-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.sh
52 lines (49 loc) · 1.16 KB
/
test.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#!/bin/bash
# Normally, bash shell cannot support floating point arthematic, thus, here we use `bc` package
GPU_ID=5
task_type=E2E
CL=ADAPTER
bottleneck_size=500
lr=6.25e-3 # 6.25e-3
n_epochs=50 # 10
train_batch_size=10
gradient_accumulation_steps=8
seed=1
dataset_list=TM19,TM20 # SGD,TM19,TM20,MWOZ
retrain_epochs=50
retrain_lr_factor=0.1
retrain_gradient_accumulation_steps=1
#direction=1
meta_query_step=1
episodic_mem_size=200
mode=test
sample_domain=2000
# test/scorer.py
CUDA_VISIBLE_DEVICES=$GPU_ID python ./scorer.py \
--mode $mode \
--episodic_mem_size $episodic_mem_size \
--task_type $task_type \
--CL $CL \
--bottleneck_size $bottleneck_size \
--lr $lr \
--n_epochs $n_epochs \
--train_batch_size $train_batch_size \
--gradient_accumulation_steps $gradient_accumulation_steps \
--seed $seed \
--dataset_list $dataset_list \
--test_every_step \
--single \
-mi \
--retrain \
--retrain_lr_factor $retrain_lr_factor \
--retrain_epochs $retrain_epochs \
--retrain_gradient_accumulation_steps $retrain_gradient_accumulation_steps\
-l \
-u \
-b \
-aug 3 \
-sd $sample_domain \
-mqs $meta_query_step \
--meta \
--mask || exit
# -u