-
Notifications
You must be signed in to change notification settings - Fork 13
/
model.py
37 lines (32 loc) · 1.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import torch
import torch.nn as nn
import torch.nn.functional as F
class QNetwork(nn.Module):
"""Actor (Policy) Model."""
def __init__(self, state_size, action_size, seed, fc1_units=64, fc2_units=64, use_dueling=False):
"""Initialize parameters and build model.
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
seed (int): Random seed
fc1_units (int): Number of nodes in first hidden layer
fc2_units (int): Number of nodes in second hidden layer
use_dueling (bool): if 'True' use dueling agent
"""
super(QNetwork, self).__init__()
self.seed = torch.manual_seed(seed)
self.use_dueling = use_dueling
self.fc1 = nn.Linear(state_size, fc1_units)
self.fc2 = nn.Linear(fc1_units, fc2_units)
self.fc3 = nn.Linear(fc2_units, action_size)
self.state_value = nn.Linear(fc2_units, 1)
def forward(self, state):
"""Build a network that maps state -> action values."""
x = F.relu(self.fc1(state))
x = F.relu(self.fc2(x))
if self.use_dueling:
# advantage values + state value
return self.fc3(x) + self.state_value(x)
else:
return self.fc3(x)