Skip to content

Latest commit

 

History

History
448 lines (374 loc) · 19.8 KB

README.md

File metadata and controls

448 lines (374 loc) · 19.8 KB

A modern SAT Solver for Propositional Logic in Rust

Splr is a modern SAT solver in Rust, based on Glucose 4.1. It adopts, or adopted, various research results on modern SAT solvers:

  • CDCL, watch literals, LBD and so on from Glucose, Minisat and the ancestors
  • Luby series based restart control
  • Glucose-like dynamic blocking/forcing restarts
  • pre/in-processor to simplify the given CNF
  • branching variable selection based on Learning Rate Based Branching with Reason Side Rewarding or EVSIDS
  • CaDiCaL-like extended phase saving
  • restart stabilization inspired by CadiCaL
  • clause vivification
  • trail saving

Many thanks to SAT researchers.

Please check ChangeLog about recent updates.

Correctness

Though Splr comes with ABSOLUTELY NO WARRANTY, I'd like to show some results.

Version 0.17.0

Install

Just run cargo install splr after installing the latest cargo. Two executables will be installed:

  • splr -- the solver
  • dmcr -- a very simple model checker to verify a satisfiable assignment set generated by splr.

Alternatively, Nix users can use nix build.

About no_std environment and feature no_IO

If you want to build a library for no_std environment, or if you want to compile with feature no_IO, you have to run cargo build --lib --features no_IO. They are incompatible with cargo install.

  • [2024-02-03] Feature platform_wasm was added.

Usage

Splr is a standalone program, taking a CNF file. The result will be saved to a file, which format is defined by SAT competition 2011 rules.

$ splr cnfs/unif-k3-r4.25-v360-c1530-S1293537826-039.cnf
unif-k3-r4.25-v360-c1530-S1293537826-039.cnf       360,1530 |time:   732.01
 #conflict:    9663289, #decision:     23326959, #propagate:      546184944
  Assignment|#rem:      351, #fix:        0, #elm:        9, prg%:   2.5000
      Clause|Remv:    69224, LBD2:     2857, BinC:        1, Perm:     1522
    Conflict|entg:   7.0499, cLvl:  12.2451, bLvl:  11.1030, /cpr:    30.74
    Learning|avrg:  10.4375, trnd:   1.0069, #RST:   566140, /dpc:     1.18
        misc|vivC:     7370, subC:        0, core:      122, /ppc:    61.53
      Result|file: ./ans_unif-k3-r4.25-v360-c1530-S1293537826-039.cnf
s SATISFIABLE: cnfs/unif-k3-r4.25-v360-c1530-S1293537826-039.cnf
$ cat ans_unif-k3-r4.25-v360-c1530-S1293537826-039.cnf
c This file was generated by splr-0.15.0 for cnfs/unif-k3-r4.25-v360-c1530-S1293537826-039.cnf
c
c unif-k3-r4.25-v360-c1530-S1293537826-039.cnf, #var:      360, #cls:     1530
c  #conflict:    9663289, #decision:     23326959, #propagate:      546184944,
c   Assignment|#rem:      351, #fix:        0, #elm:        9, prg%:   2.5000,
c       Clause|Remv:    69224, LBD2:     2857, BinC:        1, Perm:     1522,
c     Conflict|entg:   7.0499, cLvl:  12.2451, bLvl:  11.1030, /cpr:    30.74,
c      Learing|avrg:  10.4375, trnd:   1.0069, #RST:   566140, /dpc:     1.18,
c         misc|vivC:     7370, subC:        0, core:      122, /ppc:    61.53,
c     Strategy|mode:  generic, time:   732.03,
c
c   config::VarRewardDecayRate                       0.960
c   assign::NumConflict                        9663289
c   assign::NumDecision                       23326959
c   assign::NumPropagation                   546184944
c   assign::NumRephase                             734
c   assign::NumRestart                          566141
c   assign::NumVar                                 360
c   assign::NumAssertedVar                           0
c   assign::NumEliminatedVar                         9
c   assign::NumReconflict                          653
c   assign::NumRepropagation                  12460396
c   assign::NumUnassertedVar                       351
c   assign::NumUnassignedVar                       351
c   assign::NumUnreachableVar                        0
c   assign::RootLevel                                0
c   assign::AssignRate                               0.000
c   assign::DecisionPerConflict                      1.179
c   assign::PropagationPerConflict                  61.527
c   assign::ConflictPerRestart                     122.388
c   assign::ConflictPerBaseRestart                 122.388
c   assign::BestPhaseDivergenceRate                  0.000
c   clause::NumBiClause                              1
c   clause::NumBiClauseCompletion                    0
c   clause::NumBiLearnt                              1
c   clause::NumClause                            70746
c   clause::NumLBD2                               2857
c   clause::NumLearnt                            69224
c   clause::NumReduction                          1461
c   clause::NumReRegistration                        0
c   clause::Timestamp                                0
c   clause::LiteralBlockDistance                    10.438
c   clause::LiteralBlockEntanglement                 7.050
c   state::Vivification                            735
c   state::VivifiedClause                         7370
c   state::VivifiedVar                               0
c   state::NumCycle                                734
c   state::NumStage                               1461
c   state::IntervalScale                             1
c   state::IntervalScaleMax                       1024
c   state::BackjumpLevel                            11.103
c   state::ConflictLevel                            12.245
c
s SATISFIABLE
v 1 -2 3 4 5 6 -7 -8 9 -10 -11 -12 13 -14 ...  -360 0
$ dmcr cnfs/unif-k3-r4.25-v360-c1530-S1293537826-039.cnf
A valid assignment set for cnfs/unif-k3-r4.25-v360-c1530-S1293537826-039.cnf is found in ans_unif-k3-r4.25-v360-c1530-S1293537826-039.cnf

