-
Notifications
You must be signed in to change notification settings - Fork 117
/
txn_proto2_impl.h
1265 lines (1074 loc) · 38.1 KB
/
txn_proto2_impl.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#ifndef _NDB_TXN_PROTO2_IMPL_H_
#define _NDB_TXN_PROTO2_IMPL_H_
#include <iostream>
#include <atomic>
#include <vector>
#include <set>
#include <lz4.h>
#include "txn.h"
#include "txn_impl.h"
#include "txn_btree.h"
#include "macros.h"
#include "circbuf.h"
#include "spinbarrier.h"
#include "record/serializer.h"
// forward decl
template <typename Traits> class transaction_proto2;
template <template <typename> class Transaction>
class txn_epoch_sync;
// the system has a single logging subsystem (composed of multiple lgogers)
// NOTE: currently, the persistence epoch is tied 1:1 with the ticker's epoch
class txn_logger {
friend class transaction_proto2_static;
template <typename T>
friend class transaction_proto2;
// XXX: should only allow txn_epoch_sync<transaction_proto2> as friend
template <template <typename> class T>
friend class txn_epoch_sync;
public:
static const size_t g_nmax_loggers = 16;
static const size_t g_perthread_buffers = 256; // 256 outstanding buffers
static const size_t g_buffer_size = (1<<20); // in bytes
static const size_t g_horizon_buffer_size = 2 * (1<<16); // in bytes
static const size_t g_max_lag_epochs = 128; // cannot lag more than 128 epochs
static const bool g_pin_loggers_to_numa_nodes = false;
static inline bool
IsPersistenceEnabled()
{
return g_persist;
}
static inline bool
IsCompressionEnabled()
{
return g_use_compression;
}
// init the logging subsystem.
//
// should only be called ONCE is not thread-safe. if assignments_used is not
// null, then fills it with a copy of the assignment actually computed
static void Init(
size_t nworkers,
const std::vector<std::string> &logfiles,
const std::vector<std::vector<unsigned>> &assignments_given,
std::vector<std::vector<unsigned>> *assignments_used = nullptr,
bool call_fsync = true,
bool use_compression = false,
bool fake_writes = false);
struct logbuf_header {
uint64_t nentries_; // > 0 for all valid log buffers
uint64_t last_tid_; // TID of the last commit
} PACKED;
struct pbuffer {
uint64_t earliest_start_us_; // start time of the earliest txn
bool io_scheduled_; // has the logger scheduled IO yet?
unsigned curoff_; // current offset into buf_ for writing
const unsigned core_id_; // which core does this pbuffer belong to?
const unsigned buf_sz_;
// must be last field
uint8_t buf_start_[0];
// to allocate a pbuffer, use placement new:
// const size_t bufsz = ...;
// char *p = malloc(sizeof(pbuffer) + bufsz);
// pbuffer *pb = new (p) pbuffer(core_id, bufsz);
//
// NOTE: it is not necessary to call the destructor for pbuffer, since
// it only contains PODs
pbuffer(unsigned core_id, unsigned buf_sz)
: core_id_(core_id), buf_sz_(buf_sz)
{
INVARIANT(((char *)this) + sizeof(*this) == (char *) &buf_start_[0]);
INVARIANT(buf_sz > sizeof(logbuf_header));
reset();
}
pbuffer(const pbuffer &) = delete;
pbuffer &operator=(const pbuffer &) = delete;
pbuffer(pbuffer &&) = delete;
inline void
reset()
{
earliest_start_us_ = 0;
io_scheduled_ = false;
curoff_ = sizeof(logbuf_header);
NDB_MEMSET(&buf_start_[0], 0, buf_sz_);
}
inline uint8_t *
pointer()
{
INVARIANT(curoff_ >= sizeof(logbuf_header));
INVARIANT(curoff_ <= buf_sz_);
return &buf_start_[0] + curoff_;
}
inline uint8_t *
datastart()
{
return &buf_start_[0] + sizeof(logbuf_header);
}
inline size_t
datasize() const
{
INVARIANT(curoff_ >= sizeof(logbuf_header));
INVARIANT(curoff_ <= buf_sz_);
return curoff_ - sizeof(logbuf_header);
}
inline logbuf_header *
header()
{
