From c0ec376c2811ee9b1f577178bdb04fe66f7ade13 Mon Sep 17 00:00:00 2001 From: David Wegmann Date: Sat, 11 Feb 2023 01:41:05 +0100 Subject: [PATCH] lambeks lemma without math prose --- src/Cat/Instances/FAlg.lagda.md | 55 +++++++++++++++++++++++++++++++++ 1 file changed, 55 insertions(+) create mode 100644 src/Cat/Instances/FAlg.lagda.md diff --git a/src/Cat/Instances/FAlg.lagda.md b/src/Cat/Instances/FAlg.lagda.md new file mode 100644 index 000000000..83bf985a2 --- /dev/null +++ b/src/Cat/Instances/FAlg.lagda.md @@ -0,0 +1,55 @@ +```agda +open import Cat.Prelude +open import Cat.Diagram.Initial +open import Cat.Displayed.Total +open import Cat.Displayed.Base +open Total-hom + +import Cat.Reasoning + +module Cat.Instances.FAlg where +``` +```agda + +module _ {o ℓ} {C : Precategory o ℓ} (F : Functor C C) where + + open Cat.Reasoning C + open Functor F + open Displayed + + FAlg : Displayed C _ _ + Ob[ FAlg ] A = Hom (F₀ A) A + Hom[ FAlg ] h α β = h ∘ α ≡ β ∘ F₁ h + Hom[ FAlg ]-set _ _ _ = hlevel! + FAlg .id′ = idl _ ∙ intror F-id + FAlg ._∘′_ p q = pullr q ∙ extendl p ∙ ap (_ ∘_) (sym (F-∘ _ _)) + FAlg .idr′ _ = prop! + FAlg .idl′ _ = prop! + FAlg .assoc′ _ _ _ = prop! + +``` + +```agda + + FAlgebras : Precategory _ _ + FAlgebras = ∫ FAlg + + module FAlgebras = Cat.Reasoning FAlgebras + + lambek : ∀ (i : FAlgebras.Ob) → is-initial FAlgebras i → is-invertible (i .snd) + lambek (I , i) init = make-invertible (j .hom) p q + where + j : FAlgebras.Hom (I , i) (F₀ I , F₁ i) + j = init (F₀ I , F₁ i) .centre + + i' : FAlgebras.Hom (F₀ I , F₁ i) (I , i) + i' .hom = i + i' .preserves = refl + + p = ap hom (is-contr→is-prop (init (I , i)) (i' FAlgebras.∘ j) FAlgebras.id) + q = (j .hom ∘ i) ≡⟨ j .preserves ⟩ + F₁ i ∘ F₁ (j .hom) ≡˘⟨ F-∘ _ _ ⟩ + F₁ (i ∘ j .hom) ≡⟨ ap F₁ p ⟩ + F₁ id ≡⟨ F-id ⟩ + id ∎ +```