-
Notifications
You must be signed in to change notification settings - Fork 13
/
3leveldcnet.py
353 lines (285 loc) · 15.7 KB
/
3leveldcnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
"""
Keras implementation of Multi-level Dense Capsule Networks (Sai Samarth R Phaye*, Apoorva Sikka*, Abhinav Dhall, Deepti R. Bathula), ACCV 2018.
This file trains a 3-level DCNet on CIFAR-10 dataset with the parameters as mentioned in the paper.
We have developed Multi-level DCNets' code using the following GitHub repositories:
- Xifeng Guo's CapsNet code (https://github.com/XifengGuo/CapsNet-Keras)
- titu1994's DenseNet code (https://github.com/titu1994/DenseNet)
Usage:
python 3leveldcnet.py
python 3leveldcnet.py --epochs 50
python 3leveldcnet.py --epochs 50 --routings 3
... ...
Author: Sai Samarth R Phaye, E-mail: `[email protected]`, Github: `https://github.com/ssrp/Multi-level-DCNet`
"""
import numpy as np
import random as rn
import os
os.environ['PYTHONHASHSEED'] = '0'
np.random.seed(42)
rn.seed(12345)
import tensorflow as tf
session_conf = tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
session_conf.gpu_options.allow_growth=True
from keras import backend as K
tf.set_random_seed(1234)
sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
K.set_session(sess)
K.set_image_data_format('channels_last')
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
from keras import layers, models, optimizers
from keras.utils import to_categorical
import matplotlib.pyplot as plt
from utils import combine_images, plot_log
from capsulelayers import CapsuleLayer, PrimaryCap, Length, Mask
from keras.layers.normalization import BatchNormalization
from keras.preprocessing.image import ImageDataGenerator
import densenet
def MultiLevelDCNet(input_shape, n_class, routings):
"""
A Multi-level DCNet on CIFAR-10.
:param input_shape: data shape, 3d, [width, height, channels]
:param n_class: number of classes
:param routings: number of routing iterations
:return: Two Keras Models, the first one used for training, and the second one for evaluation.
"""
x = layers.Input(shape=input_shape)
concat_axis = 1 if K.image_data_format() == 'channels_first' else -1
########################### Level 1 Capsules ###########################
# Incorporating DenseNets - Creating a dense block with 8 layers having 32 filters and 32 growth rate.
conv, nb_filter = densenet.DenseBlock(x, growth_rate=32, nb_layers=8, nb_filter=32)
# Batch Normalization
DenseBlockOutput = BatchNormalization(axis=concat_axis, epsilon=1.1e-5)(conv)
# Creating Primary Capsules (Level 1)
# Here PrimaryCapsConv2D is the Conv2D output which is used as the primary capsules by reshaping and squashing (squash activation).
# primarycaps_1 (size: [None, num_capsule, dim_capsule]) is the "reshaped and sqashed output" which will be further passed to the dynamic routing protocol.
primarycaps_1, PrimaryCapsConv2D = PrimaryCap(DenseBlockOutput, dim_capsule=8, n_channels=12, kernel_size=5, strides=2, padding='valid')
# Applying ReLU Activation to primary capsules
conv = layers.Activation('relu')(PrimaryCapsConv2D)
########################### Level 2 Capsules ###########################
# Incorporating DenseNets - Creating a dense block with 8 layers having 32 filters and 32 growth rate.
conv, nb_filter = densenet.DenseBlock(conv, growth_rate=32, nb_layers=8, nb_filter=32)
# Batch Normalization
DenseBlockOutput = BatchNormalization(axis=concat_axis, epsilon=1.1e-5)(conv)
# Creating Primary Capsules (Level 2)
primarycaps_2, PrimaryCapsConv2D = PrimaryCap(DenseBlockOutput, dim_capsule=8, n_channels=12, kernel_size=5, strides=2, padding='valid')
# Applying ReLU Activation to primary capsules
conv = layers.Activation('relu')(PrimaryCapsConv2D)