return reinterpret_cast<logbuf_header *>(&buf_start_[0]);
}
inline const logbuf_header *
header() const
{
return reinterpret_cast<const logbuf_header *>(&buf_start_[0]);
}
inline size_t
space_remaining() const
{
INVARIANT(curoff_ >= sizeof(logbuf_header));
INVARIANT(curoff_ <= buf_sz_);
return buf_sz_ - curoff_;
}
inline bool
can_hold_tid(uint64_t tid) const;
} PACKED;
static bool
AssignmentsValid(const std::vector<std::vector<unsigned>> &assignments,
unsigned nfds,
unsigned nworkers)
{
// each worker must be assigned exactly once in the assignment
// there must be <= nfds assignments
if (assignments.size() > nfds)
return false;
std::set<unsigned> seen;
for (auto &assignment : assignments)
for (auto w : assignment) {
if (seen.count(w) || w >= nworkers)
return false;
seen.insert(w);
}
return seen.size() == nworkers;
}
typedef circbuf<pbuffer, g_perthread_buffers> pbuffer_circbuf;
static std::tuple<uint64_t, uint64_t, double>
compute_ntxns_persisted_statistics();
// purge counters from each thread about the number of
// persisted txns
static void
clear_ntxns_persisted_statistics();
// wait until the logging system appears to be idle.
//
// note that this isn't a guarantee, just a best effort attempt
static void
wait_for_idle_state();
// waits until the epoch on invocation time is persisted
static void
wait_until_current_point_persisted();
private:
// data structures
struct epoch_array {
// don't use percore<std::atomic<uint64_t>> because we don't want padding
std::atomic<uint64_t> epochs_[NMAXCORES];
std::atomic<uint64_t> dummy_work_; // so we can do some fake work
CACHE_PADOUT;
};
struct persist_ctx {
bool init_;
void *lz4ctx_; // for compression
pbuffer *horizon_; // for compression
circbuf<pbuffer, g_perthread_buffers> all_buffers_; // logger pushes to core
circbuf<pbuffer, g_perthread_buffers> persist_buffers_; // core pushes to logger
persist_ctx() : init_(false), lz4ctx_(nullptr), horizon_(nullptr) {}
};
// context per one epoch
struct persist_stats {
// how many txns this thread has persisted in total
std::atomic<uint64_t> ntxns_persisted_;
// how many txns have been pushed to the logger (but not necessarily persisted)
std::atomic<uint64_t> ntxns_pushed_;
// committed (but not necessarily pushed, nor persisted)
std::atomic<uint64_t> ntxns_committed_;
// sum of all latencies (divid by ntxns_persisted_ to get avg latency in
// us) for *persisted* txns (is conservative)
std::atomic<uint64_t> latency_numer_;
// per last g_max_lag_epochs information
struct per_epoch_stats {
std::atomic<uint64_t> ntxns_;
std::atomic<uint64_t> earliest_start_us_;
per_epoch_stats() : ntxns_(0), earliest_start_us_(0) {}
} d_[g_max_lag_epochs];
persist_stats() :
ntxns_persisted_(0), ntxns_pushed_(0),
ntxns_committed_(0), latency_numer_(0) {}
};
// helpers
static void
advance_system_sync_epoch(
const std::vector<std::vector<unsigned>> &assignments);
// makes copy on purpose
static void writer(
unsigned id, int fd,
std::vector<unsigned> assignment);
static void persister(
std::vector<std::vector<unsigned>> assignments);
enum InitMode {
INITMODE_NONE, // no initialization
INITMODE_REG, // just use malloc() to init buffers
INITMODE_RCU, // try to use the RCU numa aware allocator
};
static inline persist_ctx &
persist_ctx_for(uint64_t core_id, InitMode imode)
{
INVARIANT(core_id < g_persist_ctxs.size());
persist_ctx &ctx = g_persist_ctxs[core_id];
if (unlikely(!ctx.init_ && imode != INITMODE_NONE)) {
size_t needed = g_perthread_buffers * (sizeof(pbuffer) + g_buffer_size);
if (IsCompressionEnabled())
needed += size_t(LZ4_create_size()) +
sizeof(pbuffer) + g_horizon_buffer_size;
char *mem =
(imode == INITMODE_REG) ?
