From 177a0b29f6ac24f6ab0296b3afa3f51a27283daf Mon Sep 17 00:00:00 2001 From: "Documenter.jl" Date: Sat, 2 Mar 2024 23:48:18 +0000 Subject: [PATCH] build based on e7ef8ba --- dev/cops/index.html | 2 +- dev/index.html | 2 +- dev/reference/index.html | 2 +- dev/results_robot.vtu | Bin 120751 -> 120751 bytes dev/search/index.html | 2 +- dev/tuto_rocket/index.html | 210 ++++++++++++++++++------------------- 6 files changed, 109 insertions(+), 109 deletions(-) diff --git a/dev/cops/index.html b/dev/cops/index.html index 296f0fa..1027024 100644 --- a/dev/cops/index.html +++ b/dev/cops/index.html @@ -1,2 +1,2 @@ -COPS · PDEOptimizationProblems

Simulations on COPS 3 test set

We run DCISolver.jl and NLPModelsIpopt.jl and NLPModelsKnitro.jl on an infinite-dimensional implementation of test problems from COPS 3.0 test set.

DCILDL

namenvarnconstatusobjectiveopt_valtime (s)#f#cdual_feasfeas
Isometrization of α-pinene505500max_time0.00e+001.99e+018.49e+00220.00e+002.84e+01
Isometrization of α-pinene10051000max_time0.00e+001.99e+014.05e+00220.00e+002.84e+01
Isometrization of α-pinene20052000max_time0.00e+001.99e+014.42e+00220.00e+002.84e+01
Journal Bearing26000exceptionInf-1.55e-01Inf00InfInf
Journal Bearing57750exceptionInf-1.55e-01Inf00InfInf
Journal Bearing102000exceptionInf-1.55e-01Inf00InfInf
Catalyst Mixing602402max_time0.00e+00-4.81e-029.96e+01111.41e-012.50e-01
Catalyst Mixing1202802max_time0.00e+00-4.81e-023.94e+00119.98e-022.50e-01
Catalyst Mixing24021602max_time0.00e+00-4.81e-021.07e+03227.07e-022.50e-01
Flow in a Channel800800max_time0.00e+001.00e+005.14e+00220.00e+002.20e-01
Flow in a Channel16001600max_time0.00e+001.00e+002.57e+00220.00e+002.20e-01
Flow in a Channel32003200max_time0.00e+001.00e+002.78e+00220.00e+002.20e-01
Transition States for the Dirichlet Problem90first_order0.00e+001.94e-060.00e+00110.00e+000.00e+00
Transition States for the Dirichlet Problem190first_order0.00e+001.71e-020.00e+00110.00e+000.00e+00
Transition States for the Dirichlet Problem390first_order0.00e+003.29e-020.00e+00110.00e+000.00e+00
Catalytic Cracking of Gas Oil205202max_time8.21e-025.24e-036.83e+01114.19e-020.00e+00
Catalytic Cracking of Gas Oil405402max_time8.11e-025.24e-031.11e+00112.97e-020.00e+00
Catalytic Cracking of Gas Oil805802max_time8.11e-025.24e-032.21e+00112.10e-020.00e+00
Hang Glider698498max_time-9.50e+021.25e+034.51e+03224.75e-158.79e+01
Hang Glider1398998max_time-9.50e+021.25e+038.86e+03226.76e-156.44e+01
Hang Glider27981998max_time-9.50e+021.25e+031.77e+04225.05e-094.66e+01
Transition States for the Henon Problem90first_order0.00e+007.22e+000.00e+00110.00e+000.00e+00
Transition States for the Henon Problem190first_order0.00e+007.52e+010.00e+00110.00e+000.00e+00
Transition States for the Henon Problem390first_order0.00e+001.26e+020.00e+00110.00e+000.00e+00
Transition States for the Lane-Emden Problem90first_order0.00e+008.49e+000.00e+00110.00e+000.00e+00
Transition States for the Lane-Emden Problem190first_order0.00e+009.11e+000.00e+00110.00e+000.00e+00
Transition States for the Lane-Emden Problem390first_order0.00e+009.28e+000.00e+00110.00e+000.00e+00
Methanol to Hydrocarbons308303exceptionInf9.02e-03Inf00InfInf
Methanol to Hydrocarbons608603exceptionInf9.02e-03Inf00InfInf
Methanol to Hydrocarbons12081203exceptionInf9.02e-03Inf00InfInf
Minimal Surface with Obstacle50022401max_time2.33e+002.51e+001.94e+01116.85e-027.34e-03
Minimal Surface with Obstacle112525476max_time2.32e+002.51e+001.59e+00225.29e-025.08e-03
Minimal Surface with Obstacle200029801max_time2.33e+002.51e+002.33e+00224.44e-023.84e-03
Robot Arm1200597max_time0.00e+009.14e+003.74e+00220.00e+002.01e+04
Robot Arm24001197max_time0.00e+009.14e+003.87e+00220.00e+004.02e+04
Robot Arm48002397max_time0.00e+009.14e+004.08e+00220.00e+008.04e+04
Goddard Rocket24001600max_time-1.00e+001.01e+004.83e+04221.85e-022.64e-01
Goddard Rocket48003200max_time-1.00e+001.01e+005.78e+04221.32e-021.90e-01
Goddard Rocket96006400max_time-1.00e+001.01e+001.23e+05229.39e-031.69e-01
Particle Steering800400max_time0.00e+005.55e-015.91e+01220.00e+001.35e+01
Particle Steering1600800max_time0.00e+005.55e-011.80e+02220.00e+009.56e+00
Particle Steering32001600max_time0.00e+005.55e-016.38e+02220.00e+006.79e+00
Elastic-Plastic Torsion78027802max_time0.00e+00-4.18e-015.58e+01115.72e-029.93e-03
Elastic-Plastic Torsion1732717327max_time0.00e+00-4.18e-012.22e+00113.82e-026.64e-03
Elastic-Plastic Torsion3060230602max_time0.00e+00-4.18e-012.71e+00112.87e-024.98e-03

knitro

namenvarnconstatusobjectiveopt_valtime (s)#f#cdual_feasfeas
Isometrization of α-pinene505500max_time0.00e+001.99e+014.33e+00110.00e+005.00e+01
Isometrization of α-pinene10051000max_time0.00e+001.99e+011.10e+00110.00e+005.00e+01
Isometrization of α-pinene20052000max_time0.00e+001.99e+011.26e+00110.00e+005.00e+01
Journal Bearing26000max_time1.20e+01-1.55e-019.39e+00105.88e-010.00e+00
Journal Bearing57750max_time5.06e+00-1.55e-015.31e+00202.31e-010.00e+00
Journal Bearing102000max_time-1.05e+00-1.55e-011.09e+00503.17e-040.00e+00
Catalyst Mixing602402max_time0.00e+00-4.81e-022.82e+00221.00e-022.49e-01
Catalyst Mixing1202802max_time0.00e+00-4.81e-022.56e+00225.00e-032.49e-01
Catalyst Mixing24021602max_time0.00e+00-4.81e-023.60e+00222.50e-032.50e-01
Flow in a Channel800800first_order0.00e+001.00e+005.12e+01220.00e+001.99e-13
Flow in a Channel16001600first_order0.00e+001.00e+001.58e+00220.00e+004.44e-16
Flow in a Channel32003200first_order0.00e+001.00e+001.55e+00220.00e+006.66e-16
Transition States for the Dirichlet Problem90first_order0.00e+001.94e-065.16e-02100.00e+000.00e+00
Transition States for the Dirichlet Problem190first_order0.00e+001.71e-021.99e-01100.00e+000.00e+00
Transition States for the Dirichlet Problem390first_order0.00e+003.29e-024.02e-02100.00e+000.00e+00
Catalytic Cracking of Gas Oil205202max_time7.94e-025.24e-035.73e+01227.01e-034.86e-07
Catalytic Cracking of Gas Oil405402max_time7.93e-025.24e-031.45e+00225.73e-033.20e-07
Catalytic Cracking of Gas Oil805802max_time4.65e-025.24e-032.88e+00223.14e-037.89e-05
Hang Glider698498max_time-9.50e+021.25e+032.77e+01114.44e-169.73e+00
Hang Glider1398998max_time-9.50e+021.25e+032.74e+01116.66e-164.86e+00
Hang Glider27981998max_time-9.50e+021.25e+032.77e+01116.66e-162.43e+00
Transition States for the Henon Problem90first_order0.00e+007.22e+002.82e-02100.00e+000.00e+00
Transition States for the Henon Problem190first_order0.00e+007.52e+012.74e-02100.00e+000.00e+00
Transition States for the Henon Problem390first_order0.00e+001.26e+025.00e-02100.00e+000.00e+00
Transition States for the Lane-Emden Problem90first_order0.00e+008.49e+002.56e-02100.00e+000.00e+00
Transition States for the Lane-Emden Problem190first_order0.00e+009.11e+004.14e-02100.00e+000.00e+00
Transition States for the Lane-Emden Problem390first_order0.00e+009.28e+003.79e-02100.00e+000.00e+00
Methanol to Hydrocarbons308303exception2.33e-019.02e-036.73e-01111.80e+3080.00e+00
Methanol to Hydrocarbons608603exception2.33e-019.02e-035.03e-01111.80e+3080.00e+00
Methanol to Hydrocarbons12081203exception2.33e-019.02e-036.91e-01111.80e+3080.00e+00
Minimal Surface with Obstacle50022401max_time5.78e+002.51e+001.86e+01335.09e-024.30e-04
Minimal Surface with Obstacle112525476max_time6.40e+002.51e+001.70e+00333.33e-021.85e-04
Minimal Surface with Obstacle200029801max_time8.47e+002.51e+002.43e+00332.65e-021.23e-04
Robot Arm1200597max_time0.00e+009.14e+002.04e+00220.00e+008.31e+03
Robot Arm24001197max_time0.00e+009.14e+001.79e+00220.00e+001.66e+04
Robot Arm48002397max_time0.00e+009.14e+002.33e+00220.00e+003.32e+04
Goddard Rocket24001600max_time-1.00e+001.01e+003.13e+00332.50e-034.61e-02
Goddard Rocket48003200max_time-1.00e+001.01e+003.16e+00331.25e-032.30e-02
Goddard Rocket96006400max_time-1.00e+001.01e+003.36e+00336.25e-041.15e-02
Particle Steering800400first_order0.00e+005.55e-011.80e+01220.00e+007.62e-12
Particle Steering1600800first_order0.00e+005.55e-013.54e-01220.00e+001.66e-11
Particle Steering32001600first_order0.00e+005.55e-015.49e-01220.00e+002.86e-11
Elastic-Plastic Torsion78027802max_time0.00e+00-4.18e-011.93e+00228.06e-045.92e-04
Elastic-Plastic Torsion1732717327max_time0.00e+00-4.18e-011.19e+01223.60e-042.64e-04
Elastic-Plastic Torsion3060230602max_time0.00e+00-4.18e-012.72e+01222.14e-041.49e-04