If you want to certificate unsatisfiability, use --certify or -c and use proof checker like Grid.

Firstly run splr with the certificate option -c.

$ splr -c cnfs/unif-k3-r4.25-v360-c1530-S1028159446-096.cnf
unif-k3-r4.25-v360-c1530-S1028159446-096.cnf       360,1530 |time:   204.09
 #conflict:    4018458, #decision:      9511129, #propagate:      221662222
  Assignment|#rem:      345, #fix:        7, #elm:        8, prg%:   4.1667
      Clause|Remv:    11290, LBD2:     2018, BinC:      137, Perm:     1517
    Conflict|entg:   4.5352, cLvl:   8.0716, bLvl:   6.9145, /cpr:   112.08
    Learning|avrg:   1.5625, trnd:   0.2219, #RST:   237295, /dpc:     1.07
        misc|vivC:     4085, subC:        0, core:      345, /ppc:    52.55
      Result|file: ./ans_unif-k3-r4.25-v360-c1530-S1028159446-096.cnf
 Certificate|file: proof.drat
s UNSATISFIABLE: cnfs/unif-k3-r4.25-v360-c1530-S1028159446-096.cnf

A: Verify with drat-trim

$ drat-trim cnfs/unif-k3-r4.25-v360-c1530-S1028159446-096.cnf proof.drat
c parsing input formula with 360 variables and 1530 clauses
c finished parsing
c detected empty clause; start verification via backward checking
c 1530 of 1530 clauses in core
c 2036187 of 4029964 lemmas in core using 68451907 resolution steps
c 0 RAT lemmas in core; 908116 redundant literals in core lemmas
s VERIFIED
c verification time: 105.841 seconds

B: Verify with gratchk

Firstly you have to convert the generated DRAT file to a GRAT file.

$ gratgen cnfs/unif-k3-r4.25-v360-c1530-S1028159446-096.cnf proof.drat -o proof.grat
c sizeof(cdb_t) = 4
c sizeof(cdb_t*) = 8
c Using RAT run heuristics
c Parsing formula ... 1ms
c Parsing proof (ASCII format) ... 32251ms
c Forward pass ... 2073ms
c Starting Backward pass
c Single threaded mode

0%   10   20   30   40   50   60   70   80   90   100%
|----|----|----|----|----|----|----|----|----|----|
***************************************************
c Waiting for aux-threads ...done
c Lemmas processed by threads: 2032698 mdev: 0
c Finished Backward pass: 65356ms
c Writing combined proof ... 19088ms
s VERIFIED
c Timing statistics (ms)
c Parsing:  32253
c Checking: 67465
c   * bwd:  65356
c Writing:  19088
c Overall:  118808
c   * vrf:  99720

c Lemma statistics
c RUP lemmas:  2032698
c RAT lemmas:  0
c   RAT run heuristics:   0
c Total lemmas:  2032698

c Size statistics (bytes)
c Number of clauses: 4031493
c Clause DB size:  309680252
c Item list:       128778112
c Pivots store:    16777216

Then verify it with gratchk.

