-
Notifications
You must be signed in to change notification settings - Fork 0
/
Dual_Cores_M4_M7.ino
83 lines (60 loc) · 2.28 KB
/
Dual_Cores_M4_M7.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#include <Arduino.h>
#include <CoreMutex.h>
#include <TensorFlowLite.h> // Include the TensorFlow Lite library for microcontrollers
// Define the shared memory and mutex for inter-core communication
#define SHARED_MEMORY_SIZE 4096
__attribute__((section(".sram1"))) uint8_t shared_memory[SHARED_MEMORY_SIZE];
CoreMutex shared_memory_mutex;
// Function prototypes
void preprocess_sensor_data(float* input_data, size_t input_data_length);
#ifdef CORE_CM4
void setup() {
// Initialize serial communication
Serial.begin(9600);
// Initialize the shared memory mutex
shared_memory_mutex.begin();
// Add your DSP block setup code here (e.g. initialize sensor, set up FFT)
}
void loop() {
// Read sensor data and preprocess it
float input_data[1024];
size_t input_data_length = sizeof(input_data) / sizeof(input_data[0]);
preprocess_sensor_data(input_data, input_data_length);
// Lock the shared memory mutex to ensure safe access
shared_memory_mutex.lock();
// Copy the preprocessed data to the shared memory
memcpy(shared_memory, input_data, input_data_length * sizeof(float));
// Unlock the shared memory mutex
shared_memory_mutex.unlock();
// Add any additional code for your DSP block
delay(100);
}
#elif defined(CORE_CM7)
void setup() {
// Initialize serial communication
Serial.begin(9600);
// Initialize the shared memory mutex
shared_memory_mutex.begin();
// Load the TensorFlow Lite model
// Add your deep learning block setup code here (e.g. initialize TensorFlow Lite)
}
void loop() {
// Lock the shared memory mutex to ensure safe access
shared_memory_mutex.lock();
// Read the preprocessed data from the shared memory
float input_data[1024];
size_t input_data_length = sizeof(input_data) / sizeof(input_data[0]);
memcpy(input_data, shared_memory, input_data_length * sizeof(float));
// Unlock the shared memory mutex
shared_memory_mutex.unlock();
// Run inference using the TensorFlow Lite model
// Add your deep learning block code here (e.g. run TensorFlow Lite inference, print results)
delay(100);
}
#endif
// Dummy implementation of preprocessing function
void preprocess_sensor_data(float* input_data, size_t input_data_length) {
for (size_t i = 0; i < input_data_length; ++i) {
input_data[i] = static_cast<float>(i);
}
}