ipopt

namenvarnconstatusobjectiveopt_valtime (s)#f#cdual_feasfeas
Isometrization of α-pinene505500max_time0.00e+001.99e+011.67e+00110.00e+005.00e+01
Isometrization of α-pinene10051000max_time0.00e+001.99e+011.83e+00110.00e+005.00e+01
Isometrization of α-pinene20052000max_time0.00e+001.99e+012.02e+00110.00e+005.00e+01
Journal Bearing26000max_time0.00e+00-1.55e-011.06e+00902.19e-050.00e+00
Journal Bearing57750max_time0.00e+00-1.55e-011.08e+00405.14e-020.00e+00
Journal Bearing102000max_time0.00e+00-1.55e-011.07e+00301.74e-010.00e+00
Catalyst Mixing602402max_time0.00e+00-4.81e-022.58e+00111.00e-022.50e-01
Catalyst Mixing1202802max_time0.00e+00-4.81e-022.53e+00115.00e-032.50e-01
Catalyst Mixing24021602max_time0.00e+00-4.81e-025.93e+00112.50e-032.50e-01
Flow in a Channel800800max_time0.00e+001.00e+002.68e+01222.00e-023.32e-08
Flow in a Channel16001600max_time0.00e+001.00e+001.52e+00222.00e-026.64e-08
Flow in a Channel32003200max_time0.00e+001.00e+001.15e+00222.00e-021.33e-07
Transition States for the Dirichlet Problem90first_order0.00e+001.94e-064.90e-02100.00e+000.00e+00
Transition States for the Dirichlet Problem190first_order0.00e+001.71e-021.48e-01100.00e+000.00e+00
Transition States for the Dirichlet Problem390first_order0.00e+003.29e-024.40e-02100.00e+000.00e+00
Catalytic Cracking of Gas Oil205202max_time0.00e+005.24e-032.90e+00221.03e-025.89e-06
Catalytic Cracking of Gas Oil405402max_time0.00e+005.24e-031.42e+00221.47e-023.88e-06
Catalytic Cracking of Gas Oil805802max_time0.00e+005.24e-031.88e+00223.79e-021.84e-06
Hang Glider698498max_time0.00e+001.25e+033.71e+01111.00e+009.73e+00
Hang Glider1398998max_time0.00e+001.25e+033.77e+01111.00e+004.86e+00
Hang Glider27981998max_time0.00e+001.25e+033.86e+01111.00e+002.43e+00
Transition States for the Henon Problem90first_order0.00e+007.22e+003.60e-02100.00e+000.00e+00
Transition States for the Henon Problem190first_order0.00e+007.52e+014.00e-02100.00e+000.00e+00
Transition States for the Henon Problem390first_order0.00e+001.26e+021.36e-01100.00e+000.00e+00
Transition States for the Lane-Emden Problem90first_order0.00e+008.49e+003.80e-02100.00e+000.00e+00
Transition States for the Lane-Emden Problem190first_order0.00e+009.11e+004.00e-02100.00e+000.00e+00
Transition States for the Lane-Emden Problem390first_order0.00e+009.28e+003.90e-02100.00e+000.00e+00
Methanol to Hydrocarbons308303unknown0.00e+009.02e-031.67e+0101InfInf
Methanol to Hydrocarbons608603unknown0.00e+009.02e-031.20e+0001InfInf
Methanol to Hydrocarbons12081203unknown0.00e+009.02e-031.03e+0101InfInf
Minimal Surface with Obstacle50022401max_time0.00e+002.51e+001.29e+00111.00e+003.84e-04
Minimal Surface with Obstacle112525476max_time0.00e+002.51e+001.14e+01111.00e+001.74e-04
Minimal Surface with Obstacle200029801max_time0.00e+002.51e+004.18e+01111.00e+009.85e-05
Robot Arm1200597max_time0.00e+009.14e+002.07e+00110.00e+001.41e+04
Robot Arm24001197max_time0.00e+009.14e+002.08e+00110.00e+002.83e+04
Robot Arm48002397max_time0.00e+009.14e+001.83e+00110.00e+005.66e+04
Goddard Rocket24001600max_time0.00e+001.01e+002.92e+00111.19e+001.00e-02
Goddard Rocket48003200max_time0.00e+001.01e+002.92e+00111.00e+001.00e-02
Goddard Rocket96006400max_time0.00e+001.01e+002.36e+00111.00e+001.00e-02
Particle Steering800400max_time0.00e+005.55e-011.03e+01220.00e+007.62e-12
Particle Steering1600800max_time0.00e+005.55e-011.06e+00440.00e+006.15e-12
Particle Steering32001600max_time0.00e+005.55e-011.07e+00440.00e+005.94e-12
Elastic-Plastic Torsion78027802max_time0.00e+00-4.18e-017.97e+01222.00e-071.01e-05
Elastic-Plastic Torsion1732717327max_time0.00e+00-4.18e-013.60e+02222.00e-075.46e-06
Elastic-Plastic Torsion3060230602max_time0.00e+00-4.18e-011.14e+00111.00e+005.05e-05
+COPS · PDEOptimizationProblems

Simulations on COPS 3 test set

We run DCISolver.jl and NLPModelsIpopt.jl and NLPModelsKnitro.jl on an infinite-dimensional implementation of test problems from COPS 3.0 test set.

DCILDL

namenvarnconstatusobjectiveopt_valtime (s)#f#cdual_feasfeas
Isometrization of α-pinene505500max_time0.00e+001.99e+018.49e+00220.00e+002.84e+01
Isometrization of α-pinene10051000max_time0.00e+001.99e+014.05e+00220.00e+002.84e+01
Isometrization of α-pinene20052000max_time0.00e+001.99e+014.42e+00220.00e+002.84e+01
Journal Bearing26000exceptionInf-1.55e-01Inf00InfInf
Journal Bearing57750exceptionInf-1.55e-01Inf00InfInf
Journal Bearing102000exceptionInf-1.55e-01Inf00InfInf
Catalyst Mixing602402max_time0.00e+00-4.81e-029.96e+01111.41e-012.50e-01
Catalyst Mixing1202802max_time0.00e+00-4.81e-023.94e+00119.98e-022.50e-01
Catalyst Mixing24021602max_time0.00e+00-4.81e-021.07e+03227.07e-022.50e-01
Flow in a Channel800800max_time0.00e+001.00e+005.14e+00220.00e+002.20e-01
Flow in a Channel16001600max_time0.00e+001.00e+002.57e+00220.00e+002.20e-01
Flow in a Channel32003200max_time0.00e+001.00e+002.78e+00220.00e+002.20e-01
Transition States for the Dirichlet Problem90first_order0.00e+001.94e-060.00e+00110.00e+000.00e+00
Transition States for the Dirichlet Problem190first_order0.00e+001.71e-020.00e+00110.00e+000.00e+00
Transition States for the Dirichlet Problem390first_order0.00e+003.29e-020.00e+00110.00e+000.00e+00
Catalytic Cracking of Gas Oil205202max_time8.21e-025.24e-036.83e+01114.19e-020.00e+00
Catalytic Cracking of Gas Oil405402max_time8.11e-025.24e-031.11e+00112.97e-020.00e+00
Catalytic Cracking of Gas Oil805802max_time8.11e-025.24e-032.21e+00112.10e-020.00e+00
Hang Glider698498max_time-9.50e+021.25e+034.51e+03224.75e-158.79e+01
Hang Glider1398998max_time-9.50e+021.25e+038.86e+03226.76e-156.44e+01
Hang Glider27981998max_time-9.50e+021.25e+031.77e+04225.05e-094.66e+01
Transition States for the Henon Problem90first_order0.00e+007.22e+000.00e+00110.00e+000.00e+00
Transition States for the Henon Problem190first_order0.00e+007.52e+010.00e+00110.00e+000.00e+00
Transition States for the Henon Problem390first_order0.00e+001.26e+020.00e+00110.00e+000.00e+00
Transition States for the Lane-Emden Problem90first_order0.00e+008.49e+000.00e+00110.00e+000.00e+00
Transition States for the Lane-Emden Problem190first_order0.00e+009.11e+000.00e+00110.00e+000.00e+00
Transition States for the Lane-Emden Problem390first_order0.00e+009.28e+000.00e+00110.00e+000.00e+00
Methanol to Hydrocarbons308303exceptionInf9.02e-03Inf00InfInf
Methanol to Hydrocarbons608603exceptionInf9.02e-03Inf00InfInf
Methanol to Hydrocarbons12081203exceptionInf9.02e-03Inf00InfInf
Minimal Surface with Obstacle50022401max_time2.33e+002.51e+001.94e+01116.85e-027.34e-03
Minimal Surface with Obstacle112525476max_time2.32e+002.51e+001.59e+00225.29e-025.08e-03
Minimal Surface with Obstacle200029801max_time2.33e+002.51e+002.33e+00224.44e-023.84e-03
Robot Arm1200597max_time0.00e+009.14e+003.74e+00220.00e+002.01e+04
Robot Arm24001197max_time0.00e+009.14e+003.87e+00220.00e+004.02e+04
Robot Arm48002397max_time0.00e+009.14e+004.08e+00220.00e+008.04e+04
Goddard Rocket24001600max_time-1.00e+001.01e+004.83e+04221.85e-022.64e-01
Goddard Rocket48003200max_time-1.00e+001.01e+005.78e+04221.32e-021.90e-01
Goddard Rocket96006400max_time-1.00e+001.01e+001.23e+05229.39e-031.69e-01
Particle Steering800400max_time0.00e+005.55e-015.91e+01220.00e+001.35e+01
Particle Steering1600800max_time0.00e+005.55e-011.80e+02220.00e+009.56e+00
Particle Steering32001600max_time0.00e+005.55e-016.38e+02220.00e+006.79e+00
Elastic-Plastic Torsion78027802max_time0.00e+00-4.18e-015.58e+01115.72e-029.93e-03
Elastic-Plastic Torsion1732717327max_time0.00e+00-4.18e-012.22e+00113.82e-026.64e-03
Elastic-Plastic Torsion3060230602max_time0.00e+00-4.18e-012.71e+00112.87e-024.98e-03

knitro

namenvarnconstatusobjectiveopt_valtime (s)#f#cdual_feasfeas
Isometrization of α-pinene505500max_time0.00e+001.99e+014.33e+00110.00e+005.00e+01
Isometrization of α-pinene10051000max_time0.00e+001.99e+011.10e+00110.00e+005.00e+01
Isometrization of α-pinene20052000max_time0.00e+001.99e+011.26e+00110.00e+005.00e+01
Journal Bearing26000max_time1.20e+01-1.55e-019.39e+00105.88e-010.00e+00
Journal Bearing57750max_time5.06e+00-1.55e-015.31e+00202.31e-010.00e+00
Journal Bearing102000max_time-1.05e+00-1.55e-011.09e+00503.17e-040.00e+00
Catalyst Mixing602402max_time0.00e+00-4.81e-022.82e+00221.00e-022.49e-01
Catalyst Mixing1202802max_time0.00e+00-4.81e-022.56e+00225.00e-032.49e-01
Catalyst Mixing24021602max_time0.00e+00-4.81e-023.60e+00222.50e-032.50e-01
Flow in a Channel800800first_order0.00e+001.00e+005.12e+01220.00e+001.99e-13
Flow in a Channel16001600first_order0.00e+001.00e+001.58e+00220.00e+004.44e-16
Flow in a Channel32003200first_order0.00e+001.00e+001.55e+00220.00e+006.66e-16
Transition States for the Dirichlet Problem90first_order0.00e+001.94e-065.16e-02100.00e+000.00e+00
Transition States for the Dirichlet Problem190first_order0.00e+001.71e-021.99e-01100.00e+000.00e+00
Transition States for the Dirichlet Problem390first_order0.00e+003.29e-024.02e-02100.00e+000.00e+00
Catalytic Cracking of Gas Oil205202max_time7.94e-025.24e-035.73e+01227.01e-034.86e-07
Catalytic Cracking of Gas Oil405402max_time7.93e-025.24e-031.45e+00225.73e-033.20e-07
Catalytic Cracking of Gas Oil805802max_time4.65e-025.24e-032.88e+00223.14e-037.89e-05
Hang Glider698498max_time-9.50e+021.25e+032.77e+01114.44e-169.73e+00
Hang Glider1398998max_time-9.50e+021.25e+032.74e+01116.66e-164.86e+00
Hang Glider27981998max_time-9.50e+021.25e+032.77e+01116.66e-162.43e+00
Transition States for the Henon Problem90first_order0.00e+007.22e+002.82e-02100.00e+000.00e+00
Transition States for the Henon Problem190first_order0.00e+007.52e+012.74e-02100.00e+000.00e+00
Transition States for the Henon Problem390first_order0.00e+001.26e+025.00e-02100.00e+000.00e+00
Transition States for the Lane-Emden Problem90first_order0.00e+008.49e+002.56e-02100.00e+000.00e+00
Transition States for the Lane-Emden Problem190first_order0.00e+009.11e+004.14e-02100.00e+000.00e+00
Transition States for the Lane-Emden Problem390first_order0.00e+009.28e+003.79e-02100.00e+000.00e+00
Methanol to Hydrocarbons308303exception2.33e-019.02e-036.73e-01111.80e+3080.00e+00
Methanol to Hydrocarbons608603exception2.33e-019.02e-035.03e-01111.80e+3080.00e+00
Methanol to Hydrocarbons12081203exception2.33e-019.02e-036.91e-01111.80e+3080.00e+00
Minimal Surface with Obstacle50022401max_time5.78e+002.51e+001.86e+01335.09e-024.30e-04
Minimal Surface with Obstacle112525476max_time6.40e+002.51e+001.70e+00333.33e-021.85e-04
Minimal Surface with Obstacle200029801max_time8.47e+002.51e+002.43e+00332.65e-021.23e-04
Robot Arm1200597max_time0.00e+009.14e+002.04e+00220.00e+008.31e+03
Robot Arm24001197max_time0.00e+009.14e+001.79e+00220.00e+001.66e+04
Robot Arm48002397max_time0.00e+009.14e+002.33e+00220.00e+003.32e+04
Goddard Rocket24001600max_time-1.00e+001.01e+003.13e+00332.50e-034.61e-02
Goddard Rocket48003200max_time-1.00e+001.01e+003.16e+00331.25e-032.30e-02
Goddard Rocket96006400max_time-1.00e+001.01e+003.36e+00336.25e-041.15e-02
Particle Steering800400first_order0.00e+005.55e-011.80e+01220.00e+007.62e-12
Particle Steering1600800first_order0.00e+005.55e-013.54e-01220.00e+001.66e-11
Particle Steering32001600first_order0.00e+005.55e-015.49e-01220.00e+002.86e-11
Elastic-Plastic Torsion78027802max_time0.00e+00-4.18e-011.93e+00228.06e-045.92e-04
Elastic-Plastic Torsion1732717327max_time0.00e+00-4.18e-011.19e+01223.60e-042.64e-04
Elastic-Plastic Torsion3060230602max_time0.00e+00-4.18e-012.72e+01222.14e-041.49e-04

ipopt

namenvarnconstatusobjectiveopt_valtime (s)#f#cdual_feasfeas
Isometrization of α-pinene505500max_time0.00e+001.99e+011.67e+00110.00e+005.00e+01
Isometrization of α-pinene10051000max_time0.00e+001.99e+011.83e+00110.00e+005.00e+01
Isometrization of α-pinene20052000max_time0.00e+001.99e+012.02e+00110.00e+005.00e+01
Journal Bearing26000max_time0.00e+00-1.55e-011.06e+00902.19e-050.00e+00
Journal Bearing57750max_time0.00e+00-1.55e-011.08e+00405.14e-020.00e+00
Journal Bearing102000max_time0.00e+00-1.55e-011.07e+00301.74e-010.00e+00
Catalyst Mixing602402max_time0.00e+00-4.81e-022.58e+00111.00e-022.50e-01
Catalyst Mixing1202802max_time0.00e+00-4.81e-022.53e+00115.00e-032.50e-01
Catalyst Mixing24021602max_time0.00e+00-4.81e-025.93e+00112.50e-032.50e-01
Flow in a Channel800800max_time0.00e+001.00e+002.68e+01222.00e-023.32e-08
Flow in a Channel16001600max_time0.00e+001.00e+001.52e+00222.00e-026.64e-08
Flow in a Channel32003200max_time0.00e+001.00e+001.15e+00222.00e-021.33e-07
Transition States for the Dirichlet Problem90first_order0.00e+001.94e-064.90e-02100.00e+000.00e+00
Transition States for the Dirichlet Problem190first_order0.00e+001.71e-021.48e-01100.00e+000.00e+00
Transition States for the Dirichlet Problem390first_order0.00e+003.29e-024.40e-02100.00e+000.00e+00
Catalytic Cracking of Gas Oil205202max_time0.00e+005.24e-032.90e+00221.03e-025.89e-06
Catalytic Cracking of Gas Oil405402max_time0.00e+005.24e-031.42e+00221.47e-023.88e-06
Catalytic Cracking of Gas Oil805802max_time0.00e+005.24e-031.88e+00223.79e-021.84e-06
Hang Glider698498max_time0.00e+001.25e+033.71e+01111.00e+009.73e+00
Hang Glider1398998max_time0.00e+001.25e+033.77e+01111.00e+004.86e+00
Hang Glider27981998max_time0.00e+001.25e+033.86e+01111.00e+002.43e+00
Transition States for the Henon Problem90first_order0.00e+007.22e+003.60e-02100.00e+000.00e+00
Transition States for the Henon Problem190first_order0.00e+007.52e+014.00e-02100.00e+000.00e+00
Transition States for the Henon Problem390first_order0.00e+001.26e+021.36e-01100.00e+000.00e+00
Transition States for the Lane-Emden Problem90first_order0.00e+008.49e+003.80e-02100.00e+000.00e+00
Transition States for the Lane-Emden Problem190first_order0.00e+009.11e+004.00e-02100.00e+000.00e+00
Transition States for the Lane-Emden Problem390first_order0.00e+009.28e+003.90e-02100.00e+000.00e+00
Methanol to Hydrocarbons308303unknown0.00e+009.02e-031.67e+0101InfInf
Methanol to Hydrocarbons608603unknown0.00e+009.02e-031.20e+0001InfInf
Methanol to Hydrocarbons12081203unknown0.00e+009.02e-031.03e+0101InfInf
Minimal Surface with Obstacle50022401max_time0.00e+002.51e+001.29e+00111.00e+003.84e-04
Minimal Surface with Obstacle112525476max_time0.00e+002.51e+001.14e+01111.00e+001.74e-04
Minimal Surface with Obstacle200029801max_time0.00e+002.51e+004.18e+01111.00e+009.85e-05
Robot Arm1200597max_time0.00e+009.14e+002.07e+00110.00e+001.41e+04
Robot Arm24001197max_time0.00e+009.14e+002.08e+00110.00e+002.83e+04
Robot Arm48002397max_time0.00e+009.14e+001.83e+00110.00e+005.66e+04
Goddard Rocket24001600max_time0.00e+001.01e+002.92e+00111.19e+001.00e-02
Goddard Rocket48003200max_time0.00e+001.01e+002.92e+00111.00e+001.00e-02
Goddard Rocket96006400max_time0.00e+001.01e+002.36e+00111.00e+001.00e-02
Particle Steering800400max_time0.00e+005.55e-011.03e+01220.00e+007.62e-12
Particle Steering1600800max_time0.00e+005.55e-011.06e+00440.00e+006.15e-12
Particle Steering32001600max_time0.00e+005.55e-011.07e+00440.00e+005.94e-12
Elastic-Plastic Torsion78027802max_time0.00e+00-4.18e-017.97e+01222.00e-071.01e-05
Elastic-Plastic Torsion1732717327max_time0.00e+00-4.18e-013.60e+02222.00e-075.46e-06
Elastic-Plastic Torsion3060230602max_time0.00e+00-4.18e-011.14e+00111.00e+005.05e-05
diff --git a/dev/index.html b/dev/index.html index 2352227..a85029f 100644 --- a/dev/index.html +++ b/dev/index.html @@ -1,2 +1,2 @@ -Home · PDEOptimizationProblems
+Home · PDEOptimizationProblems
diff --git a/dev/reference/index.html b/dev/reference/index.html index 2f1175e..5f3a4f6 100644 --- a/dev/reference/index.html +++ b/dev/reference/index.html @@ -1,2 +1,2 @@ -Reference · PDEOptimizationProblems

Reference

Contents

Index

PDEOptimizationProblems.metaConstant
PDEOptimizationProblems.meta

A composite type that represents the main features of the PDE-constrained optimization problem. optimize ∫( f(θ, y, u) )dΩ subject to lvar ≤ (θ, y, u) ≤ uvar ∫( res(θ, y, u, v) )dΩ = 0 –- The following keys are valid: Problem meta

  • domaindim: dimension of the domain 1/2/3 for 1D/2D/3D
  • pbtype: in pbtypes
  • : size of the unknown vector
  • ny: number of unknown function
  • nu: number of control function

Solution meta

  • optimalvalue: best known objective value (NaN if unknown, -Inf if unbounded problem)

Classification

  • objtype: in objtypes
  • contype: in contypes
  • origin: in origins
  • has_cvx_obj: true if the problem has a convex objective
  • has_cvx_con: true if the problem has convex constraints
  • has_bounds: true if the problem has bound constraints
  • has_fixed_variables: true if it has fixed variables
source
PDEOptimizationProblems.burger1dMethod

Burger1d(;n :: Int = 512, kwargs...)

Let Ω=(0,1), we solve the one-dimensional ODE-constrained control problem: min{y,u} 0.5 ∫Ω​ |y(x) - yd(x)|^2dx + 0.5 * α * ∫Ω​ |u|^2 s.t. -ν y'' + yy' = u + h, for x ∈ Ω, y(0) = 0, y(1)=-1, for x ∈ ∂Ω, where the constraint is a 1D stationary Burger's equation over Ω, with h(x)=2(ν + x^3) and ν=0.08. The first objective measures deviation from the data y_d(x)=-x^2, while the second term regularizes the control with α = 0.01.

This example has been used in, Section 9.1, Estrin, R., Friedlander, M. P., Orban, D., & Saunders, M. A. (2020). Implementing a smooth exact penalty function for equality-constrained nonlinear optimization. SIAM Journal on Scientific Computing, 42(3), A1809-A1835.

The specificity of the problem:

  • quadratic objective function;
  • nonlinear constraints with AD jacobian;

Suggestions:

  • FEOperatorFromTerms has only one term. We might consider splitting linear and

nonlinear terms.

source
PDEOptimizationProblems.cellincreaseMethod

Mairet, F., & Bayen, T. (2021). The promise of dawn: microalgae photoacclimation as an optimal control problem of resource allocation. Journal of Theoretical Biology, 515, 110597.

Using a photosynthetic rate proportional to the photosynthetic apparatus mass fraction.

source
PDEOptimizationProblems.cellincrease_MichaelisMentenMethod

Mairet, F., & Bayen, T. (2021). The promise of dawn: microalgae photoacclimation as an optimal control problem of resource allocation. Journal of Theoretical Biology, 515, 110597.

Using Michaelis-Menten's function for the photosynthetic rate.

source
PDEOptimizationProblems.controlelasticmembrane1Method

controlelasticmembrane1(; n :: Int = 10, args...)

Let Ω = (-1,1)^2, we solve the following distributed Poisson control problem with Dirichlet boundary:

min{y ∈ H^10,u ∈ H^1} 0.5 ∫Ω​ |y(x) - yd(x)|^2dx + 0.5 * α * ∫Ω​ |u|^2 s.t. -Δy = h + u, for x ∈ Ω y = 0, for x ∈ ∂Ω umin(x) <= u(x) <= umax(x) where yd(x) = -x[1]^2 and α = 1e-2. The force term is h(x1,x2) = - sin( ω x1)sin( ω x2) with ω = π - 1/8. In this first case, the bound constraints are constants with umin(x) = 0.0 and umax(x) = 1.0.

source
PDEOptimizationProblems.controlelasticmembrane2Method

controlelasticmembrane2(; n :: Int = 10, args...)

Let Ω = (-1,1)^2, we solve the following distributed Poisson control problem with Dirichlet boundary:

min{y ∈ H^10,u ∈ H^1} 0.5 ∫Ω​ |y(x) - yd(x)|^2dx + 0.5 * α * ∫Ω​ |u|^2 s.t. -Δy = h + u, for x ∈ Ω y = 0, for x ∈ ∂Ω umin(x) <= u(x) <= umax(x) where yd(x) = -x[1]^2 and α = 1e-2. The force term is h(x1,x2) = - sin( ω x1)sin( ω x2) with ω = π - 1/8. In this second case, the bound constraints are umin(x) = x1+x2 and umax(x) = x1^2+x2^2 applied at the midpoint of the cells.

source
PDEOptimizationProblems.incompressiblenavierstokesMethod

incompressibleNavierStokes(; n :: Int64 = 3, kargs...)

This corresponds to the incompressible Navier-Stokes equation described in the Gridap Tutorials: https://gridap.github.io/Tutorials/stable/pages/t008incnavier_stokes/

It has no objective function and no control, just the PDE.

source
PDEOptimizationProblems.inversepoissonproblem2dMethod

inversePoissonproblem2d(;n :: Int = 512, kwargs...)

Let Ω=(-1,1)^2, we solve the 2-dimensional PDE-constrained control problem: min{y ∈ H1^0, u ∈ L^∞} 0.5 ∫Ω​ |y(x) - yd(x)|^2dx + 0.5 * α * ∫Ω​ |u|^2 s.t. -∇⋅(z∇u) = h, for x ∈ Ω, u(x) = 0, for x ∈ ∂Ω. Let c = (0.2,0.2) and and define S1 = {x | ||x-c||2 ≤ 0.3 } and S2 = {x | ||x-c||1 ≤ 0.6 }. The target ud is generated as the solution of the PDE with z*(x) = 1 + 0.5 * I{S1}(x) + 0.5 * I{S2}(x). The force term here is h(x1,x2) = - sin( ω x1)sin( ω x2) with ω = π - 1/8. The control variable z represents the diffusion coefficients for the Poisson problem that we are trying to recover. Set α = 10^{-4} and discretize using P1 finite elements on a uniform mesh of 1089 triangles and employ an identical discretization for the optimization variables u, thus ncon = 1089 and npde = 961. Initial point is y0=1 and u_0 = 1. z ≥ 0 (implicit)

This example has been used in, Section 9.2, Estrin, R., Friedlander, M. P., Orban, D., & Saunders, M. A. (2020). Implementing a smooth exact penalty function for equality-constrained nonlinear optimization. SIAM Journal on Scientific Computing, 42(3), A1809-A1835.

source
PDEOptimizationProblems.membraneMethod

https://arxiv.org/pdf/2103.14552.pdf Example 1. MEMBRANE Multilevel Active-Set Trust-Region (MASTR) Method for Bound Constrained Minimization Alena Kopaničáková and Rolf Krause

The solution and original problem is given in Domorádová, M., & Dostál, Z. (2007). Projector preconditioning for partially bound‐constrained quadratic optimization. Numerical Linear Algebra with Applications, 14(10), 791-806.

source
PDEOptimizationProblems.penalizedpoissonMethod

Let Ω=(0,1)^2, we solve the unconstrained optimization problem: min{u ∈ H1^0} 0.5 ∫_Ω​ |∇u|^2 - w u dx s.t. u(x) = 0, for x ∈ ∂Ω whre w(x)=1.0.

The minimizer of this problem is the solution of the Poisson equation: ∫_Ω​ (∇u ∇v - f*v)dx = 0, ∀ v ∈ Ω u = 0, x ∈ ∂Ω

This example has been used in Exercice 10.2.4 (p. 308) of G. Allaire, Analyse numérique et optimisation, Les éditions de Polytechnique

source
PDEOptimizationProblems.poisson3dMethod

poisson3d(; n :: Int = 10)

This example represents a Poisson equation with Dirichlet boundary conditions over the 3d-box, (0,1)^3, and we minimize the squared H_1-norm to a manufactured solution. So, the minimal value is expected to be 0.

It is inspired from the 2nd tutorial in Gridap.jl: https://gridap.github.io/Tutorials/stable/pages/t002_validation/

source
PDEOptimizationProblems.poissonboltzman2dMethod

poissonBoltzman2d(; n :: Int = 100)

Let Ω=(-1,1)^2, we solve the 2-dimensional PDE-constrained control problem: min{y ∈ H1^0, u ∈ L^∞} 0.5 ∫Ω​ |y(x) - yd(x)|^2dx + 0.5 * α * ∫Ω​ |u|^2 s.t. -Δy + sinh(y) = h + u, for x ∈ Ω y(x) = 0, for x ∈ ∂Ω

The force term here is h(x1,x2) = - sin( ω x1)sin( ω x2) with ω = π - 1/8. The targeted function is yd(x) = {10 if x ∈ [0.25,0.75]^2, 5 otherwise}. We discretize using P1 finite elements on a uniform mesh with 10201 triangles, resulting in a problem with n = 20002 variables and m = 9801 constraints. We use y0=1 and u0 = 1 as the initial point.

This example has been used in, Section 9.3, Estrin, R., Friedlander, M. P., Orban, D., & Saunders, M. A. (2020). Implementing a smooth exact penalty function for equality-constrained nonlinear optimization. SIAM Journal on Scientific Computing, 42(3), A1809-A1835.

The specificity of the problem:

  • quadratic objective function;
  • nonlinear constraints with AD jacobian;
source
PDEOptimizationProblems.smallestlaplacianeigenvalueMethod

smallestLaplacianeigenvalue(; n :: Int = 10, args...)

We solve the following problem:

min{u,z} ∫Ω​ |∇u|^2 s.t. ∫_Ω​ u^2 = 1, for x ∈ Ω u = 0, for x ∈ ∂Ω

The solution is an eigenvector of the smallest eigenvalue of the Laplacian operator, given by the value of the objective function. λ is an eigenvalue of the Laplacian if there exists u such that

Δu + λ u = 0, for x ∈ Ω u = 0, for x ∈ ∂Ω

This example has been used in Exercice 10.2.11 (p. 313) of G. Allaire, Analyse numérique et optimisation, Les éditions de Polytechnique and more eigenvalue problems can be found in Section 7.3.2

TODO:

  • does the 1 work as it is? or should it be put in lcon, ucon?
  • it is 1D for now.
source
+Reference · PDEOptimizationProblems

Reference

Contents

Index

PDEOptimizationProblems.metaConstant
PDEOptimizationProblems.meta

A composite type that represents the main features of the PDE-constrained optimization problem. optimize ∫( f(θ, y, u) )dΩ subject to lvar ≤ (θ, y, u) ≤ uvar ∫( res(θ, y, u, v) )dΩ = 0 –- The following keys are valid: Problem meta

  • domaindim: dimension of the domain 1/2/3 for 1D/2D/3D
  • pbtype: in pbtypes
  • : size of the unknown vector
  • ny: number of unknown function
  • nu: number of control function

Solution meta

  • optimalvalue: best known objective value (NaN if unknown, -Inf if unbounded problem)

Classification

  • objtype: in objtypes
  • contype: in contypes
  • origin: in origins
  • has_cvx_obj: true if the problem has a convex objective
  • has_cvx_con: true if the problem has convex constraints
  • has_bounds: true if the problem has bound constraints
  • has_fixed_variables: true if it has fixed variables
source
PDEOptimizationProblems.burger1dMethod

Burger1d(;n :: Int = 512, kwargs...)

Let Ω=(0,1), we solve the one-dimensional ODE-constrained control problem: min{y,u} 0.5 ∫Ω​ |y(x) - yd(x)|^2dx + 0.5 * α * ∫Ω​ |u|^2 s.t. -ν y'' + yy' = u + h, for x ∈ Ω, y(0) = 0, y(1)=-1, for x ∈ ∂Ω, where the constraint is a 1D stationary Burger's equation over Ω, with h(x)=2(ν + x^3) and ν=0.08. The first objective measures deviation from the data y_d(x)=-x^2, while the second term regularizes the control with α = 0.01.

This example has been used in, Section 9.1, Estrin, R., Friedlander, M. P., Orban, D., & Saunders, M. A. (2020). Implementing a smooth exact penalty function for equality-constrained nonlinear optimization. SIAM Journal on Scientific Computing, 42(3), A1809-A1835.

The specificity of the problem:

  • quadratic objective function;
  • nonlinear constraints with AD jacobian;

Suggestions:

  • FEOperatorFromTerms has only one term. We might consider splitting linear and

nonlinear terms.

source
PDEOptimizationProblems.cellincreaseMethod

Mairet, F., & Bayen, T. (2021). The promise of dawn: microalgae photoacclimation as an optimal control problem of resource allocation. Journal of Theoretical Biology, 515, 110597.

Using a photosynthetic rate proportional to the photosynthetic apparatus mass fraction.

source
PDEOptimizationProblems.cellincrease_MichaelisMentenMethod

Mairet, F., & Bayen, T. (2021). The promise of dawn: microalgae photoacclimation as an optimal control problem of resource allocation. Journal of Theoretical Biology, 515, 110597.

Using Michaelis-Menten's function for the photosynthetic rate.

source
PDEOptimizationProblems.controlelasticmembrane1Method

controlelasticmembrane1(; n :: Int = 10, args...)

Let Ω = (-1,1)^2, we solve the following distributed Poisson control problem with Dirichlet boundary:

min{y ∈ H^10,u ∈ H^1} 0.5 ∫Ω​ |y(x) - yd(x)|^2dx + 0.5 * α * ∫Ω​ |u|^2 s.t. -Δy = h + u, for x ∈ Ω y = 0, for x ∈ ∂Ω umin(x) <= u(x) <= umax(x) where yd(x) = -x[1]^2 and α = 1e-2. The force term is h(x1,x2) = - sin( ω x1)sin( ω x2) with ω = π - 1/8. In this first case, the bound constraints are constants with umin(x) = 0.0 and umax(x) = 1.0.

source
PDEOptimizationProblems.controlelasticmembrane2Method

controlelasticmembrane2(; n :: Int = 10, args...)

Let Ω = (-1,1)^2, we solve the following distributed Poisson control problem with Dirichlet boundary:

min{y ∈ H^10,u ∈ H^1} 0.5 ∫Ω​ |y(x) - yd(x)|^2dx + 0.5 * α * ∫Ω​ |u|^2 s.t. -Δy = h + u, for x ∈ Ω y = 0, for x ∈ ∂Ω umin(x) <= u(x) <= umax(x) where yd(x) = -x[1]^2 and α = 1e-2. The force term is h(x1,x2) = - sin( ω x1)sin( ω x2) with ω = π - 1/8. In this second case, the bound constraints are umin(x) = x1+x2 and umax(x) = x1^2+x2^2 applied at the midpoint of the cells.

source
PDEOptimizationProblems.incompressiblenavierstokesMethod

incompressibleNavierStokes(; n :: Int64 = 3, kargs...)

This corresponds to the incompressible Navier-Stokes equation described in the Gridap Tutorials: https://gridap.github.io/Tutorials/stable/pages/t008incnavier_stokes/

It has no objective function and no control, just the PDE.

source
PDEOptimizationProblems.inversepoissonproblem2dMethod

inversePoissonproblem2d(;n :: Int = 512, kwargs...)

Let Ω=(-1,1)^2, we solve the 2-dimensional PDE-constrained control problem: min{y ∈ H1^0, u ∈ L^∞} 0.5 ∫Ω​ |y(x) - yd(x)|^2dx + 0.5 * α * ∫Ω​ |u|^2 s.t. -∇⋅(z∇u) = h, for x ∈ Ω, u(x) = 0, for x ∈ ∂Ω. Let c = (0.2,0.2) and and define S1 = {x | ||x-c||2 ≤ 0.3 } and S2 = {x | ||x-c||1 ≤ 0.6 }. The target ud is generated as the solution of the PDE with z*(x) = 1 + 0.5 * I{S1}(x) + 0.5 * I{S2}(x). The force term here is h(x1,x2) = - sin( ω x1)sin( ω x2) with ω = π - 1/8. The control variable z represents the diffusion coefficients for the Poisson problem that we are trying to recover. Set α = 10^{-4} and discretize using P1 finite elements on a uniform mesh of 1089 triangles and employ an identical discretization for the optimization variables u, thus ncon = 1089 and npde = 961. Initial point is y0=1 and u_0 = 1. z ≥ 0 (implicit)

This example has been used in, Section 9.2, Estrin, R., Friedlander, M. P., Orban, D., & Saunders, M. A. (2020). Implementing a smooth exact penalty function for equality-constrained nonlinear optimization. SIAM Journal on Scientific Computing, 42(3), A1809-A1835.

source
PDEOptimizationProblems.membraneMethod

https://arxiv.org/pdf/2103.14552.pdf Example 1. MEMBRANE Multilevel Active-Set Trust-Region (MASTR) Method for Bound Constrained Minimization Alena Kopaničáková and Rolf Krause

The solution and original problem is given in Domorádová, M., & Dostál, Z. (2007). Projector preconditioning for partially bound‐constrained quadratic optimization. Numerical Linear Algebra with Applications, 14(10), 791-806.

source
PDEOptimizationProblems.penalizedpoissonMethod

Let Ω=(0,1)^2, we solve the unconstrained optimization problem: min{u ∈ H1^0} 0.5 ∫_Ω​ |∇u|^2 - w u dx s.t. u(x) = 0, for x ∈ ∂Ω whre w(x)=1.0.

The minimizer of this problem is the solution of the Poisson equation: ∫_Ω​ (∇u ∇v - f*v)dx = 0, ∀ v ∈ Ω u = 0, x ∈ ∂Ω

This example has been used in Exercice 10.2.4 (p. 308) of G. Allaire, Analyse numérique et optimisation, Les éditions de Polytechnique

source
PDEOptimizationProblems.poisson3dMethod

poisson3d(; n :: Int = 10)

This example represents a Poisson equation with Dirichlet boundary conditions over the 3d-box, (0,1)^3, and we minimize the squared H_1-norm to a manufactured solution. So, the minimal value is expected to be 0.

It is inspired from the 2nd tutorial in Gridap.jl: https://gridap.github.io/Tutorials/stable/pages/t002_validation/

source
PDEOptimizationProblems.poissonboltzman2dMethod

poissonBoltzman2d(; n :: Int = 100)

Let Ω=(-1,1)^2, we solve the 2-dimensional PDE-constrained control problem: min{y ∈ H1^0, u ∈ L^∞} 0.5 ∫Ω​ |y(x) - yd(x)|^2dx + 0.5 * α * ∫Ω​ |u|^2 s.t. -Δy + sinh(y) = h + u, for x ∈ Ω y(x) = 0, for x ∈ ∂Ω

The force term here is h(x1,x2) = - sin( ω x1)sin( ω x2) with ω = π - 1/8. The targeted function is yd(x) = {10 if x ∈ [0.25,0.75]^2, 5 otherwise}. We discretize using P1 finite elements on a uniform mesh with 10201 triangles, resulting in a problem with n = 20002 variables and m = 9801 constraints. We use y0=1 and u0 = 1 as the initial point.

This example has been used in, Section 9.3, Estrin, R., Friedlander, M. P., Orban, D., & Saunders, M. A. (2020). Implementing a smooth exact penalty function for equality-constrained nonlinear optimization. SIAM Journal on Scientific Computing, 42(3), A1809-A1835.

The specificity of the problem:

  • quadratic objective function;
  • nonlinear constraints with AD jacobian;
source
PDEOptimizationProblems.smallestlaplacianeigenvalueMethod

smallestLaplacianeigenvalue(; n :: Int = 10, args...)

We solve the following problem:

min{u,z} ∫Ω​ |∇u|^2 s.t. ∫_Ω​ u^2 = 1, for x ∈ Ω u = 0, for x ∈ ∂Ω

The solution is an eigenvector of the smallest eigenvalue of the Laplacian operator, given by the value of the objective function. λ is an eigenvalue of the Laplacian if there exists u such that

Δu + λ u = 0, for x ∈ Ω u = 0, for x ∈ ∂Ω

This example has been used in Exercice 10.2.11 (p. 313) of G. Allaire, Analyse numérique et optimisation, Les éditions de Polytechnique and more eigenvalue problems can be found in Section 7.3.2

TODO:

  • does the 1 work as it is? or should it be put in lcon, ucon?
  • it is 1D for now.
source
diff --git a/dev/results_robot.vtu b/dev/results_robot.vtu index a9ea491c183a40334dcebc8992b2f4351058abb8..4d0a5dd4828e1f7b58308a6cdcdd5d612b7b902c 100644 GIT binary patch delta 21952 zcmYM+c{~(v9Ki8i_YopeltNOi`^epQs1Q=2ghC}n`IQPqnIsjZa&AQ>M?&sn-B-E@ zrAw()&LyR!`}hs^o4?+l$IOmrpPj6k^(r@)KR1^@Plzq3_Q3m@q~I{96;5L-a|wE; zxd#YM83xb7rGv_J!PRk@c!mhv6 z4Bav__CHb^1~=9;E_xqbuyU)~d{>QOsAO^T&{e`&EAa1 zJ=EBSxm1A86ukW5{cIKOVYtlf5}*eNK5yc$a-)XNSz83@{B*%qQHy6a)VP(kS7_|f z4%~Xu3v`CTfjJ^f?LPhBhihika5`)6l(EgBIZaOvP~%Y6hzMPpE||aeqvT0yoX?sj zMiHAN9v(x!UUQc zwB^E?hr$HfnU{K9>z*(%At_7@T9h6csGoH0$_i(07BypzveMUn?n$Sf5y$D0dQqv- z!US6XQ?WzNUzk9h78Q#0t`sKF502YTZ=NPhpw0&ZrTr^}h;d0O`u%4+`)Nj!vMw9^7K- zI&@-8axBse4P1lY)BY(rvQe(^9*sb|g&Qj#RMH4kPgC)4TrrJ6i;A6(9xk8}=+N^U zkzV;U0=0xd1tl~BJs8POs$|g!RKhH!{6Q&=kT4@B!u;IX+aJql1j^I( z^X#k&8iC%u!SJ-BRsa?2Z=4%bMI+FUckfGgR?`SHNae)B#kDj7bvEY7Jy%B~&@)ng zC-`pAh%+Q77QSp0JKR7c(99&i`MkGi1RC^~TRHwVbwG}lx=SNaftXYM9gQ>s z-88za|19+qqRhYFZS7iU1R5A*PM>?9MvxdAh+>x?4`>8>xukdLn};+4{dQed`tf5L zfo|tjt9<;FMxaGr)1tbbQRe_h?mb5j{pp|)==%9_ujjv_5$G@5_sJVx(@2671k2{~ zyrj3Ze+qwEz3O8(jX=e;<&LiIqn4bb;=26oDmINkZ@)HEGk8ZM(17EIKGstwHTu!~ zuCvQW>LucMaCzH0uFoWOQj7)Vm^EJO{1iHt%JVoa( zjX)RQgJfkcI)Qo`rD!hVr4#7U=v(E+0(1i9>D;X5Mher3@u1w%$$A#rDc6rDgt9HZ4EXV3}MBg`k0YZjeAciZk)37i=W=vYsY7fr_RaRP$}4&Iyk9 z{8s&zenuzICl_v1JnN(r=!US_;;ddeflBC>2<8pZ3Dh&(XwA*f)HyOCNkmtMjehw_ z|L3|pudXiV<|0s4#cTWWg}4Yb=HBmVMiN{ET2bB>_jV>1fi_#)7G0C)BG8-Se?uY{ zauKL=t9^BpCKoXw$wll@KYXazU{W=Uz@y(yxd`+tw-S4!6&HcV&NTJ!vg0C9Zq|;a z5iVQ=N<0jZxA)*8(A4EadvHHHfr~&lwEWc1PU9lbCq;Tu@wr?Cn%*ZTakY$#K%bth%YAW!ix`s} z3rh{LNW+#%H^#5HTHDS=pv!;lp1Z4yi$EVe+)1-|&qbgj0~>rSzjG1jm7msr`*^qs zbnf>PrcGkp1gg5ck-buuo1i4eW5=A!=YP%TCQu%oKYQA>xCxYza5v@65^e(3%74Co zrZqQ#u22Z9Cmp#7^o7v$nbSSE3G~pzJ!f9*<|a`7zIEP@4sjFwedI)V4NmX;9l=eY zGZNFm`5ZTau4?>ygPq1rplfd~xR+hXO`u1f-i*Fl$4#J8Lp{eHw{jEc+4oI7hOf8@ zw3!T4Yk$X0G?SbVe?CgzU4XN+BKsJ$EAIBd-h(fnI96T@bO5hd>pUzgcZ< zz(b(C^NB+%R`3vL#-eQhFee@YHB0dNMf2t%NQ{k_J(g7l@(^g*>C;kWCwT~Tq%<+= zYa$PUW^GdmJdndfpnntTcb3%h5NL1n6}c5{JOmnjZ}Y-)-8=;9RJX)b^(zlaaDv!V z_#up6i1(i#k{*;P&*ml24KHGaPHFHG8##uxs4MF%<0Vk8D4rcI)RTsJ5Dvt zAopJ6BgSIP0rKg^!1I&7x%KH>e zQl<{lIojWqU<#co2h>dXlDfydVnB1`7mprYk`L&~_y-Efm#+iL9TQalY|%A96TeG@ zOI%9@^cR`*Vn_blEAWeBrlMVsF>x7CT7B8Db8G^j&z4NL{(ATvpj`56TzE#}09~Tv zTea~<44`%u_Z`g!q5zfkJ@?hp_AJP7B=f4y#C>@d323)Xo30JMYFq8&PK1E4)2R_8S$TmUWT-8Ss;(HT>%^IP3r;ecuw!rUA-RAhlK$$`i~s}^6|e);PyfgM?e%K_HJ^SkPx#;(Ko6|ExqgA+8bHnbYqp&I zO0I^9SPffMbu0D5ImW642wV zY4N(XHh{Jo6MfkpHh`{dNNh3Tw*ho2qqmVO&l=F`=)(RYX*qFAK)(vZrjz$90DU|2_q&!;7J#bn zE_eBBWdW$ooaP^$A{K!DFeU?UXSJBa590}=e>L;+#F_)z6xVNL?r09^#pkoEN94=_ zRd*pzhIcOqG{X6s;EtT-faY7N+w1x-2UM?ELt52rIiTOkS5>hhQY!so=S7=`uj2r$7QtY8jw+m)pGw?OqBf|Hm~E&8($> zlD9so&gKeV3h3t6xAnanmjZh1`BXcW#!^7*H2a?_@Gk{a=ZWREpbj%Y)%VGLbS^Xl z)cDEHng!uzfZDIhIPbmL3^XOtB9KB|3lPr2?3TQ%NdRF)y zQ$W{T+mg8^*%VOey^-ggNmD>SteEQU=xhq;+Pd{m!}LvILTbmn1FWkVl9L|sEp-eoI7@(Dmccd3-zJ3|0kb}i9ht}g*-MZQp;&uRkDmGd7|muL|% zE=fg3Q_9kx5|fJd8vb>C2Y?pk2D{hg0H7=L`r_aD1E8{sH`67J0ML8W%|(ZK0MPgA zeKngJmjIgQ+ONAjehG|8j>TYD!|l3_lk#seZMeH=380LA8R4fRCV<+m$ zc|V82Qzn2$ZD=fcy}<;~-TN39UN0~K^s#H%uf;!%fsz~#LHn3>7j7E^I(kCEaM=Z8 zK+PqBcmLjQ4CvnB7W#W*V?YnEoRx;B7z3(SJD?@|)(B9OZErt26&e9L&39W*VYm@Y z^Cc&OMN>VkxWNceAt-gcqHP4|){o-Vi}{TJWtTL+Z0xo_16^f-IrNgH#0K)=*nh;UKV2h`_s=nGL^ zeG)hUd$V}zdfw{&vwqe`bLX3SfX-`(J^v|1573{dEiDy}>j7&1*7&KPryih%^8$OE zt@HqGQ;4YDvPcimt!Hkfd=n-0U?TM3kIU4V`5zYlvmN*+0nLyxkhL#a4CsC- z$Ip6+ivhh8ylW2xF9!66f@DX7$6`Piv?S~9v{(#i)XUe0BT2QzFdmd3B=fdaeA0VA zKE<5)t_!HQS>L^sd)CzISM*}{*De<|4T>*Q1&#kLe}J)Hn68nXmUUP?D03+ zfJ%OP$-TH$8_?gkpNI~YY6JSC{BAf;x;CI~GM0AoQQCki`P7@IklKJs+N6mnc~i&Z zxR;F0;uCSwhP@oK_v$EpT&fLdmf^RX#@gC|whT91KP;yWXt-oauBxaupwpsm_q2T1 z0ts|yfounx8gsNMBTb$@)&i6)-o!dZ+|mN{xUP+LT!9v#-MX)HoKmy^l8w?0L^Lg&z1jA3()tjng`?Ev;e(g{_C^=D==$xnwJn-3 zA*l(2mCuts>Ly*kclLelJWW8&1`NNQP0<9jrv0sKdbB2>IfELTS0B>^beiR_wk$tQ zKudpjzPjwC2`K5;LIWpF7?-5NqDlV5!IhKxdXF}3G|>dKE-WRwOH&ijh1T2rcoj4O z-MCO}W!rR3Ko|Z^cGTvlwsVZ#P0TU>r2(kL(t)1tcN#DzITpvc!@`Ze_bC?M(V*UpCaejXX??d$gSu-r;i20{FQ(^e06J4_^w8HN4L}(!gB8+D4M11? zJv=Sxga%NO4L-RfF8MHux9wNI-pnouJn?=r4DHIq55?jud72f$qAmc z!l<8#>VQsh-S_BHs5*#nyuV_ee&IfKKv{lTAM#z)0X_4_iD|S_9nkp?H9o}Xr~_KJ za;r%6e04w_Ya_r+R2@i+U3*u_7SYrJ{dI)xQ{Jxzzd3dWH+x*}Py_V+Bcnw>Zm0oD zOXA5}!%_n@X??Ky-^*%%t{Qdgxf7!X=#EWsCASZ%k-!O%H{UPD?W^|BJ%{wqu5nfa zl#e0m^2b&U(6Z&jLJ9h6fYyVwbeXCepcllI4<}2j0eW7tvq)1!4N&Itl{-AYlBzHf zs&Kr(_>Sk$q&m|iynCLi0veU}lHajK70?5h@{Q%nQ~?!ANnc6NQw4O#6{lNb395i< z3u-YvqE!KHZb}m=BM+&!MHm3lmj9i|q$kKNqS3IwT;)nx&`;=>7`|)5t?&sxTH~&atfeBOy5H1?7tUg`+Bf zHrUQxQ}aOu(9};7k1oAX0rYH@a;5xJ6+rLoJZ1N)E+NO6=twAb))=KO1c6g}( zDknWk-u6@hG)srvCpl%U3S{X_XnU(H?|_{OpkI^Tg?u4Y0KM3>{B++E6+mk=e^e!? zssQS_zq(pNMFr5Jz@dG=WmEvY_^4C)_e|>X97P1&BBN&us(=WyVkceM>!|#dvopRi z0G)nnkT>3_xQx#l{J@Ga!~@nBC%2w$B)VYKT4*TymEIXo!TRyKEB! zLYUS*bPLid#^z(inhNd+UB)6wd(E#JS;c@&yK}ULQ+wD0&Vo3&|1`5mi>Anm=1G-zT z1W@~<2mdaP5%*>QI=ns>|oH>pRKqK|S&Mu_3 zk4sWv`}eHI?RAr?yk8Xmj`}*Pu*+(=kU9W*g7G1qXBz|13g%h!Q6~nVR*Kn+La7x& z)pV5aCvIc_8t_5kY0xfe1u4m~u zQgWPAb-4Xi90Sl=jW))!eCj3Rcqim{zQ9%LfE=Gx?9qA<%ssJka zIO}B71rGDr2E(xNo#=Ps&WvFpEOe^r3Qn7+b((TC3} zfXaMPvYu+B3TSNoX}Q-Ls(`-E8 z6;Lsc%wzfr)SEviAZV@WBflAH|2)f^E~s}*4bV@9ZdJ^KYJfIxj^|>3R|7Qnn7!1_ zVKqQ+4f?$^3{eNPSC_c+DnK22IBF?5yy}=r{l+;F8sPSP&am;6N%h$uvl@Ig0KLh$ z{8Y@MhnJ+ zlAB0tH&{7oXP9!9n~@0fm`46|J;6Pz8H>L*T!KB!Ab)zF;A4hB zwxC)nJZA0)p#C=A)P>uwZbdqnGKKfk9myx3R&H;Zl>z8z2eGTlD+5r&dSmO2B^iJ+ zJ2$RR1?321wto3n^|7H}kC)z??*>-J~; zbF~ z7trUIwtEyk$py4R^|4pfhg?9vMI0M#z3m?F3=4^ZJGZ*l%Ld4PV8^>>nS%>(ogPlNQ*9eMDF6Xo)2iqEe!|y)O37i18r^iH@>+}Dad+g#v&u#hCJHmuh z6fIV-_Rj~@X-3{n`>=dKXY4Ta^Nr01l$cR}B_kytP&aTr{i}dFKF5`o*GTVrG9M-) zA71PXEFXC=sn{EXuyb$n0lj=AdcM=gd_Z}jp;wn)0H{)di>SJI0ig1{p?%Bb3jh^a z%Bl>|EC7@}H0$|o(zF1^gYxM;%~QH|lWsepBwx3=0MO{|$NRkZ7658pn4+$Iv;ffg zGOAWGaRq=bUUeya?$rW7)$%(Db5;SMxf`+@$dh*pU@XSG?4s}e@!6z9ccV@O3>E;| ztzi)$_qzblGr|wg^okY&`i)yh<^J44Kx>t^T2Kp!r&3%$LDdH}}_Z+I@MZ!ZS)TEN`!TfxPEs%X_cJ{4CCXmgjgMCkQmK+pKl zA7tDp1~g6LQyRUa7&wyPx=DG#$xp@qY_Am`HWw-Z^yY>0=XDiI0OfPwt9LXk0hIrW zo=}cm37|~^ha?SllmNP7!