$ gratchk unsat cnfs/unif-k3-r4.25-v360-c1530-S1028159446-096.cnf proof.grat
c Reading cnf
c Reading proof
c Done
c Verifying unsat
s VERIFIED UNSAT

Calling Splr from Rust programs

Since 0.4.0, you can use Splr in your programs. (Here I suppose that you uses Rust 2021.)

use splr::*;

fn main() {
    let v: Vec<Vec<i32>> = vec![vec![1, 2], vec![-1, 3], vec![1, -3], vec![-1, 2]];
    match Certificate::try_from(v) {
        Ok(Certificate::SAT(ans)) => println!("s SATISFIABLE: {:?}", ans),
        Ok(Certificate::UNSAT) => println!("s UNSATISFIABLE"),
        Err(e) => panic!("s UNKNOWN; {}", e),
    }
}

All solutions SAT solver as an application of 'incremental_solver' feature

The following example requires 'incremental_solver' feature. You need the following dependeny:

splr = { version = "^0.17", features = ["incremental_solver"] }

Under this configuration, module splr provides some more functions:

  • splr::Solver::reset(&mut self)
  • splr::Solver::add_var(&mut self) // increments the last variable number
  • splr::Solver::add_clause(&mut self, vec: AsRef<[i32]>) -> Result<&mut Solver, SolverError>

You have to call reset before calling add_var, add_clause, and solve again. By this, splr forgets everything about the previous formula, especially non-equivalent transformations by pre/inter-processors like clause subsumbtion. So technically splr is not an incremental solver.

'add_clause' will emit an error if vec is invalid.

use splr::*;
use std::env::args;

fn main() {
    let cnf = args().nth(1).expect("takes an arg");
    let assigns: Vec<i32> = Vec::new();
    println!("#solutions: {}", run(&cnf, &assigns));
}

#[cfg(feature = "incremental_solver")]
fn run(cnf: &str, assigns: &[i32]) -> usize {
    let mut solver = Solver::try_from(cnf).expect("panic at loading a CNF");
    for n in assigns.iter() {
        solver.add_assignment(*n).expect("panic at assertion");
    }
    let mut count = 0;
    loop {
        match solver.solve() {
            Ok(Certificate::SAT(ans)) => {
                count += 1;
                println!("s SATISFIABLE({}): {:?}", count, ans);
                let ans = ans.iter().map(|i| -i).collect::<Vec<i32>>();
                match solver.add_clause(ans) {
                    Err(SolverError::Inconsistent) => {
                        println!("c no answer due to level zero conflict");
                        break;
                    }
                    Err(e) => {
                        println!("s UNKNOWN; {:?}", e);
                        break;
                    }
                    Ok(_) => solver.reset(),
                }
            }
            Ok(Certificate::UNSAT) => {
                println!("s UNSATISFIABLE");
                break;
            }
            Err(e) => {
                println!("s UNKNOWN; {}", e);
                break;
            }
        }
    }
    count
}

Since 0.4.1, Solver has iter(). So you can iterate on satisfiable 'solution: Vec<i32>'s as:

#[cfg(feature = "incremental_solver")]
for (i, v) in Solver::try_from(cnf).expect("panic").iter().enumerate() {
    println!("{}-th answer: {:?}", i, v);
}

sample code from my sudoku solver

https://github.com/shnarazk/sudoku_sat/blob/4490b4358e5f3b72803a566323a6c8c196627f92/src/bin/sudoku400.rs#L36-L60

    let mut solver = Solver::try_from((config, rules.as_ref())).expect("panic");
    for a in setting.iter() {
        solver.add_assignment(*a).expect("panic");
    }
    for ans in solver.iter().take(1) {
        let mut picked = ans.iter().filter(|l| 0 < **l).collect::<Vec<&i32>>();
        for _i in 1..=range {
            for _j in 1..=range {
                let (_i, _j, d, _b) = Cell::decode(*picked.remove(0));
                print!("{:>2} ", d);
            }
            println!();
        }
        println!();
    }
}

Mnemonics used in the progress message

mnemonic meaning
#var the number of variables used in the given CNF file
#cls the number of clauses used in the given CNF file
time elapsed CPU time in seconds (or wall-clock time if CPU time is not available)
#conflict the number of conflicts
#decision the number of decisions
#propagate the number of propagates (its unit is literal)
#rem the number of remaining variables
#fix the number of asserted variables (which has been assigned a value at decision level zero)
#elm the number of eliminated variables
prg% the percentage of remaining variables / total variables
Remv the current number of learnt clauses that are not bi-clauses
LBD2 the accumulated number of learnt clauses which LBDs are 2
BinC the current number of binary learnt clauses
Perm the current number of given clauses and binary learnt clauses
entg the current average of 'Literal Block entanglement'
cLvl the EMA of decision levels at which conflicts occur
bLvl the EMA of decision levels to which backjumps go
/cpr the EMA of conflicts per restart
avrg the EMA, Exponential Moving Average, of LBD of learnt clauses
trnd the current trend of the LBD's EMA
#RST the number of restarts
/dpc the EMA of decisions per conflict
vivC the number of the vivified clauses
subC the number of the clauses subsumed by clause elimination processor
core the number of unreachable vars
/ppc the EMA of propagations per conflict
time the elapsed CPU time in seconds

