Gather up into a bigger image.
    • Cut the picture vertically, the number of pieces cut by the number of bins of the histogram.
    • For each cut of the image, calculate the total value of the pixels containing the image signature. This sum will be the value of each bins.
  • Convert histogram to vector. This vector will be the input of the algorithm.
  • Use the built-in k-nearest neighbors (KNN) algorithm of the Sklearn library to trainning and predict

The process

  • Set parameters when testing.
    • Standardized image file size: default is (600,400)
    • Number of bins of histogram: default is 100 bins.
    • K: default is 3.
  • Get trainning and test data, with each image converted to histogram.
    • Pretreatment
      • Retrieve image data
      • Eliminate only noise and standardize image files.
      • Convert images to histograms for trainning and test data.
  • Perform trainning and prediction:
    • Sequentially change the input parameters to statistic accuracy.
  • Calculate accuracy measurement.

Trainning and testing

Perform trainng and predict in different parameters.
Based on the statistics below, we see the highest accuracy > 96% when using 20 bins histogram for most image sizes and number of K-neighbor.

Statistic

Image size: (600, 200)
K=5
bins=[600, 500, 400, 300, 200, 100, 90, 80, 70, 60, 50, 40, 30, 20, 10]
Bin Accuracy
600 63.9175257732
500 67.0103092784
400 76.2886597938
300 70.1030927835
200 69.0721649485
100 77.3195876289
90 78.3505154639
80 78.3505154639
70 80.412371134
60 84.5360824742
50 87.6288659794
40 90.7216494845
30 95.8762886598
20 96.9072164948
10 95.8762886598
Image size: (600, 200)
K=3
bins=[600, 500, 400, 300, 200, 100, 90, 80, 70, 60, 50, 40, 30, 20, 10]
Bin Accuracy
600 70.1030927835
500 69.0721649485
400 80.412371134
300 72.1649484536
200 73.1958762887
100 80.412371134
90 83.5051546392
80 86.5979381443
70 87.6288659794
60 89.6907216495
50 90.7216494845
40 93.8144329897
30 97.9381443299
20 98.9690721649
10 94.8453608247
Image size: (400, 200)
K=5
bins=[200, 100, 90, 80, 70, 60, 50, 40, 30, 20, 10]
Bin Accuracy
200 69.0721649485
100 77.3195876289
90 78.3505154639
80 78.3505154639
70 80.412371134
60 84.5360824742
50 87.6288659794
40 90.7216494845
30 95.8762886598
20 96.9072164948
10 95.8762886598
Image size: (200, 100)
K=3
bins=[200, 100, 90, 80, 70, 60, 50, 40, 30, 20, 10]
Bin Accuracy
200 73.1958762887
100 80.412371134
90 83.5051546392
80 86.5979381443
70 87.6288659794
60 89.6907216495
50 90.7216494845
40 93.8144329897
30 97.9381443299
20 98.9690721649
10 94.8453608247

Usage

  • Go to src/ directory
  • python3 main.py

Note

  • Enable debug mode to know wrong prediction

    In src/signature_validation.py set LOG_DEBUG_ENABLE = True

Requirements

  • Python 3.6+
  • OpenCV 3.2
  • Numpy
  • Scikit-learn

Reference

https://github.com/vadi95/Signature-Verification.git

https://github.com/guilhermefloriani/signature-recognition.git

https://github.com/jadevaibhav/Signature-verification-using-deep-learning

https://github.com/luizgh/sigver_wiwd

https://github.com/Aftaab99/OfflineSignatureVerification

https://github.com/beyhangl/Signature_Recognition_DeepLearning

https://github.com/guilhermefloriani/signature-recognition