(char *) malloc(needed) :
(char *) rcu::s_instance.alloc_static(needed);
if (IsCompressionEnabled()) {
ctx.lz4ctx_ = mem;
mem += LZ4_create_size();
ctx.horizon_ = new (mem) pbuffer(core_id, g_horizon_buffer_size);
mem += sizeof(pbuffer) + g_horizon_buffer_size;
}
for (size_t i = 0; i < g_perthread_buffers; i++) {
ctx.all_buffers_.enq(new (mem) pbuffer(core_id, g_buffer_size));
mem += sizeof(pbuffer) + g_buffer_size;
}
ctx.init_ = true;
}
return ctx;
}
// static state
static bool g_persist; // whether or not logging is enabled
static bool g_call_fsync; // whether or not fsync() needs to be called
// in order to be considered durable
static bool g_use_compression; // whether or not to compress log buffers
static bool g_fake_writes; // whether or not to fake doing writes (to measure
// pure overhead of disk)
static size_t g_nworkers; // assignments are computed based on g_nworkers
// but a logger responsible for core i is really
// responsible for cores i + k * g_nworkers, for k
// >= 0
// v = per_thread_sync_epochs_[i].epochs_[j]: logger i has persisted up
// through (including) all transactions <= epoch v on core j. since core =>
// logger mapping is static, taking:
// min_{core} max_{logger} per_thread_sync_epochs_[logger].epochs_[core]
// yields the entire system's persistent epoch
static epoch_array
per_thread_sync_epochs_[g_nmax_loggers] CACHE_ALIGNED;
// conservative estimate (<=) for:
// min_{core} max_{logger} per_thread_sync_epochs_[logger].epochs_[core]
static util::aligned_padded_elem<std::atomic<uint64_t>>
system_sync_epoch_ CACHE_ALIGNED;
static percore<persist_ctx> g_persist_ctxs CACHE_ALIGNED;
static percore<persist_stats> g_persist_stats CACHE_ALIGNED;
// counters
static event_counter g_evt_log_buffer_epoch_boundary;
static event_counter g_evt_log_buffer_out_of_space;
static event_counter g_evt_log_buffer_bytes_before_compress;
static event_counter g_evt_log_buffer_bytes_after_compress;
static event_counter g_evt_logger_writev_limit_met;
static event_counter g_evt_logger_max_lag_wait;
static event_avg_counter g_evt_avg_log_entry_ntxns;
static event_avg_counter g_evt_avg_log_buffer_compress_time_us;
static event_avg_counter g_evt_avg_logger_bytes_per_writev;
static event_avg_counter g_evt_avg_logger_bytes_per_sec;
};
static inline std::ostream &
operator<<(std::ostream &o, txn_logger::logbuf_header &hdr)
{
o << "{nentries_=" << hdr.nentries_ << ", last_tid_="
<< g_proto_version_str(hdr.last_tid_) << "}";
return o;
}
class transaction_proto2_static {
public:
// NOTE:
// each epoch is tied (1:1) to the ticker subsystem's tick. this is the
// speed of the persistence layer.
//
// however, read only txns and GC are tied to multiples of the ticker
// subsystem's tick
#ifdef CHECK_INVARIANTS
static const uint64_t ReadOnlyEpochMultiplier = 10; /* 10 * 1 ms */
#else
static const uint64_t ReadOnlyEpochMultiplier = 25; /* 25 * 40 ms */
static_assert(ticker::tick_us * ReadOnlyEpochMultiplier == 1000000, "");
#endif
static_assert(ReadOnlyEpochMultiplier >= 1, "XX");
static const uint64_t ReadOnlyEpochUsec =
ticker::tick_us * ReadOnlyEpochMultiplier;
static inline uint64_t constexpr
to_read_only_tick(uint64_t epoch_tick)
{
return epoch_tick / ReadOnlyEpochMultiplier;
}
// in this protocol, the version number is:
// (note that for tid_t's, the top bit is reserved and
// *must* be set to zero
//
// [ core | number | epoch | reserved ]
// [ 0..9 | 9..33 | 33..63 | 63..64 ]
static inline ALWAYS_INLINE
uint64_t CoreId(uint64_t v)
{
return v & CoreMask;
}
static inline ALWAYS_INLINE
uint64_t NumId(uint64_t v)
{
return (v & NumIdMask) >> NumIdShift;
}
static inline ALWAYS_INLINE
uint64_t EpochId(uint64_t v)
{
return (v & EpochMask) >> EpochShift;
}
// XXX(stephentu): HACK
static void
wait_an_epoch()
{
INVARIANT(!rcu::s_instance.in_rcu_region());
const uint64_t e = to_read_only_tick(
ticker::s_instance.global_last_tick_exclusive());
if (!e) {
std::cerr << "wait_an_epoch(): consistent reads happening in e-1, but e=0 so special case"
<< std::endl;
} else {
std::cerr << "wait_an_epoch(): consistent reads happening in e-1: "
<< (e-1) << std::endl;
}
while (to_read_only_tick(ticker::s_instance.global_last_tick_exclusive()) == e)
nop_pause();
COMPILER_MEMORY_FENCE;
}
static uint64_t
ComputeReadOnlyTid(uint64_t global_tick_ex)
{
const uint64_t a = (global_tick_ex / ReadOnlyEpochMultiplier);
const uint64_t b = a * ReadOnlyEpochMultiplier;
// want to read entries <= b-1, special casing for b=0
if (!b)
return MakeTid(0, 0, 0);
else
return MakeTid(CoreMask, NumIdMask >> NumIdShift, b - 1);
}
static const uint64_t NBitsNumber = 24;
// XXX(stephentu): need to implement core ID recycling
static const size_t CoreBits = NMAXCOREBITS; // allow 2^CoreShift distinct threads
static const size_t NMaxCores = NMAXCORES;
static const uint64_t CoreMask = (NMaxCores - 1);
static const uint64_t NumIdShift = CoreBits;
static const uint64_t NumIdMask = ((((uint64_t)1) << NBitsNumber) - 1) << NumIdShift;
static const uint64_t EpochShift = CoreBits + NBitsNumber;
// since the reserve bit is always zero, we don't need a special mask
static const uint64_t EpochMask = ((uint64_t)-1) << EpochShift;
static inline ALWAYS_INLINE
uint64_t MakeTid(uint64_t core_id, uint64_t num_id, uint64_t epoch_id)
{
// some sanity checking
static_assert((CoreMask | NumIdMask | EpochMask) == ((uint64_t)-1), "xx");
static_assert((CoreMask & NumIdMask) == 0, "xx");
static_assert((NumIdMask & EpochMask) == 0, "xx");
return (core_id) | (num_id << NumIdShift) | (epoch_id << EpochShift);
}
static inline void
set_hack_status(bool hack_status)
{
g_hack->status_ = hack_status;
}
static inline bool
get_hack_status()
{
return g_hack->status_;
}
// thread-safe, can be called many times
static void InitGC();
static void PurgeThreadOutstandingGCTasks();
#ifdef PROTO2_CAN_DISABLE_GC
static inline bool
IsGCEnabled()
{
return g_flags->g_gc_init.load(std::memory_order_acquire);
}
#endif
#ifdef PROTO2_CAN_DISABLE_SNAPSHOTS
static void
DisableSnapshots()
{
g_flags->g_disable_snapshots.store(true, std::memory_order_release);
}
static inline bool
IsSnapshotsEnabled()
{
return !g_flags->g_disable_snapshots.load(std::memory_order_acquire);
}
