-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
72 lines (55 loc) · 2.21 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
def hidden_init(layer):
fan_in = layer.weight.data.size()[0]
lim = 1.0 / np.sqrt(fan_in)
return (-lim, lim)
class Actor(nn.Module):
"""Actor (Policy) Model."""
def __init__(self, state_size, action_size, fc1_units=300, fc2_units=400):
"""Initialize parameters and build model."""
super(Actor, self).__init__()
self.seq = nn.Sequential(
nn.Linear(state_size, fc1_units),
nn.BatchNorm1d(fc1_units),
nn.ReLU(),
nn.Linear(fc1_units, fc2_units),
nn.ReLU(),
nn.Linear(fc2_units, action_size),
nn.Tanh(),
)
# Initialize weights
self.seq[0].weight.data.uniform_(*hidden_init(self.seq[0]))
self.seq[3].weight.data.uniform_(*hidden_init(self.seq[3]))
self.seq[5].weight.data.uniform_(-3e-3, 3e-3)
def forward(self, state):
"""Build an actor (policy) network that maps states -> actions."""
return self.seq(state)
def add_parameter_noise(self, scalar=0.1):
for layer in [0, 3, 5]:
self.seq[layer].weight.data += (
torch.randn_like(self.seq[layer].weight.data) * scalar
)
class Critic(nn.Module):
"""Critic (Value) Model."""
def __init__(self, state_size, action_size, fcs1_units=300, fc2_units=400):
"""Initialize parameters and build model."""
super(Critic, self).__init__()
self.seq1 = nn.Sequential(
nn.Linear(state_size, fcs1_units),
nn.BatchNorm1d(fcs1_units), nn.ReLU()
)
self.seq2 = nn.Sequential(
nn.Linear(fcs1_units + action_size, fc2_units),
nn.ReLU(),
nn.Linear(fc2_units, 1),
)
# Initialize weights
self.seq1[0].weight.data.uniform_(*hidden_init(self.seq1[0]))
self.seq2[0].weight.data.uniform_(*hidden_init(self.seq2[0]))
self.seq2[2].weight.data.uniform_(-3e-3, 3e-3)
def forward(self, state, action):
"""Build a critic (value) network that maps (state, action) pairs -> Q-values."""
return self.seq2(torch.cat((self.seq1(state), action), dim=1))