|P+;LrVZ%{p6j%aAFBeNS46V8^Y$ZOD2`kHyjLUEdew{ z;y{KRy97|0`flydTr5CKzJ3Dk*(^Zcygzf?Mvnz(lOp5x{WUB=1#j=KI=hnvv^?OKnGZMvJTdzFeW(`p?CIJuGv1R#hGCD=&({it29!rW~7t?s+b)x+*Ml&s1akm z>6cfffadBiP+$GK6wn&~XZfFG%K*Lh=I@PHhGjrWjz{pPW1dpZWq^)m&br7vPzI>= z@o9TJ&zAvOuA3D4#l z^;ZD8XgJ`su4pBozho2V#p+bTKf`BPu6Lov9N7tL)`cFa1QNq0S2$yOW+kAb<+~!L zwN(PTR$;GR(2q($WfyO~Z>v}Zs7i^H(;1s8Ks$qOrkeOy0m}R5v7K{L6`;?5?JnwR ztRjIEu&~ysp>wqApD%`7xGm+Y0lhr!gV*ep)qozCuhnxsPz|WC4D%WP)oMW18;7n= ze^?EugDihh7_A1-^G><{*{YE>FcCG7DjRFHeZ!>DrJrZriKqcoKU%@ht*i#nnK0i| zw!a3@)$F2y8gR|EP>#zQ5KSq&(8b%S~M^N?yl=ZX5M$?vQN^q}Cp)1m9C0kvK=pFuaR z2Grem-GTFrYCwJNP5)&*y&6zDKV#7hdNrVnZrwled$0;PlAxp;8vXN0)j#VQ2Cd@t zRe-*IlUfDYRe%~j;%6T{R|V*zbFq(Jhf)XRcvDnc%zjrDpyu@QxgE|`fI0>YCG0n^ zf(e;KINeOJe1VXB^_xm4XPykFE0ZC+X^}ctD*;ViFlEN!=t@9m4~t8@46X#!->!bP z^^QtF_ppebyN;EBZhv7W=CrI5(11l@E52z|0xChfuq1tUC2(YFM$qL+c7WGbvF-{$ zJsVv$e%!ABROZz!?UAYqKsTR%I`2nj1)v+R?5Gw!R{`id*Ds|SVHJRq$rf#Hdny3s z6&Spk;8p<~ok1=v%%R(+;-53##Ty$KRsbruDA1JpU80y~*mXXq9)86_v9hTUwc6d@q{ZATAQS{>m=DJ$_ zsb+3s2WD0beVbqe zi>K`4fqaNy%Er>u1vj1zO!2v$2OF79v2+W;`Fw}`clhVQe5Pz1br*DJgOOyGZXWft zT;j&&{qeGZX+|zJ?}|9O@Bym zUZC#hD!p5`+R`}%l$ad})LhJ7>~N6^Odi`gk=nVublR&ygDX(Z8cd{H&;=Jf`4sg{ z`ywo08C|05@d!Te>CEQZdjg&_gOaIbk=z|^xPM<5NHRN;sYe@rp>@y$4uc^xD1}<# zz|}{2J4XBwM{S6mb+y&^v&BEl=5u-O`vidYe!hQV&UbY{vmdgKrqSo~&J3$zrgwM^ z0{SIPC9cI~5WX;PWK!=Ba=K}S5t@U5N^x25zNl&cmPbRFiO|~ST4FE?HW=7}x-fkWE=bT(`+Pzx? zfNndOzW7bm0H6&|h0m-h9su-b`?)^}*9QQl{^0MXQtAMp?}mAW4<-x%Dju0EBOEh8 z{cIkSq$0HG$d-snL;vt-j)V*VTHsK1!1}-dpy3f!*Pibl0MwTHAVX{W0HB!xaH-a9 z0MP7m$u-iB1Au<7Jyw-!I{@R7R5Wan^8K-V($_tw+m4wG0BY*?dRK?e0HC~He{wxl z1_1T{^lWaqBDKUEYiTYEm&pzQT77DxW4y!wpz_6e;&X%sU`%o>gw>>achM)EU1ehQ z^&1<|!G`8b=EH12w^=#|-0Ncln!0qmolGYi(7*Km;x9d61A1To!To_|HlRg`{o8zQ zvVoEu533vB`&pH2K*a_P%k_)cfF8Yme|tz48&IvmR%coY8_*J0quCZ0*nqA{;ho+P z#Rim26>Sp;X9MbdLx~l7m<`T1$cd<8@Y~%AU<0~Hz*PWtu>mc)Tjxo7Qs02%cDK^D z(T!|CZv+*#Yp-Pk3b!O)rQ5Ip{iP(ot7|D6(2nluA03R?&_QxSMo@Y67jgF5|y%AJeUCK>&J zK3miCrG!-Ihw-4y7^;*ho;m5d^w+fhsr`VmRsLwc;qM1@Xy#=xvA=zQp6OIo;QrDF z=uOWLjf|l_K;2seqGh`K0F9i#znwJc=!3BslPw`TU%744^0QYvmfh_G^hHF@;RUsQ zfc7UO`Vp)?K=o5fP33a>044UyE!Rlv1N5Z-Z9aj-K0pr|l4S3+m_DFl+;pAy-aX-c zfG(I3IWlm#575ASd3+@SeSm%lI>=r8Umu_a&F^;|*xCnZ!iBa>-wl0$njUO6P`B>` zlr2fF3Yu$0J!8oUGx)E3enRvCN~?avU8mOv=#*EFRClZO0V=b9&3!wiK0s^59`5=f z+Xv`~Oq$nYi9SGGiw8{o1p5GeMLHf|Yf0;aR~(ny>MnTwr5Dh=$eq)(hI#=##}|}h z*xd`Lbg&oW_w!yrpFfq-Jo=y)P>IJsuyM2s(ihBY5{^qgg z+pJzdW7g-*i%9MT^j!0vucPOv32;ocF*S%i(+lVed+{A#!g>MC?l{sLaj+NATMm3G zU3+?gBMB033u1k|s2Ot9klU41;noXimUBb8(Yjthb)1A2kv6@6?r_&5Kb!Re>N!Jf zzN$elpf`yReoXaVKv#9shZ>Z6VM4MO5(4<%D$bfzG4XiYa*19*uX!a&o)_o^wBom} zQtqD~K+j$;b^7wT2hdBGH>uGEdjQo-{qWWBO%I^U71)~kPkUfol8QJz2My2WNhKVA z`>eas189Kbq9p-kJ%C=2?3HoO?E&reud~bN0B~Xv&*#D&MnnhF(pdt&b z!$ptxz?kG%7z+K}z^)iWP5%LhaTz%?Sx6$pU+Iw?Ey-1JYru*>)cz^18AC+i2d@pJ%Ac*_SPGc z>H)OI-p^sJa1WsILK>rkv>rh9LwB4s`_c{QH!ZDAw+Fic&5YmEC;X-xGULgKaGBz< zE%-?{prbPz|k5@&t7DZ6|lbl%n)A>L<*$t?~m0Q8(`?>+$+HatB*Q*;)abrn|c-L+~b5Fhr zJY(Mt=*1DUZ|0WWfNJrie_dokO_<~CbxJbLn%zKRoZmXymoUE@(4FpaiVJ1C0S%C~ z5AG7{2K2^u%b^WC-GIuOguC&4?*cUF!idz)p)No>#dSAuzwH7vQRHaPh9_MlZ~|DL zOi%VVcKvf<#I8bvnl3j8=D+UfH161!(iA`C(yd+{{cVrR%MDxi4OsYjGE#1nVo(1*@@k;%F3FOl{F=MS}#NKv3v6z#vmx>3H8cyF}5df z@|iY$5Vq$T_sh~5Yog1Nn`R8cnn>>tbqs-7zw?=bgCLM+JaCei!FPeCJ707V_#&Tv zVKL&lhj>ae=Qdb!l69wAu~E7V>>%?=Vq*bQ}E!c)F7)5kU+%WQaYm>M5rf1N=Wp)<1o`#k3iHO^)W3DN~M z84N80@ehCa2?mR4LT9@bn;1$T`^8V7Ckwj&s8D0nf5z(Smp}Ol)a{#Y>>+B5?#gFJ z2vTE|UG(l$+z);NeLKxnWg#_w%d%WS*CJskR3LnqpFmw21vJWs_z84GW?%fnulxk+ zS}8KM_6t9OMlpreqCfK!=z?9*Mf!vM1ZvL}pP&1YpFpQ4tXe(rfuG<=5)E^HEPU6; z|4)~f$K8B;s0nbaX$t<3*2zzx`yIM1Y~S+}XyW$ICAO{n1e#~?>zZFPKY`}^ZoPE= zDL;XJ$-Z_|?LI#-A<0j0n-?AHtC^HsUFyiq<|okABB{UkrSKD|%^a=pYZ3eeI{aIz zW#K`70zE08H=}Dc^@MR8vEOlSix9Pf91{;85jj{ojTo1tqWhq@;{o+aJ36nendZzO zQ1cP)RXQS533ShS(}!ToN1&U(eY@bgiHATvi-#JP+~y+CB>pUdrEkjQfr=|jjYb#H2(&TL@pwQkjX+tCZiTw# z&{2!fI57smxwH<5$M^PM!BVX0-(Fio)Mm>cnyZ@(^bt8>H#k@`F5|3yEiSg93!0Fdx8i8(q&}H2Alt!SwHxxylKc~(C zj{Aj`%APmT2sFr1D7?LyMxYJ)$Nm1c&SC(uXCLkb~_=mff>!A5$q6rDhK+O&m`^)hr~ zEXK_InA#95KdJxwxOdh{bOQbCYpk!PMki1{m&E5%%jg8^A804JRF~SH;~pVDQ81tr zsNcsnO*bPtfySGalOESi=>!$yPW4@)|J{O4plhY~#yYK`6YDrC1&nMC)gcAj(s zUFXzSvFQLc0giX$VQ1hGI)Pr`mXRnT=>$5srJ549hq>uMJI?hwy ziaCyukCf96M$?HAj_+0(B}l~53DilL&;ETpoj|wk+w4+yolc-vN^ewV-lP-g<=1Nk zOLFN1y1I$`zt$o;flk}h&0J7PCs6XK_0%};+jIi8_`1`ivw=>aqKA(vc|D;MXhG1L z5s_xuSBef}4v#e@Uk9&zZ(Wpeyc-2>DccTRtfi9OYJlJl{MWCk|cNw2{ z;v&%2CZEMN+qej{IJHjBz=MlGmyDiKUv-d+7?-4CUd?w0KWZZAr*r*Bo}A($&}7Af zd6p4e1Uj_Szo$2ri$Hy@|JKe(<|5GTHCo{@SzHAA`pd%E*NeFb6e6p$Uf<#(#w5og zNKPoD&hc*i%Ij4xxu~;z!j+w#5_{XZ2=v_R-88e0Tm%aAjUMJdsRMHC`eJ!t zKMyy74*fZ0*dWMFpm7@Yy{pBz2}*K2DwM8X{3F9npud;=-S<+Bn?Q%I-AigSpbo&X zHv853`Ig)SDk*%VhP3Ag`E$2%6X@?p`_8}iq>jgN!Kj`4Ge2%(!6-Qq`@818 z9XZWSpk7x~!0`e%f&Q!>z15q{O`vkOm)_6F<0jCc>e~_5tGNj@u&49H^M~97TK=V> zQ@53yK*Nt8QF{4-n+PX4QTZz>KI1nxfo@sU+)y@+hd@`HP5R6$%0r-h&2_n_<#-76 z?7FtKmO4BHI#Z7DTe*^lK<6*bI2i1}L!g6UZhvU*JOqj16TQu(>lIyabx?SXoxXgqJ`aZab$gSkFtK7yl@2 zH{Q)lpcPTacO(Yz66i_WIl&syBrh=$yu@(N`npdyCOs~#zplQ5mq5+71dHWA*bk0lY=)Eg0Wrrgfh zi{gCLNjG7@?`JiU_jn2PW{$;^H)gy9s(-_gOba-~Lr^iUk#UQ1%Uo^(J@ef!!YY(T zpdP8JYc5*+0Ccmu0kl0I0JM2$n3d)9_kjMn!Fy6zvkB0Ai<=jGa~=XZ>Pp_#7=3&P zMqMYISMlS`YSC&ytR3JRhiQ(g8?;l8R6dz#{oSNG+?pu!!bbTDbKmB#SR3HByb-{ zE8x8r@XyTi+M+sEB%mw*UVODQ#1GKJqq~$}clrVvZ~8iB#qJ}3J`GKfOPqcf(4b@Q zRgX6M0BT0uc06_MAWTRe1bF6ixheXDd) zcLxpAmLJ;C>&(-2kl(6MU=wXeXfi7RAS}r0;|= z$+7tTB{am>aK}GYe=fV5e$o|C1x<@93N70KJ?cNqAFsY0&~(|7JipEzWi~J-8WAfz(Dh zAMVY7lE-+Q)?U~I=%Ub|xeVn^fQsH+GSB^@3!w6?7W|D(&LH1PPQ>-VZThbzodJD% z;_z%2&y9cvSN!4gxwiq(g3$-+K}$A3KF7`gi;F6!od7NF+%dTAvm>AoBJyX;7Dqs5 z{FqU8`k4dFAUSbG?ZuSxH4cDo?eR6e*RUQ?<5%=<&9&f((X+b3Z2?{SuGY~(#}?3RiPgEs-q`?Jewg24MW_v+0Vl{Ki8?kUa031t6}x5H zZ~f1U3GPlFan^wP*z#$GSz80TgZs6!#8hiQKWqIuw6kU%p!bB2X7e9i2PoI-+v}I= zt^>5@K;_o3@8nvTh_%qGpb@5BJn5_@VkZ_JSqtceWmVqp{WzkF9cSGFaf3s3S3kT2{kVJyZp z{65z-fqT-c4JKXtGA#hzd8#Oa+rdu0*Ukpl=Uf`Ek|89MG)pe36B-%mMY|hs|g1n*r)E zf8;~sSu;Q@_m((~T9^Uaz3{=Ww=>KDW$BYg>e3rcfu%p8=AQ?=JW-~A`b78WncABI zy7tuq%dZPf0qt`n&xCZW0Mybkm9Z;x1)!c5$~Kw@R{;7eUqwXGXa%5!WNUfUjOi<& zkYlt^JUQBI0_aG3hvTbc6F|4PTvWVyzywg*8%ft4#wLJ1+Mbr=KM zFu3mY1GX`sbG7*Nw!Gp*Sw#(t@z35090(yVtOm}-nLqL_Q*Ea=g8^VOtjwcVZuiuz6 zsgrxj@xiYIpt_PtE0rD-fI4}btPISdwsU;au26XYJOOB2YMhRQ7XfHO&a`ZgwFIEr zGLI_?)d(1uq~d%-lJW1^leTy2jyit;K+k9SZ>r7&K<8(7$9$k(x1g^jZ>P-B13)9@ znhFf^0HAs6y;K|O4FEml+@rZ7#sJ17$09qpwyt`k0pxIeyveZkp1c8|-@8Tmo4zgw zRD3nB*2bFUfWEwNz_$PFazM9is4slCVL71s`huA9bV^d!A~sxfO1v!sfoSU19aAo_d^bO zdVsch?&!=5(StTmaw7a`isz&@=mFYfP-LH=t_P^W=UElYrsx4$Rruh|gSWbXsyUWA z`{(Ndy6KYE<0a>G0Zn^rW8Sq@7f>&MyJHasy5L1}BIZ=Fk(014piPHP$@6^H0W@%6 z@sIkuI)H|JTmE)OvJRlL<1hC}`Rf2G=iV87(@6)=pZf03|7q#~S~q<8ZncmOkQnd3 zac^DoQ5#UZV~PA19%uuanBJ4mbwe9a<6f7o5+T}vE@h9FZ`!U6sCTd2nN_CRfOb?~ zI_)H-4d|AuL9YdPwMpOvY)|K@?tHKH&w>S?O&xD*0V-4*b@5A*7N7&?%*`cFY5}VK zUcc#ps}`UsOOA9pT4(`!NAh&lR(UNz?atpx`XNAS!9-}mpwrCxIiHsO^Ktx!V}s9@ z0eVGLN6e;h8KAp`?T57DmH}Gszjq(_F9Wnta!yO_wq=0MZ%owOZMF>1fH&^~LP@1% zFdmfZ(?s7toHc31uP>3Oerf``)hN<#^BYY-r!=K6&bX}!=*x;5jUs89fDQ;qM0|Ar9#?-61vge8Eq#~+6c2ufp0&4taNzt9Tnt(=?Xc%bG zH34nw7BsBt)&O*c$C=03Pc#5kj(qTvU9179j9v{nM><&ps2Eo;bvWw!Sq(tl=mdlw z(f~C0uxexQCJjK{UNY+6ucEed)Uvb^U!$o3=)9QT-HRkO0HsCxtp77j1JI8`WU1Kl zAL{T?XhOqBF<~d$)B#=apB~MssXxWcdl4VuNt5(#pLp)=W2kG_cpW75_i-9y{x&)GCEfc&=Jjd znGQ*6fQozYJ>&^f1Jrd3x1D658lblt4rVRhqXsD5MfGTmiyEMLrf+_9uTle!B-GN) zh+G4;f4=&9w#7z44N#RM5glF&)c~DZaWQT4bTvR@e}z1F{8trF#v0bE83U?-hN?sc zG`>{@^y2!RwEr4aVM0wCu& zD#B6$bk%5pQ2Z$spd`oRebNa>I;jGvvsTJrm8S}zIooEqZ`q*&Xk3hi;CcrYKu_s& z4Qj7d0o0Rq$8W2V3ZQZam+=MZr~vx9(Z{)ssRFMX$%)9^u>O^SlnS6$!mGO<3ah|s zj^A&GWVp{z0d$M%=FN&U6+msw{-!Vnl>t3(p$|c%)`;`H$I-vF`$4ME`_`eP;z17NqYCTo? z6se&M=+o8PXGF*-1G=;7G#Cje1Br3OdyQB=O&L(Wpk9xX9wk6O_&?ZowM7Zg-_P{q zf8A07R3M%wdmUQ|(2Vu|rlVJt;3h}sVVBOkkxGCb-W*+6cT|Z4PJn{xAwh00rGEza zX@{+IR04DkQ^4u3l@g%!D+Z^RqniNky0lMTpJSzw0_Msj1Lx_s%9oK;x6&OtEiN1T^GIj{d@8ML@-pQdZNm6#?~2 zaJVBFs|ctGLyfg9LJ`omhU6K=q@N;;2W9$|^?U&bCjDThxqSX+ML?g)_O@9&D8fH~ zJ6=;>L5(?4y0-y=c-pY>5r&fsL%&9J+5#kI5n8_;L zO_y~$wm2bd-VY|AbIK+jk&J8RX<1XNw%DZ}6% z6VPL`%{PfPP{(IkdeF^C%g9x4G8349zMf@K=9A0>wAx*BNIr%MRUE;wHX!j56VR7x zg^b`cOhB&<7w*pqV*=`%ay_pmkO}CO(*Xr(Cz-&J1OX+#Iemwi|8%cg^ec*F0;(%% z(nI%RQt!PdJlxTk;6v??lB3HaXSp*0{k8XGt>Zo>pec{d)D~}J0=hq_WQCar6DFkY zsGh$$L&s&(-a=NdsT&i}7jyX@ZgXM+8slN*vCWkU=n<7J`;7HWK)DR+6Vs_XL{021 z7A>-80vf6n941F?AD5(J^=Oz%o!zAJALU~{P+vzE@3k1rqYi+cV1A0>*}(*~gcW8w z?7)Oljw_@x;sZO_tEOh7l+bBDk8Wdd6LXViZrk_nXLc=XS3 z;(kk=6sVzFs>TcIq(oJW&)b4@`Tx(!vwTAa3p8ybta&9OZTg&)iMD+F3s9> zs)z}wUqi!EA?n|VUjsQ2<_=m9&p%)S`XWYtS-~LnoO4XLaZ_r2Clk=4Wi!Ma`4s^5 ztV&!WMNJnzGoroQi@YNdPkn2ag_ zi6OYsM*hDE$xK1B=y6e6X5-y;j;ttl>T{|H-({fLJ81bU6*p!Q6)fcZHeLP z{iy_K$_X3c-GfSy%CVyVzz5wxW$HEggsqyy-BurEK$WCzTU%yQuQ(?{1sq;28q}XY zsao&n^ja?!K&zNno76m10DZQibAMK^3ZU~JFim7TRRHbkYrLfrqzdR-*^ck&{;Gg> z-K@G)N3K(Y@u2(*$uD(QPg*pb(V;@Ub41U*xK!wOL>*B6qdy!v{51i6^6BN2{KJ}n z9(8*mnRH4Q(CfDYyF&tW0i~(YXzUZ-^qX7^Y2BnSZe|=vv-A$qwHV%OnajS{UIA~G z??HMu;{|hS21Dr@ykPC}p*|aLf*8aSh258jaqoJ0LG(cOsT^wg9rvpb4 z?7p`u+Z{^(r<=#_11?qRfXX^D(9B0&XVRXvew|)68GvdpNOPaJD+5q5u4Phzff;}r zEL|Gu!pZ>DD3-LEo{<5lgocnxZcPTDFNVrqZGV{o{Fq@yKETWCd@fOc0u6%>7#3Fy;V4h!tNG65Zl*|4r?Bok04pM!J*;VeM= zHgx;8`kbru|hAcqc$~5QP-Jb>MLn2Xx5t;?)sA=>;2T|v2K&5zVMT~c4 zgA~aLHD`S?@K83O9&hQj&x5l8Em9>!iO6g~O}RF+tKz8xa@^D1^2k0j8_;cEcU|T! z%Leo?yVa)tUN)fXXqF1so3eq#2&ijyzSx-!=znG+($~Ib1G+RjwCD~!2T-LuDz@~Q zIe@lE&s4Wvm;-27JS)6XAqUXx*7Y}y^>P61%QUZkw=#zWPJlqu2?5snoPTd|vi#o8TNkJ$LCI@QR}L=NLDyCgDa>4xq=u`P`q}9O{!T69$;4 zlI}HR4opN2@pwKTtH<97QCt>4Rc{UDE05Fp4GITRPV6#;_5BAfI9Cy+3oI~3utF< zlCt{oTtGk0SF{j~&IQzV&6N;|>$!jm<-8?K*|~u3-H=gBp1GR~V=<|m&AJ8!SeDU4Z`GC3|KgX(f%?I?Lc=PLZzWIQ@CfN?#xWe+`HOC(5;^f!Y z@&WbqGZSko&IfcT*O-|3Fdxu0KW;?0cjN;)?T}aa;Lm(O^RI5NNE9pp)YiixE>OAv zP?BXhJttJJ0MHOQ>!7-I1%S?J$QI&9Y0+e4*};qjvSILDOl4fKH3Ocu`Zb5Kv=Vz8ZVo zLO}mZ(3+NMT?pvsseW^Gb`=8Zwc*`~pFxFy^1S#kbug|FCL{}?zlPsbyl~RF+PeLL z4+{Z}oPGGl!rnqa|0;Q^4{@;pefs?iaEr46E&h1^z*`-NlNs=^thTy018DWby1G zKsz#hzh6`;0`vvjTFln62*xDG;{4rx=IeG&y6U|DrikDoK&Po*vzV7u1nA}rpTYL3 zB0z(f>kYrP76IC-y;OPaND-g|2b*)gh!q1G(KdRkRks)@$?7;Eu^7;|X$vm1 z4i^Jzd{Sti>&0R~Pk1GKIaXW@=$7eU)IK&B16uxC!{WxTVnDxpwc8bll>n-J_rejO z1$@y2b2JM%)DPhCaDC_tVWLpXwNKUw?|Nanjs1#81Xg4*F%cX!Cd{RA}R8tD5 zYizTGUQa2YR)aq0GzH24Ra+3ZBub+UP`%R&%-1`W0csMr&MxR!8ITyUS^PKVrj-F| zSi1ML(33Jik4t)M`Ti;c)NIy(R7FTIGAFcp&nJBAy%Jm9B z&FcrQ&wW|}sD;>+{9sxophq3D_E;&Al`s*NU@aD9v2(+u;zdIX?w+osK3F?pZMftC zm*Pr5*#1V>~q%L)Xu^99FmS|<~)JfxhzSGmbQU&O$7g8-tBdY*?Wq-8w(#a}7cZI2M zs`jk{RLI2ha>?E*Kp#)xVqMx=1?Xe&v0Pz9)H ztmMOPwJJd8aQ|$$CsPIJu8n`LvPG#0a6JDjvnp4h3ee`L^V`d~ssK%~C-oa7 z`w1;h&j0fJIdzh7)VnGY?@>_+=(eqD3uq~ofDSJ{5RiAi643UieFG;CRRS9DWKh#@ zb0whd)t%ar7Swi*Qshus+&%S5kmC5X^7(uT@k&6`9=qzt@Kpk8G*9*#bFczX-@0>+ zZ<{Ls-Q;|DRqm|{Kp%TtiA>C>0CYrjn?g3L0#Gt#gK5aCzzRTR1P&-I-dzExA7jb6 zAiD}cSFMp@(hVyB-Rxy|_#(3c&^`C({;`}}0VvlLru;m51)$73k4}yBmjg!zJqJ_E6bOv_Vw5hOwz#6LjJgJUCWJ0a9`mGyYFsY^Gxh+fQk>! zn*GMV3{W5I8ga{AWq^9KiOzfWWq`W9HWG9&DFf6;K6vF16>5KuLbOW;DdJ_ok)?W? zzL@OuaoaA~Q3~jedS{hik4ga*ZM~!ZwY(J2trwe?{7NeY)Hz{Sg}{YUKnI+^6{!T5 z0veEL_QYjhDWJSl`)|j(lmbUbSQH#=+p((jpYuM%=RrWp&OA%uIV+R08Pi(3>*?ua^KC;z8WgjVb}O zX+S#lZ(s>DvCdF8Uzw&RsuXNl0_fB0%-p>?C4iQUUUJ_mTLNf3ucX{2;SxY!XLZ(W z=PrTQtlwwoT5?mr6mNc9S`6qq-KX`mv|>O5_WRA(zEBJSET^+{t@-zM?{e6@t{70S z%#+{Bp%}ba>1XLa^XD@Y=rMUkfIiZ$k5o)7f=4X9P-^byXDzrUvWI%T#c`^KiN~D{ zMS!kInp%B?dR>OTTXp$_hHep{X>&!ceO+1vY3%gSvHy_5Cv@K1u;D`RVKtniCf9dX zvFb-oA)rk>g0*4^h1AN4ou?-EyiVZ$P0>O?JrVI$M2umDi@ zo`6R;lM8^&;t!+SGg<>HX^n;j(8}5sMrSk3GU$bS}HAKz1LD{%G4zvk9h1!p zo>Gto=q8WL?|v^#1Jp_5obdC%Hvl!;5HusJ^#+)+V=vHC=nP}_fc#D0>tM{XyhJT( z^w)f+U%JT<&Fa5IUC)*IV7J!XF$rW?EwR*Gj9>3^5OT)_UJ) zEp(p%&|~=~Q7i1b_Be0L*8||oVqT*bZH@E63x31<0A)5U{>1p^1!$`22oLL0Mt22gPcAa8tH102;MdcpOFUPEU8ER*4K-Twsu?H_t{YSB++Ku2D) zk0;Y*c;_FlWTmvY^#eK_tPtJk)DOd~TWQqK2XW2hywj@vfC_V2dft=j2Xvm(-(Mrb z{eVujm3GdW+7IZtgG(R9{O$u(+HmmxhEIKf?zN6Q{G`1P(0r>zbF#S)IFcY7k>geO zuecD9Q0Kx%IP$UDgYzP`_@8c789QXKy~*8JOM+sAm5|M_N)Zpc&43 z;%1k60kuftom(5;3#jKcfhSW#dI7b*CCv^B=mqOrxJ(m zC*&9+gQ04@fNtHS`uLArFQE4aT_n^O_X4Whe#+?Tyk0;T2_L=nM6ef7#>=58`cr!0 zpP8)K-G6(4!LjSv*Y{6`dw|5K(F}B>4fFuIJTD<~Yex^DH~+i(A+)6j&|m8^UJg9z z0ThmQy`NLx1L(bx)qB0FdjQ=f(l|A`s0YwDN414MX7!N32}to=F<&61=bzRkk^Wn+ z^Z@E8llp*+?g3PC#(>-7vps-LCvxBP2K4}{ETV8$%eM#6>o2@VE%)^R8lZLJQnVY{ z0~65$xob?ilQ&KJ>x`FqzdiK`If_UZn0>eE0kqzqWu|S~18AD&@yD>d2hbTW@0cCc z=mAvvLZ~{)>;bfUUFWw#QnClegEDuZOtfJBqlBGFcxDD%odZ8eKKif*!32Z zd)w5l7>ud#6l2zEE121!MR3p2X`)$?AsLM6Ey(Aa}@d{g7P;h(xB*(DT7 zeL;7^LXD5^ogv+Ts?H1j+859b=&t+Oe1$&UfOhyE_1NvJu+3or4Zb01&`V0>+x&dt??N9z^PV0s?jEH@U0Nm%vx<1RqOo(s=3xZ4HjEbpflWffh3 zk{>-i^gRl?0PSmg?)pBx3(!;RvzMGs>;m-sgMHtJFLVKVVU?jy)cGzzn`~z7`WD;; zXiCemuG2@m0DW%Dr_jEy3pkQ6|9x(hhg;V_)fVoJFLmhxG|jO#MbEAa&}9zOM6g{&oTyakI$b+fXNB~I%ahOx=$d}&Lg=KP=2pl?nbel zfVRDOl4=&-3Fz#lmLUQsspC_UV_`ULbOW#7q<7~Xi!I;R3Fwo+TT#h7I|03-y06m8 zxf4)gZkW5QZ6~0=e!k(aUfBs~V6W@v5aR@5=;diD!~L{QK=p%moiX~>0VrKvZF60J2cQKp`?~qt zI-nqioQUnyx9#wM(E(`mm6hwV8#(|@+4_7yu(|_Kt&7t$lnOflJ$602=}3A9puT+8 zt-mwLH(86gon$+ALgI#fWsswOny5aeo1x!%9n7*zhr+0pw2xyYWLha z0A=XUnH}TY0ciS}wj<|lIslFQYV^a@yaP}vo|NzM%R2xSw38NnpxOZ>M#%Qz?pT=) zKsRoRmXZ_e0Mu2?#=l*#1JHt<<^vmes3qhmvOL6v=Vv>hK9{}9ngnWaw|=aknJ!L?XYTrn1c4+Nx?_cNNZa=pp90l zB~1?PfbO$l%=osZ9nh)f?`1ETwFBDtH95w_klLT)k)rZ5=a#nvDkc5kw3Mx0JB$Zq z&41ecH9C{Bb3HPXwA%rdQ~YSpLygh0w?zpXwAul^KWrMnPmS-hl8WeBD_`%Ak>y&} zPJMJ{!W`CNgEGx_K;uiiwezSk8tyjhvJW*zTVi+oI!KLMSW?B*RizydJDy5VLo`BY n<%uDUc0j)+l)t1=+rP1bimA8qpKb+m#Za3+vA-76%f$Z&2e1nw diff --git a/dev/search/index.html b/dev/search/index.html index b0a4b96..4253bd0 100644 --- a/dev/search/index.html +++ b/dev/search/index.html @@ -1,2 +1,2 @@ -Search · PDEOptimizationProblems

