forked from JessWN/2110ACDS_T13
-
Notifications
You must be signed in to change notification settings - Fork 0
/
base_app.py
637 lines (458 loc) · 17.4 KB
/
base_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
"""
--------------------------------------------------------
The following application was developed by Team 13: 2110ACDS_T13
For the Advanced Classification Sprint at Explore Data Science Academy.
The application is intended as a text sentiment predictr fr tweet messages.
Authors: Teddy Waweru, Jessica Njuguna, Hunadi Mawela, Uchenna Unigwe, Stanley Agbo
Github Link: https://github.com/JessWN/2110ACDS_T13
Official Presentation Link: https://docs.google.com/presentation/d/1-AIbZcDdUDmvVoIB4WoJcIZslbbdb6S9bujMNEgpuHw/edit?usp=sharing
The content is under the GNU icense & is free-to-use.
"""
import time
from pathlib import Path
import streamlit as st
# Streamlit dependencies
import joblib,os #Loading the model & accessing OS File System
from PIL import Image #Importing logo Image
from io import BytesIO #Buffering Images
# Mathematic Computation
import numpy as np
# Plotting of graphs
import matplotlib.pyplot as plt
from wordcloud import WordCloud
import plotly.express as px
# Data dependencies
import re
import string
import pandas as pd
import emoji
import contractions
from nltk.tokenize import TreebankWordTokenizer
from nltk.stem import WordNetLemmatizer
from nltk.corpus import stopwords
# Tokenizing the train dataset
from sklearn.feature_extraction.text import TfidfVectorizer
#-------------------------------------------------------------------
#START
#-------------------------------------------------------------------
# Load Website's photo clip art
clip_art = Image.open('resources/imgs/performing-twitter-sentiment-analysis1.png')
#Set the Pages Initial Configuration Settings
st.set_page_config(page_title= 'JHUST Inc.: Climate Change Sentiment Classification',
page_icon= clip_art,
layout="wide",
menu_items = {
'Report a Bug': 'https://www.google.com'
})
#Style the pagge Background
page_bg_img = '''
<style>
body {
background-image: url("https://images.unsplash.com/photo-1542281286-9e0a16bb7366");
background-size: cover;
}
</style>
'''
st.markdown(page_bg_img, unsafe_allow_html=True)
# Main function of the Web application
def main():
"""Tweet Classifier App with Streamlit """
# Declare constant variable dict for sentiment values
SENTIMENT_DICT = {
0: 'Anti-Climate Change', 1: 'Neutral',
2: 'Pro-Climate Change', 3: 'Factual Pro-Climate Change'
}
SENTIMENT_DICT_ ={
-1: 'Anti-Climate Change', 0: 'Neutral',
1: 'Pro-Climate Change', 2: 'Factual Pro-Climate Change'
}
SENTIMENT_DICT_SHORT ={
-1: 'Anti', 0: 'Neutral',
1: 'Pro', 2: 'Factual'
}
# Function to load the text Vectorizers
@st.experimental_singleton #Enable function caching
def load_vectorizer():
# with open('resources/models/tfidf_vectorizer.pkl', encoding="utf8") as vectorizer:
# vect = joblib.load(vectorizer)
vectorizer = joblib.load('resources/models/tfidf_vect.pkl')
return vectorizer
# Function to load ML models
@st.experimental_singleton
def load_models():
with open("resources/models/bnb_model.pkl","rb") as model:
bnb_model = joblib.load(model) # loading your predictive model from the pkl file
with open("resources/models/mnb_model.pkl","rb") as model:
mnb_model = joblib.load(model) # loading your predictive model from the pkl file
with open("resources/models/lr_model.pkl","rb") as model:
lr_model = joblib.load(model) # loading your predictive model from the pkl file
return lr_model, bnb_model, mnb_model
# Function to lad word cloud mas image
@st.experimental_singleton
def load_mask():
# mask
mask = np.array(Image.open('resources/imgs/callout_1.png'))
def transform_format(val):
if val == 0:
return 255
else:
return val
trans_mask = np.ndarray((mask.shape[0],mask.shape[1]), np.int32)
for k in range(len(mask)):
# print(mask[k])
trans_mask[k] = list(map(transform_format,mask[k]))
return trans_mask
# Function to load datasets
@st.experimental_singleton
def load_datasets():