#endif
protected:
struct delete_entry {
#ifdef CHECK_INVARIANTS
dbtuple *tuple_ahead_;
uint64_t trigger_tid_;
#endif
dbtuple *tuple_;
marked_ptr<std::string> key_;
concurrent_btree *btr_;
delete_entry()
:
#ifdef CHECK_INVARIANTS
tuple_ahead_(nullptr),
trigger_tid_(0),
#endif
tuple_(),
key_(),
btr_(nullptr) {}
delete_entry(dbtuple *tuple_ahead,
uint64_t trigger_tid,
dbtuple *tuple,
const marked_ptr<std::string> &key,
concurrent_btree *btr)
:
#ifdef CHECK_INVARIANTS
tuple_ahead_(tuple_ahead),
trigger_tid_(trigger_tid),
#endif
tuple_(tuple),
key_(key),
btr_(btr) {}
inline dbtuple *
tuple()
{
return tuple_;
}
};
typedef basic_px_queue<delete_entry, 4096> px_queue;
struct threadctx {
uint64_t last_commit_tid_;
unsigned last_reaped_epoch_;
#ifdef ENABLE_EVENT_COUNTERS
uint64_t last_reaped_timestamp_us_;
#endif
px_queue queue_;
px_queue scratch_;
std::deque<std::string *> pool_;
threadctx() :
last_commit_tid_(0)
, last_reaped_epoch_(0)
#ifdef ENABLE_EVENT_COUNTERS
, last_reaped_timestamp_us_(0)
#endif
{
ALWAYS_ASSERT(((uintptr_t)this % CACHELINE_SIZE) == 0);
queue_.alloc_freelist(rcu::NQueueGroups);
scratch_.alloc_freelist(rcu::NQueueGroups);
}
};
static void
clean_up_to_including(threadctx &ctx, uint64_t ro_tick_geq);
// helper methods
static inline txn_logger::pbuffer *
wait_for_head(txn_logger::pbuffer_circbuf &pull_buf)
{
// XXX(stephentu): spinning for now
txn_logger::pbuffer *px;
while (unlikely(!(px = pull_buf.peek()))) {
nop_pause();
++g_evt_worker_thread_wait_log_buffer;
}
INVARIANT(!px->io_scheduled_);
return px;
}
// pushes horizon to the front entry of pull_buf, pushing
// to push_buf if necessary
//
// horizon is reset after push_horizon_to_buffer() returns
//
// returns the number of txns pushed from buffer to *logger*
// (if doing so was necessary)
static inline size_t
push_horizon_to_buffer(txn_logger::pbuffer *horizon,
void *lz4ctx,
txn_logger::pbuffer_circbuf &pull_buf,
txn_logger::pbuffer_circbuf &push_buf)
{
INVARIANT(txn_logger::IsCompressionEnabled());
if (unlikely(!horizon->header()->nentries_))
return 0;
INVARIANT(horizon->datasize());
size_t ntxns_pushed_to_logger = 0;
// horizon out of space- try to push horizon to buffer
txn_logger::pbuffer *px = wait_for_head(pull_buf);
const uint64_t compressed_space_needed =
sizeof(uint32_t) + LZ4_compressBound(horizon->datasize());
bool buffer_cond = false;
if (px->space_remaining() < compressed_space_needed ||
(buffer_cond = !px->can_hold_tid(horizon->header()->last_tid_))) {
// buffer out of space- push buffer to logger
INVARIANT(px->header()->nentries_);
ntxns_pushed_to_logger = px->header()->nentries_;
txn_logger::pbuffer *px1 = pull_buf.deq();
INVARIANT(px == px1);
push_buf.enq(px1);
px = wait_for_head(pull_buf);
if (buffer_cond)
++txn_logger::g_evt_log_buffer_epoch_boundary;
else
++txn_logger::g_evt_log_buffer_out_of_space;
}
INVARIANT(px->space_remaining() >= compressed_space_needed);
if (!px->header()->nentries_)
px->earliest_start_us_ = horizon->earliest_start_us_;
px->header()->nentries_ += horizon->header()->nentries_;
px->header()->last_tid_ = horizon->header()->last_tid_;
#ifdef ENABLE_EVENT_COUNTERS
util::timer tt;
#endif
const int ret = LZ4_compress_heap_limitedOutput(
lz4ctx,
(const char *) horizon->datastart(),
(char *) px->pointer() + sizeof(uint32_t),
horizon->datasize(),
px->space_remaining() - sizeof(uint32_t));
#ifdef ENABLE_EVENT_COUNTERS
txn_logger::g_evt_avg_log_buffer_compress_time_us.offer(tt.lap());
txn_logger::g_evt_log_buffer_bytes_before_compress.inc(horizon->datasize());
