In this setting, we only have the normal videos.
python train_scripts/train_normal_annotation.py --dataset avenue \
--prednet cyclegan_convlstm \
--batch 2 \
--num_his 4 \
--label_level normal \
--gpu 0 \
--iters 80000 --output_dir ./outputs
After we train the model, we run the inference and evaluate all the checkpoints.
If there a more than 2 GPUs, you can immediately run the inference scripts after run the training scripts,
because the inference script is always listening the directory of the checkpoints, once there is a new
checkpoint, it will evaluate it immediately. Here we use gpu 0
for training, and gpu 1
for testing.
python inference.py --dataset avenue \
--prednet cyclegan_convlstm \
--num_his 4 \
--label_level normal \
--gpu 1 \
--interpolation --output_dir ./outputs