Command line options

A modern CDCL SAT solver in Rust
Activated features: best phase tracking, stage-based clause elimination, stage-based clause vivification, stage-based dynamic restart threshold, Learning-Rate Based rewarding, reason-side rewarding, stage-based re-phasing, two-mode reduction, trail saving, unsafe access

USAGE:
  splr [FLAGS] [OPTIONS] <cnf-file>
FLAGS:
  -h, --help                Prints help information
  -C, --no-color            Disable coloring
  -q, --quiet               Disable any progress message
  -c, --certify             Writes a DRAT UNSAT certification file
  -j, --journal             Shows log about restart stages
  -l, --log                 Uses Glucose-like progress report
  -V, --version             Prints version information
OPTIONS:
      --cl <c-cls-lim>      Soft limit of #clauses (6MC/GB)         0
      --crl <cls-rdc-lbd>   Clause reduction LBD threshold          5
      --cr1 <cls-rdc-rm1>   Clause reduction ratio for mode1        0.20
      --cr2 <cls-rdc-rm2>   Clause reduction ratio for mode2        0.05
      --ecl <elm-cls-lim>   Max #lit for clause subsume            64
      --evl <elm-grw-lim>   Grow limit of #cls in var elim.         0
      --evo <elm-var-occ>   Max #cls for var elimination        20000
  -o, --dir <io-outdir>     Output directory                         .
  -p, --proof <io-pfile>    DRAT Cert. filename                 proof.drat
  -r, --result <io-rfile>   Result filename/stdout
  -t, --timeout <timeout>   CPU time limit in sec.               5000
      --vdr <vrw-dcy-rat>   Var reward decay rate                   0.96
ARGS:
  <cnf-file>    DIMACS CNF file

Solver description

Splr-0.17.0 adopts the following features by default:

  • Learning-rate based (LRB) var rewarding and clause rewarding[4]
  • Reason-side var rewarding[4]
  • chronological backtrack[5] disabled since 0.12 due to incorrect UNSAT certificates.
  • clause vivification[6]
  • Luby series based on the number of conflicts defines 'stages/cycles/segments', which are used as trigger of
    • restart
    • clause reduction
    • in-processor (clause elimination, subsumption and vivification)
    • re-configuration of var phases and var activities
    • re-configuration of trail saving extended with reason refinement based on clause quality[3].

(Splr-0.15.0 and upper try to discard various dynamic and heuristic-based control schemes used in the previous versions.)

The following figure explains the flow used in the latest Splr.

search algorithm in Splr 0.17

I use the following terms here:

  • a stage -- a span in which solver uses the same restart parameters
  • a cycle -- a group of continuos spans of which the corresponding Luby values make a non-decreasing sequence
  • a segment -- a group of continuos cycles which are separated by new maximum Luby values' occurrences

Bibliography

  • [1] G. Audemard and L. Simon, "Predicting learnt clauses quality in modern SAT solvers," in International Joint Conference on Artificial Intelligence 2009, pp. 399–404, 2009.

  • [2] G. Audemard and L. Simon, "Refining restarts strategies for SAT and UNSAT," in LNCS, vol.7513, pp.118–126, 2012.

  • [3] R. Hickey and F. Bacchus, "Trail Saving on Backtrack", SAT 2020, LNCS, vol. 12178, pp.46-61, 2020.

  • [4] J. H. Liang, V. Ganesh, P. Poupart, and K. Czarnecki, "Learning Rate Based Branching Heuristic for SAT Solvers," in LNCS, vol.9710, pp.123–140, 2016.

  • [5] A. Nadel and V. Ryvchin, "Chronological Backtracking," in Theory and Applications of Satisfiability Testing - SAT 2018, June 2018, pp.111–121, 2018.

  • [6] C. Piette, Y. Hamadi, and L. Saïs, "Vivifying propositional clausal formulae," Front. Artif. Intell. Appl., vol.178, pp.525–529, 2008.

License

This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0. If a copy of the MPL was not distributed with this file, You can obtain one at http://mozilla.org/MPL/2.0/.


2020-2024, Narazaki Shuji