txn_logger::g_evt_log_buffer_bytes_after_compress.inc(ret);
#endif
INVARIANT(ret > 0);
#if defined(CHECK_INVARIANTS) && defined(PARANOID_CHECKING)
{
uint8_t decode_buf[txn_logger::g_horizon_buffer_size];
const int decode_ret =
LZ4_decompress_safe_partial(
(const char *) px->pointer() + sizeof(uint32_t),
(char *) &decode_buf[0],
ret,
txn_logger::g_horizon_buffer_size,
txn_logger::g_horizon_buffer_size);
INVARIANT(decode_ret >= 0);
INVARIANT(size_t(decode_ret) == horizon->datasize());
INVARIANT(memcmp(horizon->datastart(),
&decode_buf[0], decode_ret) == 0);
}
#endif
serializer<uint32_t, false> s_uint32_t;
s_uint32_t.write(px->pointer(), ret);
px->curoff_ += sizeof(uint32_t) + uint32_t(ret);
horizon->reset();
return ntxns_pushed_to_logger;
}
struct hackstruct {
std::atomic<bool> status_;
std::atomic<uint64_t> global_tid_;
constexpr hackstruct() : status_(false), global_tid_(0) {}
};
// use to simulate global TID for comparsion
static util::aligned_padded_elem<hackstruct>
g_hack CACHE_ALIGNED;
struct flags {
std::atomic<bool> g_gc_init;
std::atomic<bool> g_disable_snapshots;
constexpr flags() : g_gc_init(false), g_disable_snapshots(false) {}
};
static util::aligned_padded_elem<flags> g_flags;
static percore_lazy<threadctx> g_threadctxs;
static event_counter g_evt_worker_thread_wait_log_buffer;
static event_counter g_evt_dbtuple_no_space_for_delkey;
static event_counter g_evt_proto_gc_delete_requeue;
static event_avg_counter g_evt_avg_log_entry_size;
static event_avg_counter g_evt_avg_proto_gc_queue_len;
};
bool
txn_logger::pbuffer::can_hold_tid(uint64_t tid) const
{
return !header()->nentries_ ||
(transaction_proto2_static::EpochId(header()->last_tid_) ==
transaction_proto2_static::EpochId(tid));
}
// protocol 2 - no global consistent TIDs
template <typename Traits>
class transaction_proto2 : public transaction<transaction_proto2, Traits>,
private transaction_proto2_static {
friend class transaction<transaction_proto2, Traits>;
typedef transaction<transaction_proto2, Traits> super_type;
public:
typedef Traits traits_type;
typedef transaction_base::tid_t tid_t;
typedef transaction_base::string_type string_type;
typedef typename super_type::dbtuple_write_info dbtuple_write_info;
typedef typename super_type::dbtuple_write_info_vec dbtuple_write_info_vec;
typedef typename super_type::read_set_map read_set_map;
typedef typename super_type::absent_set_map absent_set_map;
typedef typename super_type::write_set_map write_set_map;
typedef typename super_type::write_set_u32_vec write_set_u32_vec;
transaction_proto2(uint64_t flags,
typename Traits::StringAllocator &sa)
: transaction<transaction_proto2, Traits>(flags, sa)
{
if (this->get_flags() & transaction_base::TXN_FLAG_READ_ONLY) {
const uint64_t global_tick_ex =
this->rcu_guard_->guard()->impl().global_last_tick_exclusive();
u_.last_consistent_tid = ComputeReadOnlyTid(global_tick_ex);
}
#ifdef TUPLE_LOCK_OWNERSHIP_CHECKING
dbtuple::TupleLockRegionBegin();
#endif
INVARIANT(rcu::s_instance.in_rcu_region());
}
~transaction_proto2()
{
#ifdef TUPLE_LOCK_OWNERSHIP_CHECKING
dbtuple::AssertAllTupleLocksReleased();
#endif
INVARIANT(rcu::s_instance.in_rcu_region());
}
inline bool
can_overwrite_record_tid(tid_t prev, tid_t cur) const
{
INVARIANT(prev <= cur);
#ifdef PROTO2_CAN_DISABLE_SNAPSHOTS
if (!IsSnapshotsEnabled())
return true;
#endif
// XXX(stephentu): the !prev check is a *bit* of a hack-
// we're assuming that !prev (MIN_TID) corresponds to an
// absent (removed) record, so it is safe to overwrite it,
//
// This is an OK assumption with *no TID wrap around*.
