-
Notifications
You must be signed in to change notification settings - Fork 4
/
sha512.cpp
225 lines (193 loc) · 6.77 KB
/
sha512.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
/*
* SHA-512
* Implementation derived from LibTomCrypt (Tom St Denis)
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, [email protected], http://libtomcrypt.org
*/
#include <string.h>
#include <stdint.h>
#include "sha512.h"
namespace sphincs_plus {
static void put_bigendian( unsigned char *target, uint64_t value,
size_t bytes ) {
int i;
for (i = bytes-1; i >= 0; i--) {
target[i] = value & 0xff;
value >>= 8;
}
}
static uint64_t get_bigendian( const unsigned char *source,
size_t bytes ) {
uint64_t result = 0;
for (size_t i=0; i<bytes; i++) {
result = 256 * result + (source[i] & 0xff);
}
return result;
}
const unsigned SHA512_S_SIZE = 8;
const unsigned SHA512_K_SIZE = 80;
const unsigned SHA512_FINALCOUNT_SIZE = 16;
static const uint64_t K[SHA512_K_SIZE] = {
0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL,
};
/* Various logical functions */
static uint64_t ROR64c(uint64_t x, unsigned y) {
return (x >> (y&63)) | (x << (64 - (y&63)));
}
static uint64_t Ch(uint64_t x, uint64_t y, uint64_t z) {
return z ^ (x & (y ^ z));
}
static uint64_t Maj(uint64_t x, uint64_t y, uint64_t z) {
return ((x | y) & z) | (x & y);
}
static uint64_t S(uint64_t x, unsigned n) {
return ROR64c(x, n);
}
static uint64_t R(uint64_t x, unsigned n) {
return x >> n;
}
static uint64_t Sigma0(uint64_t x) {
return S(x, 28) ^ S(x, 34) ^ S(x, 39);
}
static uint64_t Sigma1(uint64_t x) {
return S(x, 14) ^ S(x, 18) ^ S(x, 41);
}
static uint64_t Gamma0(uint64_t x) {
return S(x, 1) ^ S(x, 8) ^ R(x, 7);
}
static uint64_t Gamma1(uint64_t x) {
return S(x, 19) ^ S(x, 61) ^ R(x, 6);
}
void SHA512_CTX::compress(const unsigned char *buf) {
uint64_t S[SHA512_S_SIZE], W[SHA512_K_SIZE], t0, t1;
/* copy state into S */
for (unsigned i = 0; i < SHA512_S_SIZE; i++) {
S[i] = h[i];
}
/* copy the state into 1024-bits into W[0..15] */
for (unsigned i = 0; i < 16; i++ ) {
W[i] = get_bigendian( buf + (i << 3), 8 );
}
/* fill W[16..79] */
for (unsigned i = 16; i < SHA512_K_SIZE; i++) {
W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16];
}
/* Compress */
for (unsigned i = 0; i < SHA512_K_SIZE; i++) {
t0 = S[7] + Sigma1(S[4]) + Ch(S[4], S[5], S[6]) + K[i] + W[i];
t1 = Sigma0(S[0]) + Maj(S[0], S[1], S[2]);
S[7] = S[6];
S[6] = S[5];
S[5] = S[4];
S[4] = S[3] + t0;
S[3] = S[2];
S[2] = S[1];
S[1] = S[0];
S[0] = t0 + t1;
}
/* feedback */
for (unsigned i = 0; i < SHA512_S_SIZE; i++) {
h[i] += S[i];
}
}
void SHA512_CTX::init(void) {
h[0] = 0x6a09e667f3bcc908ULL;
h[1] = 0xbb67ae8584caa73bULL;
h[2] = 0x3c6ef372fe94f82bULL;
h[3] = 0xa54ff53a5f1d36f1ULL;
h[4] = 0x510e527fade682d1ULL;
h[5] = 0x9b05688c2b3e6c1fULL;
h[6] = 0x1f83d9abfb41bd6bULL;
h[7] = 0x5be0cd19137e2179ULL;
count = 0;
num = 0;
}
void SHA512_CTX::init_from_intermediate(const sha512_state init,
unsigned int start_count) {
memcpy( h, init, 8 * sizeof(uint64_t) );
count = 8 * start_count; // SHA512_CTX keeps a bit count
num = 0; // Intermediates always start at a block boundary
}
void SHA512_CTX::update(const void *src, size_t input_count) {
count += (input_count << 3);
while (input_count) {
unsigned int this_step = 128 - num;
if (this_step > input_count) this_step = input_count;
memcpy( (unsigned char*)data + num, src, this_step);
if (this_step + num < 128) {
num += this_step;
break;
}
src = (const unsigned char *)src + this_step;
input_count -= this_step;
num = 0;
compress( data );
}
}
/*
* Add padding and return the message digest.
*/
void SHA512_CTX::final(unsigned char *digest) {
unsigned int last, padn;
unsigned char finalcount[SHA512_FINALCOUNT_SIZE];
static unsigned char padding[128] = { 0x80 }; /* and the rest are zerso */
put_bigendian( finalcount+0, 0, 8 );
put_bigendian( finalcount+8, count, 8 );
last = (size_t)( (count>>3) & 0x7F );
padn = ( last < 112 ) ? ( 112 - last ) : ( 240 - last );
update( padding, padn );
update( finalcount, 16 );
/* Note: need to rethink this loop should we ever support SHA512_224 */
for (unsigned i=0; 8*i<sha512_output_size; i++) {
put_bigendian( digest + 8*i, h[i], 8 );
}
}
void SHA512_CTX::export_intermediate(sha512_state intermediate) {
memcpy( intermediate, h, 8 * sizeof(uint64_t) );
}
} /* namespace sphincs_plus */