-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
454 lines (391 loc) · 23.8 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
import os
import json
import torch
import numpy
import logging
import random
from tqdm import tqdm
from torch import Tensor
from torch.nn import functional as F
from collections import defaultdict
from utils.dataloader import get_data_loaders, get_current_task_data, make_loader, make_val_loader
from argparse import ArgumentParser
from utils.config import *
from utils import check_resume, load_checkpoint, save_model
from scorer import score_folder
def top_k_top_p_filtering(
logits: Tensor,
top_k: int = 0,
top_p: float = 1.0,
filter_value: float = -float("Inf"),
min_tokens_to_keep: int = 1,
) -> Tensor:
"""Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
Args:
logits: logits distribution shape (batch size, vocabulary size)
if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
Make sure we keep at least min_tokens_to_keep per batch example in the output
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
"""
if top_k > 0:
top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1)) # Safety check
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits[indices_to_remove] = filter_value
if top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold (token with 0 are kept)
sorted_indices_to_remove = cumulative_probs > top_p
if min_tokens_to_keep > 1:
# Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
# scatter sorted tensors to original indexing
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
logits[indices_to_remove] = filter_value
return logits
def get_example_inputs(model,tokenizer,prompt_text,device):
num_attention_heads = model.config.n_head
hidden_size = model.config.n_embd
num_layer = model.config.n_layer
tokenizer.padding_side = "left"
encodings_dict = tokenizer.batch_encode_plus(prompt_text, padding=True)
input_ids = torch.tensor(encodings_dict['input_ids'], dtype=torch.int64)
attention_mask = torch.tensor(encodings_dict['attention_mask'], dtype=torch.float32)
position_ids = (attention_mask.long().cumsum(-1) - 1)
position_ids.masked_fill_(position_ids < 0, 0)
#Empty Past State for generating first word
empty_past = []
batch_size = input_ids.size(0)
sequence_length = input_ids.size(1)
past_shape = [2, batch_size, num_attention_heads, 0, hidden_size // num_attention_heads]
for i in range(num_layer):
empty_past.append(torch.empty(past_shape).type(torch.float32).to(device))
return input_ids.to(device), attention_mask.to(device), position_ids.to(device), empty_past
def test_generation_GPT2BATCH(model, tokenizer, input_text, device, do_sample=False, temperature=1.0,top_k=0,top_p=0,max_length=30,task_id=-1,masks_pre=None,s=None):
eos_token_id = tokenizer.eos_token_id
input_ids, attention_mask, position_ids, past = get_example_inputs(model,tokenizer,input_text,device)
batch_size = input_ids.size(0)
has_eos = torch.zeros(batch_size, dtype=torch.bool).to(device)
all_token_ids = input_ids.clone()
for step in range(max_length):
if task_id == -1:
if masks_pre is not None:
outputs = model(input_ids, attention_mask=attention_mask, position_ids=position_ids,
past_key_values=past, masks_pre=masks_pre)
else:
outputs = model(input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past)
else: # elif s:
outputs = model(input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past, task_id=task_id, s=s)
# else:
# outputs = model(input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past, task_id=task_id)
next_token_logits = outputs[0][:, -1, :]
if do_sample:
# Temperature (higher temperature => more likely to sample low probability tokens)
if temperature != 1.0:
next_token_logits = next_token_logits / temperature
# Top-p/top-k filtering
next_token_logscores = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p)
# Sample
probs = F.softmax(next_token_logscores, dim=-1)
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
else:
# Greedy decoding
next_tokens = torch.argmax(next_token_logits, dim=-1)
has_eos = has_eos | (next_tokens == eos_token_id)
tokens_to_add = next_tokens.masked_fill(has_eos, eos_token_id)
all_token_ids = torch.cat([all_token_ids, tokens_to_add.unsqueeze(-1)], dim=-1)
