From 69864decdf2cb6dd41fabaa330e7767d653f4496 Mon Sep 17 00:00:00 2001 From: TianKai Ma Date: Tue, 16 Apr 2024 21:57:40 +0800 Subject: [PATCH] 24_SP_TA: fix, format --- 2bc0c8-2024_spring_TA/main.typ | 114 +++++++++++++++++---------------- 1 file changed, 59 insertions(+), 55 deletions(-) diff --git a/2bc0c8-2024_spring_TA/main.typ b/2bc0c8-2024_spring_TA/main.typ index 595c48e..d06548c 100644 --- a/2bc0c8-2024_spring_TA/main.typ +++ b/2bc0c8-2024_spring_TA/main.typ @@ -10,7 +10,7 @@ #let dcases(..args) = { math.cases( gap: 0.6em, - math.display(..args) + math.display(..args), ) } @@ -20,20 +20,20 @@ ] #align(center)[ -= 习题课 7 讲义 -2024 Spring 数学分析 B2 + = 习题课 7 讲义 + 2024 Spring 数学分析 B2 -PB21000030 马天开 + PB21000030 马天开 ] == 作业答案 #text(weight: "bold")[ -- 4.1 P125 7(3)(4)(5) -- 4.3 P125 9 10(3)(4) 11(1)(3) 13 18 19 20 21 -- 4.8 P156 2(1)(2)(3)(6)(7)(8) -- 4.10 P156 1(2)(3)(5)(6) 3 5 6 7 -- 4.12 P166 1(1)(4)(5) 2(2)(5)(8) 3(2)(3) 4 6 7 + - 4.1 P125 7(3)(4)(5) + - 4.3 P125 9 10(3)(4) 11(1)(3) 13 18 19 20 21 + - 4.8 P156 2(1)(2)(3)(6)(7)(8) + - 4.10 P156 1(2)(3)(5)(6) 3 5 6 7 + - 4.12 P166 1(1)(4)(5) 2(2)(5)(8) 3(2)(3) 4 6 7 ] === 7(3) @@ -46,7 +46,6 @@ $ (diff^2 f)/(diff y^2) &= e^(2x) dot 2 \ (diff^2 f)/(diff x diff y) &= e^(2x)(4+4y) \ )\ - &dcases( (diff f)/(diff x) &= 0 \ (diff f)/(diff y) &= 0 \ @@ -79,11 +78,11 @@ $ $ $ &=> [4x(x^2+y^2)-2a^2x]dif x +[4y(x^2+y^2)+2a^2y]dif y = 0 \ -&=> (dif y)/(dif x) = -(4x(x^2+y^2)-2a^2x)/(4y(x^2+y^2)+2a^2y) \ +&=> (dif y) / (dif x) = -(4x(x^2+y^2)-2a^2x) / (4y(x^2+y^2)+2a^2y) \ $ $ -(dif y)/(dif x) = 0 space.quad => space.quad x = 0 "or" x^2+y^2=1/2a^2 \ +(dif y) / (dif x) = 0 space.quad => space.quad x = 0 "or" x^2+y^2=1 / 2a^2 \ $ 考虑 $x=0 => (x,y) = (0,0)$ 此处不可微, 舍去 @@ -93,7 +92,7 @@ dcases( x^2+y^2=1/2a^2\ x^2-y^2=1/4a^2\ ) space.quad => space.quad -y^2 = 1/8 +y^2 = 1 / 8 $ 接下来可以用更一般的做法判断是否是极大值/极小值, 我们这里推荐一种更加初等但是高效的做法: @@ -118,12 +117,14 @@ $ $ &x^2+y^2+z^2-2x+2y-4z-10=0 \ => & (2x-2)dif x +(2y+2)dif y+(2z-4)dif z=0 \ -=> & (diff z)/(diff x) = -(x-1)/(z-2) space.quad (diff z)/(diff y) = -(y+1)/(z-2) \ -=> & (diff^2 z)/(diff x^2) = -((x-1)^2+(z-2)^2)/(z-2)^3 space.quad (diff^2 z)/(diff y^2) = -((z-2)^2+(y+1)^2)/(z-2)^3 space.quad (diff^2 z)/(diff x diff y) = 0 \ +=> & (diff z) / (diff x) = -(x-1) / (z-2) space.quad (diff z) / (diff y) = -(y+1) / (z-2) \ +=> & (diff^2 z) / (diff x^2) = -((x-1)^2+(z-2)^2) / (z-2)^3 space.quad (diff^2 z) / (diff y^2) = -((z-2)^2+(y+1)^2) / ( + z-2 +)^3 space.quad (diff^2 z) / (diff x diff y) = 0 \ $ $ -((diff z)/(diff x), (diff z)/(diff y)) = (0, 0) => (x, y) = (1, -1) \ +((diff z) / (diff x), (diff z) / (diff y)) = (0, 0) => (x, y) = (1, -1) \ $ 此时对应 $z_1 = 6, z_2=-2$, 我们分别在两个点的局部判断这是极大值/极小值, 即 $(1,-1,6)$ 和 $(1,-1,-2)$ @@ -141,11 +142,9 @@ $ #pagebreak() === 10(3) - $ u(x,y,z)&=sin(x)sin(y)sin(z)\ U(x,y,z,phi)&=sin(x)sin(y)sin(z)-phi dot.c(x+y+z-pi/2)\ - &dcases( (diff U)/(diff x) &= cos(x)sin(y)sin(z)-phi=0\ (diff U)/(diff y) &= sin(x)cos(y)sin(z)-phi=0\ @@ -157,10 +156,10 @@ $ 可以解出 $ -P_0=(pi/6,pi/6,pi/6)\ -P_1=(pi/2,0,0)\ -P_2=(0,pi/2,0)\ -P_3=(0,0,pi/2)\ +P_0=(pi / 6,pi / 6,pi / 6)\ +P_1=(pi / 2,0,0)\ +P_2=(0,pi / 2,0)\ +P_3=(0,0,pi / 2)\ $ 分别代入 $u$ 可以得到 $u(P_0)=1/8, u(P_1)=0, u(P_2)=0, u(P_3)=0$ @@ -168,7 +167,7 @@ $ 极大值极小值的判断不能直接从拉格朗日乘子法中得到, 应该通过如下方法判断: $ -u(x,y)=u(x,y,z)=u(x,y,pi/2-x-y)=sin(x)sin(y)cos(x+y)\ +u(x,y)=u(x,y,z)=u(x,y,pi / 2-x-y)=sin(x)sin(y)cos(x+y)\ $ 接下来继续处理 $Delta=(diff^2 u)/(diff x^2) dot.c (diff^2 u)/(diff y^2)-((diff^2 u)/(diff x diff y))^2$, 按照一般的二元函数的处理 (#strike[也许可以从头开始就按照这样的做法]), 最终可以获得结果. @@ -176,34 +175,34 @@ $ #image("./imgs/6.png", width: 50%) #box[ -更一般的, 我们可以做如下处理: + 更一般的, 我们可以做如下处理: -$ -u&=sin(x)sin(y)sin(z)\ -dif u&=cos(x)sin(y)sin(z)dif x + sin(x)cos(y)sin(z)dif y + sin(x)sin(y)cos(z)dif z\ -$ + $ + u&=sin(x)sin(y)sin(z)\ + dif u&=cos(x)sin(y)sin(z)dif x + sin(x)cos(y)sin(z)dif y + sin(x)sin(y)cos(z)dif z\ + $ ] #align(center)[ #rect[ $ - &x+y+z=pi/2 space.quad=>space.quad dif x + dif y + dif z = 0\ + &x+y+z=pi / 2 space.quad=>space.quad dif x + dif y + dif z = 0\ $ ] ] $ => & dif u = (cos(x)sin(y)sin(z) - sin(x)sin(y)cos(z))dif x + (sin(x)cos(y)sin(z) - sin(x)sin(y)cos(z))dif y\ -=> & (diff u)/(diff x)=(cos(x)sin(y)sin(z) - sin(x)sin(y)cos(z))=0\ -=> & (diff u)/(diff y)=(sin(x)cos(y)sin(z) - sin(x)sin(y)cos(z))=0\ -=> & (diff^2 u)/(diff x^2)= -2sin(x)sin(y)sin(z) - 2cos(x)sin(y)cos(z)=-1\ -=> & (diff^2 u)/(diff y^2) = -2sin(x)sin(y)sin(z) - 2sin(x)cos(y)cos(z)=-1\ -=> & (diff^2 u)/(diff x diff y) = cos(x)cos(y)sin(z) - sin(x)cos(y)cos(z) - cos(x)sin(y)cos(z) - sin(x)sin(y)sin(z)=-1/2\ +=> & (diff u) / (diff x)=(cos(x)sin(y)sin(z) - sin(x)sin(y)cos(z))=0\ +=> & (diff u) / (diff y)=(sin(x)cos(y)sin(z) - sin(x)sin(y)cos(z))=0\ +=> & (diff^2 u) / (diff x^2)= -2sin(x)sin(y)sin(z) - 2cos(x)sin(y)cos(z)=-1\ +=> & (diff^2 u) / (diff y^2) = -2sin(x)sin(y)sin(z) - 2sin(x)cos(y)cos(z)=-1\ +=> & (diff^2 u) / (diff x diff y) = cos(x)cos(y)sin(z) - sin(x)cos(y)cos(z) - cos(x)sin(y)cos(z) - sin(x)sin(y)sin(z)=-1 / 2\ $ 所以有 $ -Delta = A C - B^2 = 3/4 >0 space.quad A=-1<0 +Delta = A C - B^2 = 3 / 4 >0 space.quad A=-1<0 $ 正定, 最大值 $ u(pi/6,pi/6,pi/6)=1/8 $ @@ -221,15 +220,21 @@ $ $ &dif u = y z dif x + x z dif y + x y dif z\ -\ -&dif x + dif y + dif z = 0\ -&x dif x + y dif y + z dif z = 0\ $ +#align(center)[ + #rect[ + $ + &dif x + dif y + dif z = 0\ + &x dif x + y dif y + z dif z = 0\ + $ + ] +] + 在后两个方程中, 解出 $dif y, dif z$ 关于 $dif x$的表达式为: $ -dif y = (z-x)/(y-z) dif x quad dif z = (x-y)/(y-z) dif x +dif y = (z-x) / (y-z) dif x quad dif z = (x-y) / (y-z) dif x $ 接下来可以类似处理得到 $(dif u)/(dif x) , (dif^2 u)/(dif x^2)$, 按照一元函数的极值点处理即可. @@ -252,7 +257,7 @@ $ 首先考虑 $(diff U)/(diff x),(diff U)/(diff y),(diff U)/(diff z)$ 中 $mu x,mu y,mu z$的对称性, 我们将这三项对应加起来: $ -&(diff U)/(diff x) + (diff U)/(diff y) + (diff U)/(diff z)\ +&(diff U) / (diff x) + (diff U) / (diff y) + (diff U) / (diff z)\ &= x z + y z + x y - 3 lambda - 2 mu (x+y+z)\ &= x z + y z + x y - 3 lambda = 0 $ @@ -262,7 +267,7 @@ $ $ (x+y+z)^2&=x^2+y^2+z^2+2(x y+y z+z x)\ &=1+2(x y+y z+z x)=0 \ -=> & x y+y z+z x = -1/2 +=> & x y+y z+z x = -1 / 2 $ 因此得到 $lambda = - 1/6$, 接下来只需要关心前两项 $(diff U)/(diff x), (diff U)/(diff y)$: @@ -275,8 +280,8 @@ x z + 1/6 - 2 mu y = 0 \ y^2 z + 1/6 y - 2 mu x y = 0 \ x^2 z + 1/6 x - 2 mu y x = 0 \ )\ -&=> [z(x+y) + 1/6](x-y) = 0 \ -&=> [(x+y)^2 - 1/6](x-y) = 0 \ +&=> [z(x+y) + 1 / 6](x-y) = 0 \ +&=> [(x+y)^2 - 1 / 6](x-y) = 0 \ $ 接下来我们分别讨论 $x=y$ 和 $(x+y)^2=1/6$. 其实他们反映的是一种情况的两个对称. @@ -285,16 +290,16 @@ $ $ x=y => z=-2x\ -x^2 + y^2 + z^2 = 6 x^2 = 1 => x = plus.minus sqrt(6)/6 \ -P_1(sqrt(6)/6,sqrt(6)/6, -sqrt(6)/3) quad P_2(-sqrt(6)/6, -sqrt(6)/6, sqrt(6)/3) +x^2 + y^2 + z^2 = 6 x^2 = 1 => x = plus.minus sqrt(6) / 6 \ +P_1(sqrt(6) / 6,sqrt(6) / 6, -sqrt(6) / 3) quad P_2(-sqrt(6) / 6, -sqrt(6) / 6, sqrt(6) / 3) $ -- $(x+y)^2=1/6$ +- $(x+y)^2=1 / 6$ $ -(x+y)^2=1/6 => z^2 = 1/6 \ -=> x^2 + y^2 = 5/6 \ -(x-y)^2 = 9/6 \ +(x+y)^2=1 / 6 => z^2 = 1 / 6 \ +=> x^2 + y^2 = 5 / 6 \ +(x-y)^2 = 9 / 6 \ $ $ @@ -305,8 +310,8 @@ dcases( $ $ -&P_3(sqrt(6)/3, -sqrt(6)/6, -sqrt(6)/6) quad &P_4(-sqrt(6)/3, sqrt(6)/6, sqrt(6)/6) \ -&P_5(sqrt(6)/6, -sqrt(6)/3, sqrt(6)/6) quad &P_6(-sqrt(6)/6, sqrt(6)/3, -sqrt(6)/6) \ +&P_3(sqrt(6) / 3, -sqrt(6) / 6, -sqrt(6) / 6) quad &P_4(-sqrt(6) / 3, sqrt(6) / 6, sqrt(6) / 6) \ +&P_5(sqrt(6) / 6, -sqrt(6) / 3, sqrt(6) / 6) quad &P_6(-sqrt(6) / 6, sqrt(6) / 3, -sqrt(6) / 6) \ $ 因此 $ u_max = sqrt(6)/18 quad u_min = -sqrt(6)/18 $ @@ -323,9 +328,8 @@ $ 即便没有这样的几何直观, 处理起来也是固定的模式, 先讨论内部的极值点、再讨论边界上的条件极值. $ -(diff z)/(diff x) = 2x quad (diff z)/(diff y) = -2y \ - -(diff^2 z)/(diff x^2) = 2 quad (diff^2 z)/(diff y^2) = -2 quad (diff^2 z)/(diff x diff y) = 0 +(diff z) / (diff x) = 2x quad (diff z) / (diff y) = -2y \ +(diff^2 z) / (diff x^2) = 2 quad (diff^2 z) / (diff y^2) = -2 quad (diff^2 z) / (diff x diff y) = 0 $ Hessian 矩阵总是负定的, 函数在${(x,y)mid("|") x^2+y^2 <4}$内部不存在极值点. (事实上也说明在任何区域内部都不存在极值点) @@ -339,7 +343,7 @@ Hessian 矩阵总是负定的, 函数在${(x,y)mid("|") x^2+y^2 <4}$内部不存 max_(overline(Omega)) u = max_(partial Omega) u $ - - *极值原理*: 非调和函数的最值总在边界上取得. + - *极值原理*: 非常数调和函数的最值总在边界上取得. $ max_(Omega) u = max_(partial Omega) u \