forked from materialsproject/pymatgen
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
194 lines (180 loc) · 8.02 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# Copyright (c) Pymatgen Development Team.
# Distributed under the terms of the MIT License.
"""Setup.py for pymatgen."""
import sys
import platform
import numpy
from setuptools import setup, find_namespace_packages, Extension
extra_link_args = []
if sys.platform.startswith("win") and platform.machine().endswith("64"):
extra_link_args.append("-Wl,--allow-multiple-definition")
long_desc = """
Official docs: [http://pymatgen.org](http://pymatgen.org/)
Pymatgen (Python Materials Genomics) is a robust, open-source Python library
for materials analysis. These are some of the main features:
1. Highly flexible classes for the representation of Element, Site, Molecule,
Structure objects.
2. Extensive input/output support, including support for
[VASP](http://cms.mpi.univie.ac.at/vasp/), [ABINIT](http://www.abinit.org/),
CIF, Gaussian, XYZ, and many other file formats.
3. Powerful analysis tools, including generation of phase diagrams, Pourbaix
diagrams, diffusion analyses, reactions, etc.
4. Electronic structure analyses, such as density of states and band structure.
5. Integration with the Materials Project REST API.
Pymatgen is free to use. However, we also welcome your help to improve this
library by making your own contributions. These contributions can be in the
form of additional tools or modules you develop, or feature requests and bug
reports. Please report any bugs and issues at pymatgen's [Github page]
(https://github.com/materialsproject/pymatgen). For help with any pymatgen
issues, please use the [Discourse page](https://discuss.matsci.org/c/pymatgen).
Why use pymatgen?
=================
There are many materials analysis codes out there, both commerical and free,
but pymatgen offer several advantages:
1. **It is (fairly) robust.** Pymatgen is used by thousands of researchers,
and is the analysis code powering the [Materials Project](https://www.materialsproject.org).
The analysis it produces survives rigorous scrutiny every single day. Bugs
tend to be found and corrected quickly. Pymatgen also uses
[CircleCI](https://circleci.com) and [Appveyor](https://www.appveyor.com/)
for continuous integration on the Linux and Windows platforms,
respectively, which ensures that every commit passes a comprehensive suite
of unittests.
2. **It is well documented.** A fairly comprehensive documentation has been
written to help you get to grips with it quickly.
3. **It is open.** You are free to use and contribute to pymatgen. It also means
that pymatgen is continuously being improved. We will attribute any code you
contribute to any publication you specify. Contributing to pymatgen means
your research becomes more visible, which translates to greater impact.
4. **It is fast.** Many of the core numerical methods in pymatgen have been
optimized by vectorizing in numpy/scipy. This means that coordinate
manipulations are extremely fast and are in fact comparable to codes
written in other languages. Pymatgen also comes with a complete system for
handling periodic boundary conditions.
5. **It will be around.** Pymatgen is not a pet research project. It is used in
the well-established Materials Project. It is also actively being developed
and maintained by the [Materials Virtual Lab](https://www.materialsvirtuallab.org),
the ABINIT group and many other research groups.
"""
setup(
name="pymatgen",
packages=find_namespace_packages(
include=["pymatgen.*", "pymatgen.analysis.*", "pymatgen.io.*", "pymatgen.ext.*"],
exclude=["pymatgen.*.tests", "pymatgen.*.*.tests", "pymatgen.*.*.*.tests"],
),
version="2022.01.09",
python_requires=">=3.8",
install_requires=[
"numpy>=1.20.1",
"requests",
"ruamel.yaml>=0.15.6",
"monty>=3.0.2",
"scipy>=1.5.0",
"tabulate",
"spglib>=1.9.9.44",
"networkx>=2.2",
"matplotlib>=1.5",
"palettable>=3.1.1",
"sympy",
"pandas",
"plotly>=4.5.0",
"uncertainties>=3.1.4",
"Cython>=0.29.23",
"pybtex",
"tqdm"
],
extras_require={
"ase": ["ase>=3.3"],
"vis": ["vtk>=6.0.0"],
"abinit": ["netcdf4"],
},
# All package data has to be explicitly defined. Do not use automated codes like last time. It adds
# all sorts of useless files like test files and is prone to path errors.
package_data={
"pymatgen.analysis": ["*.yaml", "*.json", "*.csv"],
"pymatgen.analysis.chemenv": [
"coordination_environments/coordination_geometries_files/*.json",
"coordination_environments/coordination_geometries_files/*.txt",
"coordination_environments/strategy_files/ImprovedConfidenceCutoffDefaultParameters.json",
],
"pymatgen.analysis.structure_prediction": ["*.yaml", "data/*.json"],
"pymatgen.analysis.diffraction": ["*.json"],
"pymatgen.analysis.magnetism": ["default_magmoms.yaml"],
"pymatgen.analysis.solar": ["am1.5G.dat"],
"pymatgen.entries": ["py.typed", "*.json.gz", "*.yaml", "data/*.json"],
"pymatgen.core": ["py.typed", "*.json"],
"pymatgen.io.vasp": ["*.yaml", "*.json"],
"pymatgen.io.feff": ["*.yaml"],
"pymatgen.io.cp2k": ["*.yaml"],
"pymatgen.io.lobster": ["lobster_basis/*.yaml"],
"pymatgen.command_line": ["OxideTersoffPotentials"],
"pymatgen.util": ["structures/*.json", "*.json"],
"pymatgen.vis": ["*.yaml"],
"pymatgen.io.lammps": ["CoeffsDataType.yaml", "templates/md.txt"],
"pymatgen.symmetry": ["*.yaml", "*.json", "*.sqlite"],
},
author="Pymatgen Development Team",
author_email="[email protected]",
maintainer="Shyue Ping Ong, Matthew Horton",
maintainer_email="[email protected], [email protected]",
url="http://www.pymatgen.org",
license="MIT",
description="Python Materials Genomics is a robust materials "
"analysis code that defines core object representations for "
"structures and molecules with support for many electronic "
"structure codes. It is currently the core analysis code "
"powering the Materials Project "
"(https://www.materialsproject.org).",
long_description=long_desc,
long_description_content_type="text/markdown",
keywords=[
"VASP",
"gaussian",
"ABINIT",
"nwchem",
"qchem",
"materials",
"science",
"project",
"electronic",
"structure",
"analysis",
"phase",
"diagrams",
"crystal",
],
classifiers=[
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Development Status :: 4 - Beta",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
"Topic :: Scientific/Engineering :: Information Analysis",
"Topic :: Scientific/Engineering :: Physics",
"Topic :: Scientific/Engineering :: Chemistry",
"Topic :: Software Development :: Libraries :: Python Modules",
],
ext_modules=[
Extension(
"pymatgen.optimization.linear_assignment",
["pymatgen/optimization/linear_assignment.pyx"],
extra_link_args=extra_link_args,
),
Extension("pymatgen.util.coord_cython", ["pymatgen/util/coord_cython.pyx"], extra_link_args=extra_link_args),
Extension(
"pymatgen.optimization.neighbors", ["pymatgen/optimization/neighbors.pyx"], extra_link_args=extra_link_args
),
],
entry_points={
"console_scripts": [
"pmg = pymatgen.cli.pmg:main",
"feff_plot_cross_section = pymatgen.cli.feff_plot_cross_section:main",
"feff_plot_dos = pymatgen.cli.feff_plot_dos:main",
"gaussian_analyzer = pymatgen.cli.gaussian_analyzer:main",
"get_environment = pymatgen.cli.get_environment:main",
]
},
include_dirs=numpy.get_include(),
)