We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
voc_2007_train voc_2007_val voc_2007_trainval voc_2007_test kitti_train kitti_val kitti_trainval kitti_test nthu_71 nthu_370 Called with args: Namespace(cfg_file='experiments/cfgs/faster_rcnn_end2end.yml', comp_mode=False, device='gpu', device_id=0, imdb_name='voc_2007_test', model='/data/Hogwarts/Faster-RCNN_TF/output/faster_rcnn_end2end/voc_2007_trainval/VGGnet_fast_rcnn_iter_70000.ckpt', network_name='VGGnet_test', prototxt=None, wait=True) /data/Hogwarts/Faster-RCNN_TF/tools/../lib/fast_rcnn/config.py:294: YAMLLoadWarning: calling yaml.load() without Loader=... is deprecated, as the default Loader is unsafe. Please read https://msg.pyyaml.org/load for full details. yaml_cfg = edict(yaml.load(f)) Using config: {'DATA_DIR': '/data/Hogwarts/Faster-RCNN_TF/data', 'DEDUP_BOXES': 0.0625, 'EPS': 1e-14, 'EXP_DIR': 'faster_rcnn_end2end', 'GPU_ID': 0, 'IS_MULTISCALE': False, 'MATLAB': 'matlab', 'MODELS_DIR': '/data/Hogwarts/Faster-RCNN_TF/models/pascal_voc', 'PIXEL_MEANS': array([[[102.9801, 115.9465, 122.7717]]]), 'RNG_SEED': 3, 'ROOT_DIR': '/data/Hogwarts/Faster-RCNN_TF', 'TEST': {'BBOX_REG': True, 'DEBUG_TIMELINE': False, 'HAS_RPN': True, 'MAX_SIZE': 1000, 'NMS': 0.3, 'PROPOSAL_METHOD': 'selective_search', 'RPN_MIN_SIZE': 16, 'RPN_NMS_THRESH': 0.7, 'RPN_POST_NMS_TOP_N': 300, 'RPN_PRE_NMS_TOP_N': 6000, 'SCALES': [600], 'SVM': False}, 'TRAIN': {'ASPECT_GROUPING': True, 'BATCH_SIZE': 128, 'BBOX_INSIDE_WEIGHTS': [1.0, 1.0, 1.0, 1.0], 'BBOX_NORMALIZE_MEANS': [0.0, 0.0, 0.0, 0.0], 'BBOX_NORMALIZE_STDS': [0.1, 0.1, 0.2, 0.2], 'BBOX_NORMALIZE_TARGETS': True, 'BBOX_NORMALIZE_TARGETS_PRECOMPUTED': True, 'BBOX_REG': True, 'BBOX_THRESH': 0.5, 'BG_THRESH_HI': 0.5, 'BG_THRESH_LO': 0.0, 'DEBUG_TIMELINE': False, 'DISPLAY': 10, 'FG_FRACTION': 0.25, 'FG_THRESH': 0.5, 'GAMMA': 0.1, 'HAS_RPN': True, 'IMS_PER_BATCH': 1, 'LEARNING_RATE': 0.001, 'MAX_SIZE': 1000, 'MOMENTUM': 0.9, 'PROPOSAL_METHOD': 'gt', 'RPN_BATCHSIZE': 256, 'RPN_BBOX_INSIDE_WEIGHTS': [1.0, 1.0, 1.0, 1.0], 'RPN_CLOBBER_POSITIVES': False, 'RPN_FG_FRACTION': 0.5, 'RPN_MIN_SIZE': 16, 'RPN_NEGATIVE_OVERLAP': 0.3, 'RPN_NMS_THRESH': 0.7, 'RPN_POSITIVE_OVERLAP': 0.7, 'RPN_POSITIVE_WEIGHT': -1.0, 'RPN_POST_NMS_TOP_N': 2000, 'RPN_PRE_NMS_TOP_N': 12000, 'SCALES': [600], 'SNAPSHOT_INFIX': '', 'SNAPSHOT_ITERS': 5000, 'SNAPSHOT_PREFIX': 'VGGnet_fast_rcnn', 'STEPSIZE': 50000, 'USE_FLIPPED': True, 'USE_PREFETCH': False}, 'USE_GPU_NMS': True} <bound method pascal_voc.default_roidb of <datasets.pascal_voc.pascal_voc object at 0x7fa487b77f10>> /gpu:0 Tensor("Placeholder:0", shape=(?, ?, ?, 3), dtype=float32) Tensor("conv5_3/conv5_3:0", shape=(?, ?, ?, 512), dtype=float32) Tensor("rpn_conv/3x3/rpn_conv/3x3:0", shape=(?, ?, ?, 512), dtype=float32) Tensor("rpn_cls_score/rpn_cls_score:0", shape=(?, ?, ?, 18), dtype=float32) Tensor("rpn_cls_prob:0", shape=(?, ?, ?, ?), dtype=float32) Tensor("rpn_cls_prob_reshape:0", shape=(?, ?, ?, 