# global train_df, grouped_sent_df
# Load the train_df dataset
train_df = pd.read_csv("resources/data/train.csv")
# Load the train_df dataset
test_df = pd.read_csv("resources/data/test.csv")
# Load the grouped sentiment data
grouped_sent_df = pd.read_csv("resources/grouped_sentiment.csv")
return train_df, grouped_sent_df, test_df
# Function to generate word cloud
@st.experimental_singleton
def prepare_word_cloud_data(sentiment) -> float:
_, df,_ = load_datasets()
print('{} to load mask'.format(time.time()))
mask = load_mask()
print('{} to finish load mask'.format(time.time()))
vect = TfidfVectorizer(stop_words='english',token_pattern = '[a-z]+\w*')
vecs = vect.fit_transform([df.loc[[sentiment],'clean_msg'].values[0]])
print()
feature_names = vect.get_feature_names_out()
dense = vecs.todense()
lst = dense.tolist()
df = pd.DataFrame(lst, columns=feature_names)
df = df.T.sum(axis=1)
cloud = WordCloud(background_color= 'white',
max_words=100,
scale = 2,
width= 600,
height= 300,
mask = mask).generate_from_frequencies(df)
return cloud
# Function to prepare text to be predicted & carry out prediction
#Input: tweet text
#Output: predicted sentiment
# @st.experimental_singleton
def prep_pred_text(tweet,model):
vectorizer = load_vectorizer()
#remove urls
tweet = re.sub(
r'http[s]?://(?:[A-Za-z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9A-Fa-f][0-9A-Fa-f]))+',
'', tweet)
#remove digits and words with digits
tweet = re.sub('\w*\d\w*','', tweet)
# print(str(model))
#make text lowercase
tweet = tweet.lower() # lower case
#expand contractions
tweet = contractions.fix(tweet)
#remove punctuation
tweet = re.sub('[%s]' % re.escape(string.punctuation), '', tweet) # strip punctuation
#remove emojis
tweet = emoji.replace_emoji(tweet, replace = '')
#lemmatize the text
token_words = TreebankWordTokenizer().tokenize(tweet)
lemmatizer = WordNetLemmatizer()
lem_sentence=[]
for word in token_words:
if word in stopwords.words('english') or not word.isascii() or word == 'rt':
continue
#just lemmmatize
lem_word = lemmatizer.lemmatize(word)
lem_sentence.append(lem_word)
lem_sentence.append(" ")
prep_tweet = "".join(lem_sentence)
prep_tweet_series = pd.Series(prep_tweet)
prep_tweet_trans = vectorizer.transform(prep_tweet_series)
pred = model.predict(prep_tweet_trans)
return int(pred), prep_tweet
# Read Markdown files
def read_markdown(file):
return Path(file).read_text()
# Introductory Page
# @st.experimental_memo
def introduction_page():
st.title("Climate Change Sentiment Classification")
st.markdown('---')
st.subheader("Developed by JHUST Inc. -Team 13")
col1, col2, col3 = st.columns([1,8,1])
# st.markdown(' - Jessica Njuguna \n - Hunadi Mawela \n - Uchenna Unigwe \n - Stanley Agbo \n - Teddy Waweru \n')
with col1:
pass
with col2:
# st.markdown('---')
st.markdown('### Development Team')
team_members = Image.open('resources/imgs/team_members.png')
st.image(team_members)
with col3:
pass
st.markdown('## Introduction')
st.markdown('---')
col1, col2 = st.columns([10,6])
with col1:
#Climate Change Narrative
st.markdown(read_markdown('resources/markdowns/climate_change.md'))
with col2:
st.text('')
st.text('')
st.text('')
st.text('')
climate_change = Image.open('resources/imgs/climate_change.jpg')
st.image(climate_change)
col1, col2 = st.columns([6,10])
with col1:
st.text('')
st.text('')
st.text('')
twitter_logo = Image.open('resources/imgs/healthy_world.jpg')
st.image(twitter_logo)
with col2:
# Strategic Action Narrative
st.markdown(read_markdown('resources/markdowns/strategic_action.md'))
#Project Links
st.markdown(read_markdown('resources/markdowns/project_links.md'))
st.text('')
st.text('')
if st.checkbox('Load Data Insights'):
BROWSE_PAGES['Data Insights']()
# Insights from EDA of the training dataset
# @st.experimental_singleton(suppress_st_warning=True)
def data_insights():
train_df,_,_ = load_datasets()
global sentiment_select
st.title('Exploratory Data Analysis')
st.markdown(
"""
EDA involves gathering insights on the state of our training data.
This would then create the basis of our approach in creating an effective
machine learning model.