return (to_read_only_tick(EpochId(prev)) ==
to_read_only_tick(EpochId(cur))) ||
!prev;
}
// can only read elements in this epoch or previous epochs
inline bool
can_read_tid(tid_t t) const
{
return true;
}
inline void
on_tid_finish(tid_t commit_tid)
{
if (!txn_logger::IsPersistenceEnabled() ||
this->state != transaction_base::TXN_COMMITED)
return;
// need to write into log buffer
serializer<uint32_t, true> vs_uint32_t;
// compute how much space is necessary
uint64_t space_needed = 0;
// 8 bytes to indicate TID
space_needed += sizeof(uint64_t);
// variable bytes to indicate # of records written
#ifdef LOGGER_UNSAFE_FAKE_COMPRESSION
const unsigned nwrites = 0;
#else
const unsigned nwrites = this->write_set.size();
#endif
space_needed += vs_uint32_t.nbytes(&nwrites);
// each record needs to be recorded
write_set_u32_vec value_sizes;
for (unsigned idx = 0; idx < nwrites; idx++) {
const transaction_base::write_record_t &rec = this->write_set[idx];
const uint32_t k_nbytes = rec.get_key().size();
space_needed += vs_uint32_t.nbytes(&k_nbytes);
space_needed += k_nbytes;
const uint32_t v_nbytes = rec.get_value() ?
rec.get_writer()(
dbtuple::TUPLE_WRITER_COMPUTE_DELTA_NEEDED,
rec.get_value(), nullptr, 0) : 0;
space_needed += vs_uint32_t.nbytes(&v_nbytes);
space_needed += v_nbytes;
value_sizes.push_back(v_nbytes);
}
g_evt_avg_log_entry_size.offer(space_needed);
INVARIANT(space_needed <= txn_logger::g_horizon_buffer_size);
INVARIANT(space_needed <= txn_logger::g_buffer_size);
const unsigned long my_core_id = coreid::core_id();
txn_logger::persist_ctx &ctx =
txn_logger::persist_ctx_for(my_core_id, txn_logger::INITMODE_REG);
txn_logger::persist_stats &stats =
txn_logger::g_persist_stats[my_core_id];
txn_logger::pbuffer_circbuf &pull_buf = ctx.all_buffers_;
txn_logger::pbuffer_circbuf &push_buf = ctx.persist_buffers_;
util::non_atomic_fetch_add(stats.ntxns_committed_, 1UL);
const bool do_compress = txn_logger::IsCompressionEnabled();
if (do_compress) {
// try placing in horizon
bool horizon_cond = false;
if (ctx.horizon_->space_remaining() < space_needed ||
(horizon_cond = !ctx.horizon_->can_hold_tid(commit_tid))) {
if (!ctx.horizon_->datasize()) {
std::cerr << "space_needed: " << space_needed << std::endl;
std::cerr << "space_remaining: " << ctx.horizon_->space_remaining() << std::endl;
std::cerr << "can_hold_tid: " << ctx.horizon_->can_hold_tid(commit_tid) << std::endl;
}
INVARIANT(ctx.horizon_->datasize());
// horizon out of space, so we push it
const uint64_t npushed =
push_horizon_to_buffer(ctx.horizon_, ctx.lz4ctx_, pull_buf, push_buf);
if (npushed)
util::non_atomic_fetch_add(stats.ntxns_pushed_, npushed);
}
INVARIANT(ctx.horizon_->space_remaining() >= space_needed);
const uint64_t written =
write_current_txn_into_buffer(ctx.horizon_, commit_tid, value_sizes);
if (written != space_needed)
INVARIANT(false);
} else {
retry:
txn_logger::pbuffer *px = wait_for_head(pull_buf);
INVARIANT(px && px->core_id_ == my_core_id);
bool cond = false;
if (px->space_remaining() < space_needed ||
(cond = !px->can_hold_tid(commit_tid))) {
INVARIANT(px->header()->nentries_);
txn_logger::pbuffer *px0 = pull_buf.deq();
INVARIANT(px == px0);
INVARIANT(px0->header()->nentries_);
util::non_atomic_fetch_add(stats.ntxns_pushed_, px0->header()->nentries_);