18), dtype=float32) Tensor("rpn_bbox_pred/rpn_bbox_pred:0", shape=(?, ?, ?, 36), dtype=float32) Tensor("Placeholder_1:0", shape=(?, 3), dtype=float32) Tensor("conv5_3/conv5_3:0", shape=(?, ?, ?, 512), dtype=float32) Tensor("rois:0", shape=(?, 5), dtype=float32) [<tf.Tensor 'conv5_3/conv5_3:0' shape=(?, ?, ?, 512) dtype=float32>, <tf.Tensor 'rois:0' shape=(?, 5) dtype=float32>] Tensor("fc7/fc7:0", shape=(?, 4096), dtype=float32) Use network VGGnet_test in training 2019-05-06 20:15:14.338942: I tensorflow/core/platform/cpu_feature_guard.cc:137] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA 2019-05-06 20:15:14.505625: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1030] Found device 0 with properties: name: TITAN Xp major: 6 minor: 1 memoryClockRate(GHz): 1.582 pciBusID: 0000:02:00.0 totalMemory: 11.90GiB freeMemory: 11.57GiB 2019-05-06 20:15:14.505660: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1120] Creating TensorFlow device (/device:GPU:0) -> (device: 0, name: TITAN Xp, pci bus id: 0000:02:00.0, compute capability: 6.1) Loading model weights from /data/Hogwarts/Faster-RCNN_TF/output/faster_rcnn_end2end/voc_2007_trainval/VGGnet_fast_rcnn_iter_70000.ckpt im_detect: 1/22 1.101s 0.000s im_detect: 2/22 0.674s 0.000s im_detect: 3/22 0.531s 0.000s im_detect: 4/22 0.470s 0.000s im_detect: 5/22 0.430s 0.000s im_detect: 6/22 0.385s 0.000s im_detect: 7/22 0.368s 0.000s im_detect: 8/22 0.356s 0.000s im_detect: 9/22 0.348s 0.000s im_detect: 10/22 0.340s 0.000s im_detect: 11/22 0.332s 0.000s im_detect: 12/22 0.323s 0.000s im_detect: 13/22 0.310s 0.000s im_detect: 14/22 0.303s 0.000s im_detect: 15/22 0.293s 0.000s im_detect: 16/22 0.294s 0.000s im_detect: 17/22 0.293s 0.000s im_detect: 18/22 0.281s 0.000s im_detect: 19/22 0.281s 0.000s im_detect: 20/22 0.272s 0.000s im_detect: 21/22 0.273s 0.000s im_detect: 22/22 0.272s 0.000s Evaluating detections Writing person VOC results file Writing traffic police VOC results file Writing cyclist VOC results file VOC07 metric? Yes Traceback (most recent call last): File "./tools/test_net.py", line 107, in test_net(sess, network, imdb, weights_filename) File "/data/Hogwarts/Faster-RCNN_TF/tools/../lib/fast_rcnn/test.py", line 345, in test_net imdb.evaluate_detections(all_boxes, output_dir) File "/data/Hogwarts/Faster-RCNN_TF/tools/../lib/datasets/pascal_voc.py", line 330, in evaluate_detections self._do_python_eval(output_dir) File "/data/Hogwarts/Faster-RCNN_TF/tools/../lib/datasets/pascal_voc.py", line 293, in _do_python_eval use_07_metric=use_07_metric) File "/data/Hogwarts/Faster-RCNN_TF/tools/../lib/datasets/voc_eval.py", line 126, in voc_eval R = [obj for obj in recs[imagename] if obj['name'] == classname] KeyError: '001009'
VGGnet_test
above is output and i have three classes。 how can i solve this problem?
The text was updated successfully, but these errors were encountered:
i hava solve it by delete data/VOCdekit2007/annotations_cache :)
Sorry, something went wrong.