"""
)
st.text('')
#Plot Pie Chart for Sentiment Distribution using matplotlib
# fig = plt.figure(figsize=(8,6))
# mycolors = ["navy", "cornflowerblue", "blue", "aqua"]
# train_df['sentiment'].value_counts(ascending = True).plot(kind = 'pie',
# title = 'Sentiment Distribution',
# xlabel = 'Sentiments',
# colors = mycolors
# )
# #setting the label names
# plt.legend(['Anti', 'Nuetral', 'Factual', 'Pro'],
# loc ="lower right", bbox_to_anchor =(1.5, 0.15))
#show the plot
# st.pyplot(fig)
col1, col2 = st.columns([3,6])
with col1:
#Sentiment Distribution Narrative
st.markdown(read_markdown('resources/markdowns/sentiment_distribution.md'))
with col2:
#Plot Pie Chart for Sentiment Distribution
fig = px.pie(train_df['sentiment'],
values=train_df['sentiment'].value_counts().values,
# names=train_df['sentiment'].value_counts().index)
names= [SENTIMENT_DICT_[i] for i in train_df['sentiment'].value_counts().index])
fig.update_traces(hoverinfo='label+percent', textinfo='value+percent')
fig.update_layout(legend = dict(
yanchor= 'top', y = 1,
xanchor = 'left', x = -0.1,
bgcolor = 'rgba(0,0,0,0)'
))
st.plotly_chart(fig)
col1, col2 = st.columns([3,6])
with col1:
duplicated_sentiments = train_df[train_df.duplicated(['message'])]
fig = px.bar(duplicated_sentiments,
y = duplicated_sentiments['sentiment'].value_counts().values,
x= [SENTIMENT_DICT_SHORT[i] for i in duplicated_sentiments['sentiment'].value_counts().index],
width=300, height=300)
fig.update_layout(xaxis_title = 'Sentiments',
yaxis_title= 'Count of Duplicates',
bargap=0.3,
margin = dict(l=20, r=20,t=0,b=20)
)
st.plotly_chart(fig)
with col2:
st.markdown(
"""
##### Observation Duplicates
It was noted that the dataset held some duplicate values, especially favoring the
Pro Climate Change Category.
It was necessary to deal with duplicates, to ensure our models receive unbiased data.
"""
)
col1, col2 = st.columns([3,6])
with col1:
st.markdown("""
#### Word Distribution in Corpus
It is anticipated that different sentiments would have different keywords in the messages.
In this case, we generated wordclouds that highlight the most common words depending on sentiment.
Select a sentiment below to generate the WordCloud for that sentiment
> It is anticipated that the major words would be similar, ie. 'global, climate'
""")
sentiment_options = [SENTIMENT_DICT[i] for i in [0,1,2,3]]
sentiment_select = st.selectbox('Select Sentiment', sentiment_options)
with col2:
val = list(SENTIMENT_DICT.keys())[list(SENTIMENT_DICT.values()).index(sentiment_select)]
st.text('')
st.text('')
st.markdown('Common Words in **{}** sentiments'.format(SENTIMENT_DICT[val]))
# Plot WordCloud
fig = plt.figure(figsize=(10,5))
plt.imshow(prepare_word_cloud_data(val), interpolation='bilinear')
# plt.title('Common Words in {} sentiments'.format(SENTIMENT_DICT[0]))
plt.axis('off')
plt.tight_layout()
buf = BytesIO()
fig.savefig(buf, format='png')
st.image(buf)
# st.pyplot(fig = fig)
col1, col2 = st.columns([6,3])
with col1:
train_df['tweet_len'] = train_df['message'].astype(str).apply(len)
fig = px.histogram(train_df, train_df['tweet_len'],
nbins = 20,
# title = 'Distribution of Tweet Lengths',
width=600,height=300)
fig.update_layout(xaxis_title = 'Tweet Lengths',
margin = dict(l=20, r=20,t=10,b=20)
)
st.plotly_chart(fig)
#Plot Word Count Bar Graph
# train_df['word_count'] = train_df['message'].apply(lambda x : len(re.findall(r'/w+',x)))
# fig.update_layout(xaxis_title = 'Tweet Lengths',
# margin = dict(l=20, r=20,t=0,b=20)
# )
# fig = px.bar(
# train_df,
# x = [SENTIMENT_DICT_SHORT[i] for i in train_df['sentiment'].value_counts().index],
# y = train_df.groupby('sentiment')['word_count'].mean()
# )
# fig.update_layout(
# xaxis_title = 'Sentiment', yaxis_title = ''
# )
# st.plotly_chart(fig)
with col2:
# st.markdown(
# """
# ##### Additional Insights
# The following are basic insights to get from the data as well, & would show some
# significant differences that we exploited during model building.
# > Include charts for: Tweet lengths, stop words
# """
# )
st.markdown(
"""
##### Tweet Lengths
We provided a histogram of the length of tweets in the dataframe, which
would come in handy once we carry out feature engineering during analysis of each sentiment independently.