# Update input_ids, attention_mask, position_ids and past
input_ids = tokens_to_add.clone().detach().reshape([batch_size, 1]).to(device)
position_ids = (position_ids[:,-1] + 1).reshape(batch_size,1)
attention_mask = torch.cat([attention_mask, torch.ones([batch_size, 1]).type_as(attention_mask)], 1).to(device)
past = list(outputs[1]) # past in torch output is tuple
if torch.all(has_eos):
break
responses = []
responses_plain = []
for i, output in enumerate(all_token_ids):
responses_plain.append(tokenizer.decode(output, skip_special_tokens=True))
res = tokenizer.decode(output, skip_special_tokens=True)
responses.append(res[res.find("[SOS]"):].replace("[SOS]","").strip())
return responses, responses_plain
def generate_sample_prev_task(args,model,tokenizer,dataset_dic,task_id_so_far,number_of_sample,time,task_id_adpt=-1):
# device = torch.device(f"cuda:{args.GPU[0]}")
device = torch.device(f"cuda:0")
model.to(device)
model.eval()
## notice that this sample is just to have the data struct
# temp_aug_mem = random.sample(dataset_dic["['sgd_restaurants']"],min(len(dataset_dic["['sgd_restaurants']"]),number_of_sample))
# temp_aug_sam = random.sample(dataset_dic["['sgd_restaurants']"],min(len(dataset_dic["['sgd_restaurants']"]),number_of_sample))
temp_aug_mem = random.sample(dataset_dic[task_id_so_far], min(len(dataset_dic[task_id_so_far]), number_of_sample))
temp_aug_sam = random.sample(dataset_dic[task_id_so_far], min(len(dataset_dic[task_id_so_far]), number_of_sample))
with torch.no_grad():
if "gpt2" in args.model_checkpoint: ## this works only with GPT2
sample_list = []
for i in range(int(number_of_sample/(args.valid_batch_size))+1):
if(i%2==0 or args.task_type!="E2E"): # sample on batch with and one without API call
input_batch = [f"[{str(eval(task_id_so_far)[0])}]" for _ in range(args.valid_batch_size)]
else:
input_batch = [f"[{str(eval(task_id_so_far)[0])}-API]" for _ in range(args.valid_batch_size)]
_, samples = test_generation_GPT2BATCH(model=model,
tokenizer=tokenizer,
input_text=input_batch,
device=device,
max_length=300,
do_sample=True,
top_p=0.9,
temperature=1.1,
task_id=task_id_adpt)
sample_list += samples
sample_list = random.sample(sample_list,min(len(sample_list),number_of_sample))
# this sample is to train the previous task generator
for i in range(len(temp_aug_mem)):
temp_aug_mem[i]["history_reply"] = f"{sample_list[i].strip()} {tokenizer.eos_token}"
# this sample is to train the previous task itself
# hence we remove the special token in input
for i in range(len(temp_aug_sam)):
samp = sample_list[i].strip()
samp = samp.replace(f"[{str(eval(task_id_so_far)[0])}]","")
samp = samp.replace(f"[{str(eval(task_id_so_far)[0])}-API]","")
temp_aug_sam[i]["history_reply"] = f"{samp} {tokenizer.eos_token}"
temp_aug = temp_aug_mem + temp_aug_sam
## save the generated data for logging
if not os.path.exists(f'{args.saving_dir}/{time}'):
os.makedirs(f'{args.saving_dir}/{time}')
with open(f'{args.saving_dir}/{time}'+f'/{task_id_so_far}_generated.json', 'w') as fp:
json.dump(temp_aug, fp, indent=4)
return temp_aug
def test_model_seq2seq(args,model,tokenizer,test_loader,time="0_['']",single_task=False):
device = torch.device(f"cuda:0")
model.model.to(device)
model.model.eval()
results = []
if args.multi:
task_id_list = test_loader.keys()
elif args.continual:
task_id_list = model.task_list_seen
else:
raise
for task_id in task_id_list:
if single_task and (task_id != task_id_list[-1]):
continue
for idx_b, batch in tqdm(enumerate(test_loader[task_id]),total=len(test_loader[task_id])):
with torch.no_grad():
if "gpt2" in args.model_checkpoint:
value_batch,_ = test_generation_GPT2BATCH(model=model.model,
tokenizer=tokenizer,
input_text=[b+"[SOS]" for b in batch['history']],
device=device,
max_length = 100)
else:
responses = model.model.generate(input_ids=batch["encoder_input"].to(device),
attention_mask=batch["attention_mask"].to(device),
eos_token_id=tokenizer.eos_token_id,
max_length=100)
value_batch = tokenizer.batch_decode(responses, skip_special_tokens=True)
for idx, resp in enumerate(value_batch):
results.append({"id":batch["dial_id"][idx],"turn_id":batch["turn_id"][idx],
"dataset":batch["dataset"][idx],"task_id":batch["task_id"][idx],
"spk":batch["spk"][idx],"gold":batch["reply"][idx],
"genr":resp,"hist":batch["history"][idx]})
