-
Notifications
You must be signed in to change notification settings - Fork 13
/
train.py
145 lines (128 loc) · 5.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# -*- coding: utf-8 -*-
from __future__ import print_function
import torch
import random
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms
from torch.autograd import Variable
from config import *
from utils import *
from data import Fashion_attr_prediction, Fashion_inshop
from net import f_model
data_transform_train = transforms.Compose([
transforms.Resize(IMG_SIZE),
transforms.RandomSizedCrop(CROP_SIZE),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
data_transform_test = transforms.Compose([
transforms.Resize(CROP_SIZE),
transforms.CenterCrop(CROP_SIZE),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
train_loader = torch.utils.data.DataLoader(
Fashion_attr_prediction(type="train", transform=data_transform_train),
batch_size=TRAIN_BATCH_SIZE, num_workers=NUM_WORKERS, pin_memory=True
)
test_loader = torch.utils.data.DataLoader(
Fashion_attr_prediction(type="test", transform=data_transform_test),
batch_size=TEST_BATCH_SIZE, num_workers=NUM_WORKERS, pin_memory=True
)
triplet_loader = torch.utils.data.DataLoader(
Fashion_attr_prediction(type="triplet", transform=data_transform_train),
batch_size=TRIPLET_BATCH_SIZE, num_workers=NUM_WORKERS, pin_memory=True
)
if ENABLE_INSHOP_DATASET:
triplet_in_shop_loader = torch.utils.data.DataLoader(
Fashion_inshop(type="train", transform=data_transform_train),
batch_size=TRIPLET_BATCH_SIZE, num_workers=NUM_WORKERS, pin_memory=True
)
model = f_model(freeze_param=FREEZE_PARAM, model_path=DUMPED_MODEL).cuda(GPU_ID)
optimizer = optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=LR, momentum=MOMENTUM)
def train(epoch):
model.train()
criterion_c = nn.CrossEntropyLoss()
if ENABLE_TRIPLET_WITH_COSINE:
criterion_t = TripletMarginLossCosine()
else:
criterion_t = nn.TripletMarginLoss()
triplet_loader_iter = iter(triplet_loader)
triplet_type = 0
if ENABLE_INSHOP_DATASET:
triplet_in_shop_loader_iter = iter(triplet_in_shop_loader)
for batch_idx, (data, target) in enumerate(train_loader):
if batch_idx % TEST_INTERVAL == 0:
test()
data, target = data.cuda(GPU_ID), target.cuda(GPU_ID)
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
outputs = model(data)[0]
classification_loss = criterion_c(outputs, target)
if TRIPLET_WEIGHT:
if ENABLE_INSHOP_DATASET and random.random() < INSHOP_DATASET_PRECENT:
triplet_type = 1
try:
data_tri_list = next(triplet_in_shop_loader_iter)
except StopIteration:
triplet_in_shop_loader_iter = iter(triplet_in_shop_loader)
data_tri_list = next(triplet_in_shop_loader_iter)
else:
triplet_type = 0
try:
data_tri_list = next(triplet_loader_iter)
except StopIteration:
triplet_loader_iter = iter(triplet_loader)
data_tri_list = next(triplet_loader_iter)
triplet_batch_size = data_tri_list[0].shape[0]
data_tri = torch.cat(data_tri_list, 0)
data_tri = data_tri.cuda(GPU_ID)
data_tri = Variable(data_tri, requires_grad=True)
feats = model(data_tri)[1]
triplet_loss = criterion_t(
feats[:triplet_batch_size],
feats[triplet_batch_size:2 * triplet_batch_size],
feats[2 * triplet_batch_size:]
)
loss = classification_loss + triplet_loss * TRIPLET_WEIGHT
else:
loss = classification_loss
loss.backward()
optimizer.step()
if batch_idx % LOG_INTERVAL == 0:
if TRIPLET_WEIGHT:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tAll Loss: {:.4f}\t'
'Triple Loss({}): {:.4f}\tClassification Loss: {:.4f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.data[0], triplet_type,
triplet_loss.data[0], classification_loss.data[0]))
else:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tClassification Loss: {:.4f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.data[0]))
if batch_idx and batch_idx % DUMP_INTERVAL == 0:
print('Model saved to {}'.format(dump_model(model, epoch, batch_idx)))
print('Model saved to {}'.format(dump_model(model, epoch)))
def test():
model.eval()
criterion = nn.CrossEntropyLoss(size_average=False)
test_loss = 0
correct = 0
for batch_idx, (data, target) in enumerate(test_loader):
data, target = data.cuda(GPU_ID), target.cuda(GPU_ID)
data, target = Variable(data, volatile=True), Variable(target)
output = model(data)[0]
test_loss += criterion(output, target).data[0]
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
if batch_idx > TEST_BATCH_COUNT:
break
test_loss /= (TEST_BATCH_COUNT * TEST_BATCH_SIZE)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
float(test_loss), correct, (TEST_BATCH_COUNT * TEST_BATCH_SIZE),
float(100. * correct / (TEST_BATCH_COUNT * TEST_BATCH_SIZE))))
if __name__ == "__main__":
for epoch in range(1, EPOCH + 1):
train(epoch)