Loading search...

    +Search · PDEOptimizationProblems

    Loading search...

      diff --git a/dev/tuto_rocket/index.html b/dev/tuto_rocket/index.html index 92e1f5e..c854693 100644 --- a/dev/tuto_rocket/index.html +++ b/dev/tuto_rocket/index.html @@ -27,7 +27,7 @@ stats = ipopt(nlp, x0 = nlp.meta.x0) obj_ipopt, con_ipopt = stats.objective, stats.primal_feas -(hh, Hh, vh, mh), uh = split_vectors(nlp, stats.solution)
      (Base.Generator{UnitRange{Int64}, PDENLPModels.var"#26#32"{Vector{Float64}, Gridap.MultiField.MultiFieldFESpace{Gridap.MultiField.ConsecutiveMultiFieldStyle, Gridap.FESpaces.UnConstrained, Vector{Float64}}, PDENLPModels.var"#sum_old#30", PDENLPModels.var"#leng#28"}}(PDENLPModels.var"#26#32"{Vector{Float64}, Gridap.MultiField.MultiFieldFESpace{Gridap.MultiField.ConsecutiveMultiFieldStyle, Gridap.FESpaces.UnConstrained, Vector{Float64}}, PDENLPModels.var"#sum_old#30", PDENLPModels.var"#leng#28"}([1.0000000782063823, 1.0000003130096415, 1.0000007047709742, 1.0000012538374403, 1.0000019605418038, 1.0000028252023891, 1.0000038481229483, 1.000005029592539, 1.0000063698854187, 1.0000078692609484  …  0.00029721802875868556, 0.00029721802875868556, 0.0003279979227687752, 0.0003279979227687752, 0.0003276886489833572, 0.0003276886489833572, 0.0004048727303939332, 0.0004048727303939332, 0.0004043900185087497, 0.0004043900185087497], MultiFieldFESpace(), PDENLPModels.var"#sum_old#30"(), PDENLPModels.var"#leng#28"()), 1:4), [3.499593124492011, 3.499593124492011, 3.499583233072741, 3.499583233072741, 3.4995730612885647, 3.4995730612885647, 3.499562551364897, 3.499562551364897, 3.4995516768785424, 3.4995516768785424  …  0.00029721802875868556, 0.00029721802875868556, 0.0003279979227687752, 0.0003279979227687752, 0.0003276886489833572, 0.0003276886489833572, 0.0004048727303939332, 0.0004048727303939332, 0.0004043900185087497, 0.0004043900185087497])

      Finally, we can plot the functions, and the results match JuMP's tutorial and COPS 3 report.

      using Plots
      +(hh, Hh, vh, mh), uh = split_vectors(nlp, stats.solution)
      (Base.Generator{UnitRange{Int64}, PDENLPModels.var"#26#32"{Vector{Float64}, Gridap.MultiField.MultiFieldFESpace{Gridap.MultiField.ConsecutiveMultiFieldStyle, Gridap.FESpaces.UnConstrained, Vector{Float64}}, PDENLPModels.var"#sum_old#30", PDENLPModels.var"#leng#28"}}(PDENLPModels.var"#26#32"{Vector{Float64}, Gridap.MultiField.MultiFieldFESpace{Gridap.MultiField.ConsecutiveMultiFieldStyle, Gridap.FESpaces.UnConstrained, Vector{Float64}}, PDENLPModels.var"#sum_old#30", PDENLPModels.var"#leng#28"}([1.0000000782063823, 1.0000003130096415, 1.0000007047709742, 1.0000012538374403, 1.0000019605418038, 1.0000028252023891, 1.0000038481229483, 1.000005029592539, 1.0000063698854187, 1.0000078692609484  …  0.000297218028758686, 0.000297218028758686, 0.0003279979227687755, 0.0003279979227687755, 0.0003276886489833575, 0.0003276886489833575, 0.0004048727303939331, 0.0004048727303939331, 0.00040439001850874984, 0.00040439001850874984], MultiFieldFESpace(), PDENLPModels.var"#sum_old#30"(), PDENLPModels.var"#leng#28"()), 1:4), [3.499593124492011, 3.499593124492011, 3.499583233072741, 3.499583233072741, 3.4995730612885647, 3.4995730612885647, 3.499562551364897, 3.499562551364897, 3.4995516768785424, 3.4995516768785424  …  0.000297218028758686, 0.000297218028758686, 0.0003279979227687755, 0.0003279979227687755, 0.0003276886489833575, 0.0003276886489833575, 0.0004048727303939331, 0.0004048727303939331, 0.00040439001850874984, 0.00040439001850874984])

      Finally, we can plot the functions, and the results match JuMP's tutorial and COPS 3 report.

      using Plots
       gr()
       
       h₀, m₀, mᵪ = 1.0, 1.0, 0.6
      @@ -42,132 +42,132 @@
       )
      - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + +

      An alternative is also to intepolate the entire solution over the domain as an FEFunction (Gridap's function type) and save the interpolation in a VTK file.

      Ypde = nlp.pdemeta.Ypde
       h_h  = FEFunction(Ypde.spaces[1], hh)
      @@ -180,4 +180,4 @@
         nlp.pdemeta.tnrj.trian,
         "results_robot",
         cellfields=["uh" => u_h, "hh" => h_h, "Hh" => H_h, "vh" => v_h, "mh" => m_h],
      -)
      (["results_robot.vtu"],)
      +)
      (["results_robot.vtu"],)