########################### Level 3 Capsules ###########################
# Incorporating DenseNets - Creating a dense block with 8 layers having 32 filters and 32 growth rate.
conv, nb_filter = densenet.DenseBlock(conv, growth_rate=32, nb_layers=8, nb_filter=32)
# Batch Normalization
DenseBlockOutput = BatchNormalization(axis=concat_axis, epsilon=1.1e-5)(conv)
# Creating Primary Capsules (Level 3)
primarycaps_3, PrimaryCapsConv2D = PrimaryCap(DenseBlockOutput, dim_capsule=8, n_channels=12, kernel_size=3, strides=2, padding='valid')
# Merging Primary Capsules for the Merged DigitCaps (CapsuleLayer formed by combining all levels of primary capsules)
mergedLayer = layers.merge([primarycaps_1,primarycaps_2,primarycaps_3], mode='concat', concat_axis=1)
########################### Separate DigitCaps Outputs (used for training) ###########################
# Merged DigitCaps
digitcaps_0 = CapsuleLayer(num_capsule=n_class, dim_capsule=16, routings=routings,
name='digitcaps0')(mergedLayer)
out_caps_0 = Length(name='capsnet_0')(digitcaps_0)
# First Level DigitCaps
digitcaps_1 = CapsuleLayer(num_capsule=n_class, dim_capsule=16, routings=routings,
name='digitcaps1')(primarycaps_1)
out_caps_1 = Length(name='capsnet_1')(digitcaps_1)
# Second Level DigitCaps
digitcaps_2 = CapsuleLayer(num_capsule=n_class, dim_capsule=12, routings=routings,
name='digitcaps2')(primarycaps_2)
out_caps_2 = Length(name='capsnet_2')(digitcaps_2)
# Third Level DigitCaps
digitcaps_3 = CapsuleLayer(num_capsule=n_class, dim_capsule=10, routings=routings,
name='digitcaps3')(primarycaps_3)
out_caps_3 = Length(name='capsnet_3')(digitcaps_3)
########################### Combined DigitCaps Output (used for evaluation) ###########################
digitcaps = layers.merge([digitcaps_1,digitcaps_2,digitcaps_3, digitcaps_0], mode='concat', concat_axis=2,
name='digitcaps')
out_caps = Length(name='capsnet')(digitcaps)
# Reconstruction (decoder) network
y = layers.Input(shape=(n_class,))
masked_by_y = Mask()([digitcaps, y]) # The true label is used to mask the output of capsule layer. For training
masked = Mask()(digitcaps) # Mask using the capsule with maximal length. For prediction
# Shared Decoder model in training and prediction
decoder = models.Sequential(name='decoder')
decoder.add(layers.Dense(600, activation='relu', input_dim=int(digitcaps.shape[2]*n_class), name='zero_layer'))
decoder.add(layers.Dense(600, activation='relu', name='one_layer'))
decoderFinal = models.Sequential(name='decoderFinal')
# Concatenating two layers
decoderFinal.add(layers.Merge([decoder.get_layer('zero_layer'), decoder.get_layer('one_layer')], mode='concat'))
decoderFinal.add(layers.Dense(1200, activation='relu'))
decoderFinal.add(layers.Dense(np.prod([32,32,1]), activation='sigmoid'))
decoderFinal.add(layers.Reshape(target_shape=[32,32,1], name='out_recon'))
# Model for training
train_model = models.Model([x, y], [out_caps_0, out_caps_1, out_caps_2, out_caps_3, decoderFinal(masked_by_y)])
# Model for evaluation (prediction)
# Note that out_caps is the final prediction. Other predictions could be used for analysing separate-level predictions.
eval_model = models.Model(x, [out_caps, out_caps_0, out_caps_1, out_caps_2, out_caps_3, decoderFinal(masked)])
return train_model, eval_model
def margin_loss(y_true, y_pred):
"""
Margin loss, as introduced for Capsule Networks.
:param y_true: [None, n_classes]
:param y_pred: [None, num_capsule]
:return: a scalar loss value.