No branches or pull requests
voc_2007_train
voc_2007_val
voc_2007_trainval
voc_2007_test
kitti_train
kitti_val
kitti_trainval
kitti_test
nthu_71
nthu_370
Called with args:
Namespace(cfg_file='experiments/cfgs/faster_rcnn_end2end.yml', comp_mode=False, device='gpu', device_id=0, imdb_name='voc_2007_test', model='/data/Hogwarts/Faster-RCNN_TF/output/faster_rcnn_end2end/voc_2007_trainval/VGGnet_fast_rcnn_iter_70000.ckpt', network_name='VGGnet_test', prototxt=None, wait=True)
/data/Hogwarts/Faster-RCNN_TF/tools/../lib/fast_rcnn/config.py:294: YAMLLoadWarning: calling yaml.load() without Loader=... is deprecated, as the default Loader is unsafe. Please read https://msg.pyyaml.org/load for full details.
yaml_cfg = edict(yaml.load(f))
Using config:
{'DATA_DIR': '/data/Hogwarts/Faster-RCNN_TF/data',
'DEDUP_BOXES': 0.0625,
'EPS': 1e-14,
'EXP_DIR': 'faster_rcnn_end2end',
'GPU_ID': 0,
'IS_MULTISCALE': False,
'MATLAB': 'matlab',
'MODELS_DIR': '/data/Hogwarts/Faster-RCNN_TF/models/pascal_voc',
'PIXEL_MEANS': array([[[102.9801, 115.9465, 122.7717]]]),
'RNG_SEED': 3,
'ROOT_DIR': '/data/Hogwarts/Faster-RCNN_TF',
'TEST': {'BBOX_REG': True,
'DEBUG_TIMELINE': False,
'HAS_RPN': True,
'MAX_SIZE': 1000,
'NMS': 0.3,
'PROPOSAL_METHOD': 'selective_search',
'RPN_MIN_SIZE': 16,
'RPN_NMS_THRESH': 0.7,
'RPN_POST_NMS_TOP_N': 300,
'RPN_PRE_NMS_TOP_N': 6000,
'SCALES': [600],
'SVM': False},
'TRAIN': {'ASPECT_GROUPING': True,
'BATCH_SIZE': 128,
'BBOX_INSIDE_WEIGHTS': [1.0, 1.0, 1.0, 1.0],
'BBOX_NORMALIZE_MEANS': [0.0, 0.0, 0.0, 0.0],
'BBOX_NORMALIZE_STDS': [0.1, 0.1, 0.2, 0.2],
'BBOX_NORMALIZE_TARGETS': True,
'BBOX_NORMALIZE_TARGETS_PRECOMPUTED': True,
'BBOX_REG': True,
'BBOX_THRESH': 0.5,
'BG_THRESH_HI': 0.5,
'BG_THRESH_LO': 0.0,
'DEBUG_TIMELINE': False,
'DISPLAY': 10,
'FG_FRACTION': 0.25,
'FG_THRESH': 0.5,
'GAMMA': 0.1,
'HAS_RPN': True,
'IMS_PER_BATCH': 1,
'LEARNING_RATE': 0.001,
'MAX_SIZE': 1000,
'MOMENTUM': 0.9,
'PROPOSAL_METHOD': 'gt',
'RPN_BATCHSIZE': 256,
'RPN_BBOX_INSIDE_WEIGHTS': [1.0, 1.0, 1.0, 1.0],
'RPN_CLOBBER_POSITIVES': False,
'RPN_FG_FRACTION': 0.5,
'RPN_MIN_SIZE': 16,
'RPN_NEGATIVE_OVERLAP': 0.3,
'RPN_NMS_THRESH': 0.7,
'RPN_POSITIVE_OVERLAP': 0.7,
'RPN_POSITIVE_WEIGHT': -1.0,
'RPN_POST_NMS_TOP_N': 2000,
'RPN_PRE_NMS_TOP_N': 12000,
'SCALES': [600],
'SNAPSHOT_INFIX': '',
'SNAPSHOT_ITERS': 5000,
'SNAPSHOT_PREFIX': 'VGGnet_fast_rcnn',
'STEPSIZE': 50000,
'USE_FLIPPED': True,
'USE_PREFETCH': False},
'USE_GPU_NMS': True}
<bound method pascal_voc.default_roidb of <datasets.pascal_voc.pascal_voc object at 0x7fa487b77f10>>
/gpu:0
Tensor("Placeholder:0", shape=(?, ?, ?, 3), dtype=float32)
Tensor("conv5_3/conv5_3:0", shape=(?, ?, ?, 512), dtype=float32)
Tensor("rpn_conv/3x3/rpn_conv/3x3:0", shape=(?, ?, ?, 512), dtype=float32)
Tensor("rpn_cls_score/rpn_cls_score:0", shape=(?, ?, ?, 18), dtype=float32)
Tensor("rpn_cls_prob:0", shape=(?, ?, ?, ?), dtype=float32)