# if(idx_b==1): break
if not os.path.exists(f'{args.saving_dir}/{time}'):
os.makedirs(f'{args.saving_dir}/{time}')
appendix = ''
if single_task:
assert args.fwt
appendix += '_fwt'
with open(f'{args.saving_dir}/{time}'+f'/generated_responses{appendix}.json', 'w') as fp:
json.dump(results, fp, indent=4)
tokenizer.padding_side = "right"
def argmin(a):
return min(range(len(a)), key=lambda x: a[x])
def test_model_seq2seq_ADAPTER(args,model,tokenizer,test_loader,test_datasets,time="0_['']",use_all_masks=False,single_task=False,masks=None,TIL=False,retrain=False): # max_seen_task=0
# device = torch.device(f"cuda:{args.GPU[0]}")
device = torch.device(f"cuda:0")
model.model.to(device)
model.model.eval()
results = []
print(model.task_list_seen, len(model.task_list_seen))
if args.fwt:
range_adpt = len(model.task_list_seen)-1
else:
range_adpt = len(model.task_list_seen)
if hparams.mask_infer or not args.single: # mask infer/ToDCL
s = model.smax if hparams.mask else None
if TIL:
# assert hparams.mask_infer
for task_id in model.task_list_seen:
if single_task and (task_id != model.task_list_seen[-1]):
continue
t = model.task_list_seen.index(task_id)
for idx_b, batch in tqdm(enumerate(test_loader[task_id]), total=len(test_loader[task_id])):
# for idx_b, batch in enumerate(test_loader[task_id]):
with torch.no_grad():
value_batch, _ = test_generation_GPT2BATCH(model=model.model,
tokenizer=model.tokenizer,
input_text=[b + "[SOS]" for b in
batch['history']],
device=device,
max_length=100,
task_id=t,
s=s) #
for idx, resp in enumerate(value_batch):
results.append({"id": batch["dial_id"][idx], "turn_id": batch["turn_id"][idx],
"dataset": batch["dataset"][idx], "task_id": batch["task_id"][idx],
"spk": batch["spk"][idx], "gold": batch["reply"][idx],
"genr": resp, "hist": batch["history"][idx]})
else:
test_dataset = [test_datasets[task_id] for task_id in model.task_list_seen]
test_dataset = sum(test_dataset,[])
perplexity_dict = {f'{sample["dial_id"]}_{sample["turn_id"]}_{sample["task_id"]}': [] for sample in test_dataset}
for t in range(range_adpt):
print(f"Task {t} compute PPL")
# for idx_b, batch in tqdm(enumerate(test_loader),total=len(test_loader)):
for task_id in model.task_list_seen:
if single_task and (task_id != model.task_list_seen[-1]):
continue
# for idx_b, batch in tqdm(enumerate(test_loader[task_id]), total=len(test_loader[task_id])):
for idx_b, batch in enumerate(test_loader[task_id]):
ppl_batch = model.compute_PPL(batch, task_id=t, device=device, s=s) ## one value per batch
for (d_id, t_id, ta_id, ppl) in zip(batch["dial_id"],batch["turn_id"],batch["task_id"],ppl_batch):
perplexity_dict[f'{d_id}_{t_id}_{ta_id}'].append(ppl)
# select the task id with the lowest perplexity (loss)
perplexity_dict_ = {}
for k,v in perplexity_dict.items():
if len(v) == range_adpt:
perplexity_dict_[k] = v
else:
print(k) # logger.debug([k,v]) print(k,v)
perplexity_dict = {k: argmin(v) for k,v in perplexity_dict_.items()}
## group by sample by predicted task id
test_dataset_by_predicted_id = defaultdict(list)
for sample in test_dataset:
if (f'{sample["dial_id"]}_{sample["turn_id"]}_{sample["task_id"]}' in perplexity_dict):
test_dataset_by_predicted_id[perplexity_dict[f'{sample["dial_id"]}_{sample["turn_id"]}_{sample["task_id"]}']].append(sample)
for k,v in test_dataset_by_predicted_id.items():
print(f"Task {k}: {len(v)}")
## create a dataloader for batch each of this
# test_dataset_by_predicted_id = {k: make_loader(args,v,model.tokenizer) for k,v in test_dataset_by_predicted_id.items()}
test_dataset_by_predicted_id = {k: make_val_loader(args, v, model.tokenizer) for k, v in
test_dataset_by_predicted_id.items()}
# for pred_task_id, task_loader in tqdm(test_dataset_by_predicted_id.items(),total=len(test_dataset_by_predicted_id)):
for pred_task_id, task_loader in test_dataset_by_predicted_id.items():
# print(f"Task Id: {task_id}")
for idx_b, batch in tqdm(enumerate(task_loader), total=len(task_loader)):
# for idx_b, batch in enumerate(task_loader):
with torch.no_grad():
value_batch,_ = test_generation_GPT2BATCH(model=model.model,
tokenizer=model.tokenizer,
input_text=[b+"[SOS]" for b in batch['history']],
device=device,
max_length=100,
task_id=pred_task_id,
s=s)
for idx, resp in enumerate(value_batch):
results.append({"id":batch["dial_id"][idx],"turn_id":batch["turn_id"][idx],
"dataset":batch["dataset"][idx],"task_id":batch["task_id"][idx],
"spk":batch["spk"][idx],"gold":batch["reply"][idx],
"genr":resp,"hist":batch["history"][idx],"pred_task_id":pred_task_id})
# if(idx_b==1): break
elif args.single:
# for idx_b, batch in tqdm(enumerate(test_loader), total=len(test_loader)):
for task_id in model.task_list_seen:
if args.mask and (use_all_masks is False) and (task_id != model.task_list_seen[-1]): # 只测试当前mask在当前任务表现
continue
if single_task and (task_id != model.task_list_seen[-1]):
continue
for idx_b, batch in tqdm(enumerate(test_loader[task_id]), total=len(test_loader[task_id])):
with torch.no_grad():
if masks is not None:
value_batch, _ = test_generation_GPT2BATCH(model=model.model,
tokenizer=model.tokenizer,
input_text=[b + "[SOS]" for b in batch['history']],
device=device,
max_length=100,
masks_pre=masks) #
else:
value_batch, _ = test_generation_GPT2BATCH(model=model.model,
tokenizer=model.tokenizer,
input_text=[b + "[SOS]" for b in batch['history']],
device=device,
max_length=100) # 未输入labels,则不返回loss,只返回output
for idx, resp in enumerate(value_batch):
results.append({"id": batch["dial_id"][idx], "turn_id": batch["turn_id"][idx],
"dataset": batch["dataset"][idx], "task_id": batch["task_id"][idx],
"spk": batch["spk"][idx], "gold": batch["reply"][idx],
"genr": resp, "hist": batch["history"][idx]})
if not os.path.exists(f'{args.saving_dir}/{time}'):
os.makedirs(f'{args.saving_dir}/{time}')
appendix=''
if single_task:
assert args.fwt
appendix += '_fwt'
else:
if use_all_masks:
appendix += '_all_masks'
if retrain:
appendix += '_retrain'
if TIL:
appendix += '_TIL'
with open(f'{args.saving_dir}/{time}'+f'/generated_responses{appendix}.json', 'w') as fp:
json.dump(results, fp, indent=4)
print(f'save to {time}/generated_responses{appendix}.json')
tokenizer.padding_side = "right"
# def test_model(args,model,tokenizer,test_loader,time=0):
# args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# model.to(args.device)
# model.eval()
# results = []
# for task_id, task_loader in tqdm(test_loader.items(),total=len(test_loader)):
# # print(f"Task Id: {task_id}")
# for idx_b, batch in enumerate(task_loader):
# input_ids, _, token_type_ids = tuple(torch.tensor([batch[input_name]]).to(args.device) for input_name in MODEL_INPUTS)
# with torch.no_grad():
# response = generate(args,model,tokenizer,input_ids,token_type_ids)
# results.append({"id":batch["dial_id"],"turn_id":batch["turn_id"],
# "dataset":batch["dataset"],"task_id":task_id,
# "spk":batch["spk"],"gold":batch["row_reply"],
# "genr":response,"hist":batch["plain_history"]})
# if not os.path.exists(f'{args.saving_dir}/{time}'):
# os.makedirs(f'{args.saving_dir}/{time}')
# with open(f'{args.saving_dir}/{time}'+'/generated_responses.json', 'w') as fp:
# json.dump(results, fp, indent=4)
def test(hparams):
if (hparams.CL == "MULTI"):
hparams.multi = True
hparams.continual = False
else:
hparams.multi = False
hparams.continual = True
from single_CL_learner import Seq2SeqToD
set_seeds(hparams.seed)
model = Seq2SeqToD(hparams) # , hparams.saving_dir
# hparams.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
_, _, dev_val_loader, (_, _, test_datasets) = get_data_loaders(hparams, model.tokenizer)
# _, _, test_loader, (_, _) = get_data_loaders(hparams, tokenizer, test=True)
# train_loader, val_loader, dev_val_loader, (train_datasets, test_datasets) = get_data_loaders(args, model.tokenizer)
resume_folder, resume_task_num = check_resume(hparams, resume_task_num=hparams.resume_task_num)
if resume_folder:
load_checkpoint(model, resume_folder, hparams, resume_task_num, backbone=True)
time = resume_folder.split('/')[-1]
print(f"Loading Model From: {time}")
if hparams.mask:
if hparams.retrain:
test_model_seq2seq_ADAPTER(hparams, model, model.tokenizer, dev_val_loader, test_datasets,
time=time, retrain=True)
# else:
# test_model_seq2seq_ADAPTER(hparams, model, model.tokenizer, dev_val_loader, test_datasets,
# time=f"{task_num}_{task_id}", use_all_masks=True,
# masks=model.mask_pre)
if hparams.mask_infer:
test_model_seq2seq_ADAPTER(hparams, model, model.tokenizer, dev_val_loader, test_datasets,
time=time, TIL=True, retrain=True)
if __name__ == "__main__":
test(hparams)
score_folder(hparams)