"""
L = y_true * K.square(K.maximum(0., 0.9 - y_pred)) + \
0.5 * (1 - y_true) * K.square(K.maximum(0., y_pred - 0.1))
return K.mean(K.sum(L, 1))
def train(model, data, args):
"""
Training a 3-level DCNet
:param model: the 3-level DCNet model
:param data: a tuple containing training and testing data, like `((x_train, y_train), (x_test, y_test))`
:param args: arguments
:return: The trained model
"""
# unpacking the data
(x_train, y_train), (x_test, y_test) = data
row = x_train.shape[1]
col = x_train.shape[2]
channel = x_train.shape[3]
# callbacks
log = callbacks.CSVLogger(args.save_dir + '/log.csv')
tb = callbacks.TensorBoard(log_dir=args.save_dir + '/tensorboard-logs', histogram_freq=int(args.debug))
checkpoint = callbacks.ModelCheckpoint(args.save_dir + '/weights-{epoch:02d}.h5', monitor='val_capsnet_acc',
verbose=1)
lr_decay = callbacks.LearningRateScheduler(schedule=lambda epoch: args.lr * (args.lr_decay ** epoch))
# compile the model
# Notice the four separate losses (for separate backpropagations)
model.compile(optimizer=optimizers.Adam(lr=args.lr),
loss=[margin_loss, margin_loss, margin_loss, margin_loss, 'mse'],
loss_weights=[1., 1., 1., 1., args.lam_recon],
metrics={'capsnet': 'accuracy'})
#model.load_weights('result/weights.h5')
"""
# Training without data augmentation:
model.fit([x_train, y_train], [y_train, y_train, y_train, y_train, x_train], batch_size=args.batch_size, epochs=args.epochs,
validation_data=[[x_test, y_test], [y_test, y_test, y_test, y_test, x_test]], callbacks=[log, tb, checkpoint, lr_decay])
"""
# Training with data augmentation
def train_generator(x, y, batch_size, shift_fraction=0.):
train_datagen = ImageDataGenerator(width_shift_range=shift_fraction,
height_shift_range=shift_fraction) # shift up to 2 pixel for MNIST
generator = train_datagen.flow(x, y, batch_size=batch_size)
while 1:
x_batch, y_batch = generator.next()
yield ([x_batch, y_batch], [y_batch, y_batch, y_batch, y_batch, x_batch[:,:,:,0:1]])
# Training with data augmentation. If shift_fraction=0., also no augmentation.
model.fit_generator(generator=train_generator(x_train, y_train, args.batch_size, args.shift_fraction),
steps_per_epoch=int(y_train.shape[0] / args.batch_size),
epochs=args.epochs,
validation_data=[[x_test, y_test], [y_test, y_test, y_test, y_test, x_test[:,:,:,0:1]]],
callbacks=[log, tb, checkpoint, lr_decay])
# Save model weights
model.save_weights(args.save_dir + '/trained_model.h5')
print('Trained model saved to \'%s/trained_model.h5\'' % args.save_dir)
plot_log(args.save_dir + '/log.csv', show=True)
return model
def test(model, data, args):
x_test, y_test = data
print('Testing the model...')
y_pred, y_pred0, y_pred1, y_pred2, y_pred3, x_recon = model.predict(x_test, batch_size=100)
print('Test Accuracy (All DigitCaps): ', 100.0*np.sum(np.argmax(y_pred, 1) == np.argmax(y_test, 1))/(1.0*y_test.shape[0]))
print('Test Accuracy (Merged DigitCaps): ', 100.0*np.sum(np.argmax(y_pred0, 1) == np.argmax(y_test, 1))/(1.0*y_test.shape[0]))
print('Test Accuracy (Level 1 DigitCaps): ', 100.0*np.sum(np.argmax(y_pred1, 1) == np.argmax(y_test, 1))/(1.0*y_test.shape[0]))
print('Test Accuracy (Level 2 DigitCaps): ', 100.0*np.sum(np.argmax(y_pred2, 1) == np.argmax(y_test, 1))/(1.0*y_test.shape[0]))
print('Test Accuracy (Level 3 DigitCaps): ', 100.0*np.sum(np.argmax(y_pred3, 1) == np.argmax(y_test, 1))/(1.0*y_test.shape[0]))
img = combine_images(np.concatenate([x_test[:50],x_recon[:50]]))
image = img * 255
Image.fromarray(image.astype(np.uint8)).save(args.save_dir + "/real_and_recon.png")
print()
print('Reconstructed images are saved to %s/real_and_recon.png' % args.save_dir)
plt.imshow(plt.imread(args.save_dir + "/real_and_recon.png"))
plt.show()
def preprocess_input(x, data_format=None):
"""Preprocesses a tensor encoding a batch of images.