push_buf.enq(px0);
if (cond)
++txn_logger::g_evt_log_buffer_epoch_boundary;
else
++txn_logger::g_evt_log_buffer_out_of_space;
goto retry;
}
const uint64_t written =
write_current_txn_into_buffer(px, commit_tid, value_sizes);
if (written != space_needed)
INVARIANT(false);
}
}
private:
// assumes enough space in px to hold this txn
inline uint64_t
write_current_txn_into_buffer(
txn_logger::pbuffer *px,
uint64_t commit_tid,
const write_set_u32_vec &value_sizes)
{
INVARIANT(px->can_hold_tid(commit_tid));
if (unlikely(!px->header()->nentries_))
px->earliest_start_us_ = this->rcu_guard_->guard()->start_us();
uint8_t *p = px->pointer();
uint8_t *porig = p;
serializer<uint32_t, true> vs_uint32_t;
serializer<uint64_t, false> s_uint64_t;
#ifdef LOGGER_UNSAFE_FAKE_COMPRESSION
const unsigned nwrites = 0;
#else
const unsigned nwrites = this->write_set.size();
#endif
INVARIANT(nwrites == value_sizes.size());
p = s_uint64_t.write(p, commit_tid);
p = vs_uint32_t.write(p, nwrites);
for (unsigned idx = 0; idx < nwrites; idx++) {
const transaction_base::write_record_t &rec = this->write_set[idx];
const uint32_t k_nbytes = rec.get_key().size();
p = vs_uint32_t.write(p, k_nbytes);
NDB_MEMCPY(p, rec.get_key().data(), k_nbytes);
p += k_nbytes;
const uint32_t v_nbytes = value_sizes[idx];
p = vs_uint32_t.write(p, v_nbytes);
if (v_nbytes) {
rec.get_writer()(dbtuple::TUPLE_WRITER_DO_DELTA_WRITE, rec.get_value(), p, v_nbytes);
p += v_nbytes;
}
}
px->curoff_ += (p - porig);
px->header()->nentries_++;
px->header()->last_tid_ = commit_tid;
return uint64_t(p - porig);
}
public:
inline ALWAYS_INLINE bool is_snapshot() const {
return this->get_flags() & transaction_base::TXN_FLAG_READ_ONLY;
}
inline transaction_base::tid_t
snapshot_tid() const
{
#ifdef PROTO2_CAN_DISABLE_SNAPSHOTS
if (!IsSnapshotsEnabled())
// when snapshots are disabled, but we have a RO txn, we simply allow
// it to read all the latest values and treat them as consistent
//
// it's not correct, but its for the factor analysis
return dbtuple::MAX_TID;
#endif
return u_.last_consistent_tid;
}
void
dump_debug_info() const
{
transaction<transaction_proto2, Traits>::dump_debug_info();
if (this->is_snapshot())
std::cerr << " last_consistent_tid: "
<< g_proto_version_str(u_.last_consistent_tid) << std::endl;
}
transaction_base::tid_t
gen_commit_tid(const dbtuple_write_info_vec &write_tuples)
{
const size_t my_core_id = this->rcu_guard_->guard()->core();
threadctx &ctx = g_threadctxs.get(my_core_id);
INVARIANT(!this->is_snapshot());
COMPILER_MEMORY_FENCE;
u_.commit_epoch = ticker::s_instance.global_current_tick();
COMPILER_MEMORY_FENCE;
tid_t ret = ctx.last_commit_tid_;
INVARIANT(ret == dbtuple::MIN_TID || CoreId(ret) == my_core_id);
if (u_.commit_epoch != EpochId(ret))
ret = MakeTid(0, 0, u_.commit_epoch);
// What is this? Is txn_proto1_impl used?
if (g_hack->status_.load(std::memory_order_acquire))
g_hack->global_tid_.fetch_add(1, std::memory_order_acq_rel);
// XXX(stephentu): I believe this is correct, but not 100% sure
//const size_t my_core_id = 0;
//tid_t ret = 0;
{
typename read_set_map::const_iterator it = this->read_set.begin();
typename read_set_map::const_iterator it_end = this->read_set.end();
for (; it != it_end; ++it) {
if (it->get_tid() > ret)
ret = it->get_tid();