> The feature engineering section is covered in the accompanying noteboo, accessible in the [Github repo][1]
[1]: https://github.com/JessWN/2110ACDS_T13
"""
)
if st.checkbox('Load Modelling'):
# BROWSE_PAGES['Exploratory Data Analysis']()
BROWSE_PAGES['Models Performance']()
# pass
# Prediction Page
def models_performance():
global model, model_title, text
lr_model, bnb_model, mnb_model = load_models()
st.title('Prediction')
st.markdown("""
After training Machine Learning algorithms based on the available dataset, the resultant models were included
here for application.
In this section:
- The model types are outlined below, as well as relevant performance metrics
- Users are able to generate a sentiment prediction based on the availed models.
> You can provide a text series for prediction, or select a randomly selected one from the dataset that has been included.
""")
col1, col2 = st.columns([6,8])
with col1:
st.markdown('#### Model Selection')
#Model selections from list of loaded models
model_options = ['Model: \t{}'.format(str(j)) for i,j in enumerate(load_models())]
model_selection = st.selectbox('Select Model:', model_options)
#Logistic Regression
if 'Logistic' in model_selection:
model = lr_model
model_title = 'Logistic Regression Model'
st.markdown(
"""
##### Logistic Regression Model
The model utilizes a logistic functionality to compare the probability of an even occurrence.
For multivariable predictions, the model applies either a one-vs-many or one-vs-other workflow.
The model's basis is on making a naive assumption that the features provided are independent.
"""
)
#Bernoulli Naives Bayes
elif 'Bernoulli' in model_selection:
model = bnb_model
model_title = 'Bernoulli Naive Bayes Model'
st.markdown(
"""
##### Binomial Naive Bayes Model
The model's basis is on making a naive assumption that the features provided are independent.
It also assumes that the features are drawn from a simple binomial distribution.
It is highly applicable to text data
"""
)
#Multinomial Naive Bayes
elif 'Multinomial' in model_selection:
model = mnb_model
model_title = 'Multinomial Naive Bayes Model'
st.markdown(
"""
##### Multinomial Naive Bayes Model
The model's basis is on making a naive assumption that the features provided are independent.
It also assumes that the features are drawn from a simple multinomial distribution ie, multiple binomial distributions
It is highly applicable to text data
"""
)
st.markdown('---')
people_sent = Image.open('resources/imgs/people_sentiment.jpeg')
st.image(people_sent)
st.markdown('{}🌍'.format(read_markdown('resources/markdowns/conclusion.md')))
#Prediction Column
with col2:
st.markdown('---')
st.markdown('#### Sentiment Prediction using {}'.format(model_title))
#Text Area for the tweet to be predicted
tweet_text_area = st.empty()
tweet_text = tweet_text_area.text_area("Enter Tweet",placeholder="Type here.", key = 'tweet_text_area')
text = tweet_text
st.markdown('Else, select Random sample from test data.')
train_df, _, test_df = load_datasets()
if st.checkbox('Select Random'):
idx = int(np.random.randint(0,len(train_df),size=1))
tweet_text = tweet_text_area.text_area('Random Text from Training data', value = train_df.loc[idx, 'message'])
text = tweet_text
if st.button('Predict Text'):
pred, prep_tweet = prep_pred_text(text,model)
st.markdown("""Predicted Sentiment: {}
{}""".format(pred,SENTIMENT_DICT_[pred]))
st.text_area('Stripped Text','{}'.format(prep_tweet))
#Dictionary of radio buttons & functions that are loaded depending on page selected
BROWSE_PAGES = {
'Home Page': introduction_page,
'Data Insights': data_insights,
'Models Performance': models_performance,
}
#Page Navigation Title & Radio BUttons
st.sidebar.title('Navigation')
page = st.sidebar.radio('Go to:',list(BROWSE_PAGES.keys()))
#Load function depending on radio selected above.
#Used to navigate through pages
BROWSE_PAGES[page]()
# Required to let Streamlit instantiate our web app.
if __name__ == '__main__':
print('----Loading Website-----')
print(time.time())
main()
print(time.time())