# Arguments
x: input Numpy tensor, 4D.
data_format: data format of the image tensor.
# Returns
Preprocessed tensor.
"""
if data_format is None:
data_format = K.image_data_format()
assert data_format in {'channels_last', 'channels_first'}
if data_format == 'channels_first':
if x.ndim == 3:
# 'RGB'->'BGR'
x = x[::-1, ...]
# Zero-center by mean pixel
x[0, :, :] -= 103.939
x[1, :, :] -= 116.779
x[2, :, :] -= 123.68
else:
x = x[:, ::-1, ...]
x[:, 0, :, :] -= 103.939
x[:, 1, :, :] -= 116.779
x[:, 2, :, :] -= 123.68
else:
# 'RGB'->'BGR'
x = x[..., ::-1]
# Zero-center by mean pixel
x[..., 0] -= 103.939
x[..., 1] -= 116.779
x[..., 2] -= 123.68
x *= 0.017 # scale values
return x
def load_dataset():
# Load the dataset from Keras
from keras.datasets import cifar10
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
# Preprocessing the dataset
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train= preprocess_input(x_train)
x_test= preprocess_input(x_test)
x_train = x_train.reshape(-1, 32, 32, 3).astype('float32')
x_test = x_test.reshape(-1, 32, 32, 3).astype('float32')
y_train = to_categorical(y_train.astype('float32'))
y_test = to_categorical(y_test.astype('float32'))
return (x_train, y_train), (x_test, y_test)
if __name__ == "__main__":
import argparse
from keras import callbacks
# setting the hyper parameters
parser = argparse.ArgumentParser(description="Multi-level DCNets on CIFAR-10.")
parser.add_argument('--epochs', default=500, type=int)
parser.add_argument('--batch_size', default=64, type=int)
parser.add_argument('--lr', default=0.001, type=float,
help="Initial learning rate")
parser.add_argument('--lr_decay', default=0.9, type=float,
help="The value multiplied by lr at each epoch. Set a larger value for larger epochs")
parser.add_argument('--lam_recon', default=0.512, type=float,
help="The coefficient for the loss of decoder")
parser.add_argument('-r', '--routings', default=3, type=int,
help="Number of iterations used in routing algorithm. should > 0")
parser.add_argument('--shift_fraction', default=0.1, type=float,
help="Fraction of pixels to shift at most in each direction.")
parser.add_argument('--debug', action='store_true',
help="Save weights by TensorBoard")
parser.add_argument('--save_dir', default='./result')
parser.add_argument('-t', '--testing', action='store_true',
help="Test the trained model on testing dataset")
parser.add_argument('--digit', default=5, type=int,
help="Digit to manipulate")
parser.add_argument('-w', '--weights', default=None,
help="The path of the saved weights. Should be specified when testing")
args = parser.parse_args()
print(args)
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
# load data
(x_train, y_train), (x_test, y_test) = load_dataset()
# define model
model, eval_model = MultiLevelDCNet(input_shape=x_train.shape[1:],
n_class=len(np.unique(np.argmax(y_train, 1))),
routings=args.routings)
model.summary()
# train or test
if args.weights is not None: # init the model weights with provided one
model.load_weights(args.weights)
if not args.testing:
train(model=model, data=((x_train, y_train), (x_test, y_test)), args=args)
else: # as long as weights are given, will run testing
if args.weights is None:
print('No weights are provided. Will test using random initialized weights.')
test(model=eval_model, data=(x_test, y_test), args=args)