Tensor("rpn_cls_prob_reshape:0", shape=(?, ?, ?, 18), dtype=float32)
Tensor("rpn_bbox_pred/rpn_bbox_pred:0", shape=(?, ?, ?, 36), dtype=float32)
Tensor("Placeholder_1:0", shape=(?, 3), dtype=float32)
Tensor("conv5_3/conv5_3:0", shape=(?, ?, ?, 512), dtype=float32)
Tensor("rois:0", shape=(?, 5), dtype=float32)
[<tf.Tensor 'conv5_3/conv5_3:0' shape=(?, ?, ?, 512) dtype=float32>, <tf.Tensor 'rois:0' shape=(?, 5) dtype=float32>]
Tensor("fc7/fc7:0", shape=(?, 4096), dtype=float32)
Use network
VGGnet_test
in training2019-05-06 20:15:14.338942: I tensorflow/core/platform/cpu_feature_guard.cc:137] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA
2019-05-06 20:15:14.505625: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1030] Found device 0 with properties:
name: TITAN Xp major: 6 minor: 1 memoryClockRate(GHz): 1.582
pciBusID: 0000:02:00.0
totalMemory: 11.90GiB freeMemory: 11.57GiB
2019-05-06 20:15:14.505660: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1120] Creating TensorFlow device (/device:GPU:0) -> (device: 0, name: TITAN Xp, pci bus id: 0000:02:00.0, compute capability: 6.1)
Loading model weights from /data/Hogwarts/Faster-RCNN_TF/output/faster_rcnn_end2end/voc_2007_trainval/VGGnet_fast_rcnn_iter_70000.ckpt
im_detect: 1/22 1.101s 0.000s
im_detect: 2/22 0.674s 0.000s
im_detect: 3/22 0.531s 0.000s
im_detect: 4/22 0.470s 0.000s
im_detect: 5/22 0.430s 0.000s
im_detect: 6/22 0.385s 0.000s
im_detect: 7/22 0.368s 0.000s
im_detect: 8/22 0.356s 0.000s
im_detect: 9/22 0.348s 0.000s
im_detect: 10/22 0.340s 0.000s
im_detect: 11/22 0.332s 0.000s
im_detect: 12/22 0.323s 0.000s
im_detect: 13/22 0.310s 0.000s
im_detect: 14/22 0.303s 0.000s
im_detect: 15/22 0.293s 0.000s
im_detect: 16/22 0.294s 0.000s
im_detect: 17/22 0.293s 0.000s
im_detect: 18/22 0.281s 0.000s
im_detect: 19/22 0.281s 0.000s
im_detect: 20/22 0.272s 0.000s
im_detect: 21/22 0.273s 0.000s
im_detect: 22/22 0.272s 0.000s
Evaluating detections
Writing person VOC results file
Writing traffic police VOC results file
Writing cyclist VOC results file
VOC07 metric? Yes
Traceback (most recent call last):
File "./tools/test_net.py", line 107, in
test_net(sess, network, imdb, weights_filename)
File "/data/Hogwarts/Faster-RCNN_TF/tools/../lib/fast_rcnn/test.py", line 345, in test_net
imdb.evaluate_detections(all_boxes, output_dir)
File "/data/Hogwarts/Faster-RCNN_TF/tools/../lib/datasets/pascal_voc.py", line 330, in evaluate_detections
self._do_python_eval(output_dir)
File "/data/Hogwarts/Faster-RCNN_TF/tools/../lib/datasets/pascal_voc.py", line 293, in _do_python_eval
use_07_metric=use_07_metric)
File "/data/Hogwarts/Faster-RCNN_TF/tools/../lib/datasets/voc_eval.py", line 126, in voc_eval
R = [obj for obj in recs[imagename] if obj['name'] == classname]
KeyError: '001009'
above is output and i have three classes。
how can i solve this problem?
The text was updated successfully, but these errors were encountered: