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Chapter 1

Introduction

1.1 The challenge

The challenge (see figure 1.1) of constraining and fully describing an arbitrarily unstructured spatial dis-
cretisation1 bounded by complex, fractal-like bounds that typically characterise geophysical domains, with
inhomogeneous and potentially anisotropic spatial resolution, is a significant one. Defining the domain geoid
bounds is no longer a simple case of applying a land mask to similarly regular gridded data. The generalised
constraints are now a heterogeneous set of functions [Candy, 2017], and as a consequence are more difficult to
describe.

The approaches taken to describe and develop spatial discretisations of the domains required for geo-
physical simulation models are commonly ad hoc, model or application specific and under-documented.
This is particularly acute for simulation models that are flexible in their use of multi-scale, anisotropic, fully
unstructured meshes where a relatively large number of heterogeneous parameters are required to constrain
their full description. As a consequence, it can be difficult to reproduce simulations, ensure a provenance in
model data handling and initialisation, and a challenge to conduct model intercomparisons rigorously.

Moreover, these challenges present a significant hurdle for new users to unstructured mesh models, and
tend to limit their use to the specialist community.

1.2 The solution and project purpose

This project takes a novel approach to spatial discretisation, considering it much like a numerical simulation
model problem of its own. It has been approached to both make this part of unstructured mesh numerical
simulation accessible to a wide range of users (including those new to flexible mesh models), whilst
providing a formalised platform for existing users. It introduces a generalised, extensible, self-documenting
approach to carefully describe, and necessarily fully, the constraints over the heterogeneous parameter space
that determine how a domain is spatially discretised. This additionally provides a method to accurately
record these constraints, using high-level natural language based abstractions, that enables full accounts of
provenance, sharing and distribution. Together with this description, a generalised consistent approach to
unstructured mesh generation for geophysical models is developed, that is automated, robust and repeatable,
quick-to-draft, rigorously verified and consistent to the source data throughout. This interprets the description
above to execute a self-consistent spatial discretisation process, which is automatically validated to expected
discrete characteristics and metrics.

1.3 Objectives

1. Introduce a consistent approach to the generation of boundary representation to arbitrary geoid bounds.

1For the purposes of the discussion here, spatial discretisation specifically refers to the division of a continuous spatial domain into
discrete parts – a discrete tessellation or honeycomb – a generalised notion of triangulation.
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(a) Surface geoid scalar raster field

(e.g. a DEM, here GEBCO)

Unstructured mesh geophysical
domain spatial discretisations

(b) (c) (d)

(e)

(f )

(g)

Figure 1.1: The challenge: to generate a self-consistent domain discretisation approach for geophysical domains that is
generalised such that it can be applied to a wide range of applications, with new domains efficiently prototyped and
iterated on, and is fully described such that the process can be automated, is reproducible and easily shared. (a) shows a
typical source Digital Elevation Map (DEM) dataset (that naturally lend themselves to structured grid generation) used to
produce a regular grid of the Atlantic Ocean (e.g. under a format-native land mask) in (b), and a selection of unstructured
mesh spatial discretisations: (c) Bounded by part of the Chilean coastline and a meridian. (d) North Sea. (e) Global oceans.
(f) Grounding line of the Filchner-Ronne ice shelf ocean cavity up to the 65◦S parallel, with surface geoid mesh Th, full
mesh T with ice-ocean melt interface highlighted, and accompanied by ice sheet full discretisation. (g) Greenland ice
sheet.

2. A user-friendly, accessible and extensible framework for model-independent geophysical domain mesh
generation.

3. An intuitive, hierarchical formal grammar to fully describe and share the full heterogeneous set of
constraints for the spatial discretisation of geophysical model domains.

4. Natural language basis for describing geophysical domain features.
5. Self-consistent, scalable, automated and efficient mesh prototyping.
6. Platform for iterative development that is repeatable, reproducible with a provenance history of

generation.
7. Enabling rigorous unstructured mesh generation in general, for a wide range of geophysical applications,

in a process that is automated, quick-to-draft and repeat, rigorous and robust, and consistent to the source
data throughout.
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Candy, A.S and Pietrzak, J.D., 2017. Shingle 2.0: generalising self-consistent and automated domain
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[Candy et al., 2014].
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Chapter 2

Installation and building

2.1 Quick start

Install Shingle, Diamond and all Python dependencies with the following:

pip install --user numpy ScientificPython matplotlib shapely
GDAL Pydap pyproj Pillow setuptools spud-diamond shingle

Note the --user option can be dropped to install system-wide, if you have sufficient system privileges.

Download the source code, which includes the verification test suite:

git clone https://github.com/shingleproject/Shingle

Move to the source folder:

cd Shingle

and perform the verification tests:

make test

Examine the output of a test case:

gmsh test/Antarctica_all/Antarctica_all.geo
test/Antarctica_all/Antarctica_all.msh

Examine test case description BRML with a text editor, e.g. the file:

test/Antarctica_all/Antarctica_all.brml

Examine the test case description BRML using Diamond:

diamond -s schema/shingle_options.rng test/Antarctica_all/Antarctica_all.brml

Individual BRML descriptions can be interpreted and processed with:

shingle Caribbean_basin.brml

2.2 Dependencies

Shingle is written in Python (http://python.org/) and has been routinely used with Python 2.7. Its
dependencies are summarised in figure 5.1 and more precisely specified in the standard requirements.txt
file in the root source folder. These include:

– numpy (http://www.numpy.org)

– ScientificPython (http://dirac.cnrs-orleans.fr/ScientificPython)

– matplotlib (http://matplotlib.org)

9
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– shapely (http://toblerity.org/shapely)

– GDAL (http://www.gdal.org)

– Pydap (http://pydap.org)

– pyproj (http://proj4.org)

– Python Imaging Library (PIL) provided by Pillow (https://python-pillow.org)

– setuptools (http://peak.telecommunity.com/DevCenter/setuptools)

These are all available on Python Package Index, PyPI (https://pypi.python.org) and this is the
recommended way to source these dependencies. The following can be used to install these using pip:

pip install numpy ScientificPython matplotlib shapely GDAL
Pydap pyproj Pillow setuptools

To avoid issues with file permissions, the easiest way is to install these on a user basis with the following:

pip install --user numpy ScientificPython matplotlib shapely GDAL
Pydap pyproj Pillow setuptools

2.3 Obtaining the source

The source for Shingle is available from https://github.com/shingleproject/Shingle with further
details available at https://www.shingleproject.org.
The recommended way to install Shingle is with pip, again from PyPI, using:

pip install shingle

Again, use the --user option to install locally, on a user basis:

pip install --user shingle

2.4 Building from source

Shingle can be built from source. It should be possible to build using the standard:

./configure
make

2.5 Diamond

2.5.1 Installing Diamond

Diamond is provided by the package Spud. The easiest method to install Diamond is using pip, again from
PyPI, using:

pip install spud-diamond

Further documentation on Diamond is available in the Spud manual, which is provided alongside the Shingle
source in the spud package folder: spud/doc/spud_manual.pdf.

2.5.2 Set up of Diamond

To examine with Diamond, first let Diamond know when to find the schema containing the formal grammar:

mkdir -p ˜/.diamond/schemata
cp doc/schemata/brml ˜/.diamond/schemata/

Where the brml file above is contained in doc/schemata/ from the root source folder. This file contains
paths to the schema

diamond test/Antarctica_all/Antarctica_all.brml

http://toblerity.org/shapely
http://www.gdal.org
http://pydap.org
http://proj4.org
https://python-pillow.org
http://peak.telecommunity.com/DevCenter/setuptools
https://pypi.python.org
https://github.com/shingleproject/Shingle
https://www.shingleproject.org
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2.5.3 Building Diamond from source

Diamond is provided by the package Spud. Further details of building Diamond from source can be found
with the Spud source code, which is provided alongside the main Shingle source in the spud folder.

2.6 Building of the manual

The manual is built using LaTeX (http://www.latex-project.org/), and currently requires the follow-
ing packages:

– gensymb

– etoolbox

– enumitem

– url

– natbib

– cleveref

– ntheorem

– minted

– ifplatform

– xstring

– lineno

Where possible, the manual automatically includes figures of the output spatial discretisations from the
verification tests. This is achieved in Python which links directly to the Shingle library to read all of the test
BRML files in the test folders to locate the output mesh images.
The mesh images for all active tests can be generated by:

make testimage

in the route source folder, or using the Shingle executable:

shingle -t path_to_test_folder -image

The manual is built using the following Makefile directive from the root source folder:

make manual

http://www.latex-project.org/


12 Shingle Manual Chapter 2. Installation and building



Chapter 3

Command line operation

3.1 Straight-forward direct use on the command line

Shingle can be used straight-forwardly on the command line to interpret and process BRML spatial discreti-
sation problem descriptions. This is simply a matter of passing Shingle the filename of the BRML description.
For example:

shingle test/Amundsen_Sea/Amundsen_Sea.brml

This reports back each stage, following through the set of constraints (e.g. figure 9.1). For example:

DATASETS: Found 1 datasets:
1. RTopo

Path: /dataset::RTopo
Form: Raster
Source: Local_file
Location: ../../dataset/RTopo105b_50S.nc
Projection: Automatic

SURFACE GEOID REPRESENTATIONS: Found 1 surface geoid representations:
1. Amundsen_Sea

path: /geoid_surface_representation::filchner_ronne_ice_ocean::Amundsen_Sea
Logging to file: /home/acandy/src/Shingle/test/Amundsen_Sea/shingle.log

Initialising surface geoid representation Amundsen_Sea
Output to Amundsen_Sea.geo
Projection type cartesian

Extending region to meet parallel on latitude -64.0
BOUNDARY IDENTIFICATION: Found 2 boundary definitions:
1. Coast

Path: /geoid_surface_representation::Amundsen_Sea/boundary::Coast
Physical ID: 3

2. OpenOcean
Path: /geoid_surface_representation::Amundsen_Sea/boundary::OpenOcean
Physical ID: 4

COMPONENT BOUNDARY REPRESENTATIONS: Found 2 component boundary representations:
1. Amundsen_Sea_brep

Path: /geoid_surface_representation::Amundsen_Sea/brep_component::Amundsen_Sea_brep
Form: Raster
Identification: Coast

2. ExtendTo64S
Path: /geoid_surface_representation::Amundsen_Sea/brep_component::ExtendTo64S
Form: ExtendToParallel
Identification: OpenOcean

Reading boundary representation Amundsen_Sea_brep
Region defined by ((longitude >= -130.0) and (longitude <= -85.0)

and (latitude >= -85.0) and (latitude <= -60.0))
Open contours closed with a line formed by points spaced 0.1 degrees apart
Source NetCDF located at ../../dataset/RTopo105b_50S.nc
Generating contours, from raster: /home/acandy/tmp/dataset/rtopo/RTopo105b_50S.nc
Including iceshelf ocean cavities
Found raster, sizes: lat 2401, lon 21601, shape (2401, 21601)

Paths found: 348
Merged paths that cross the date line:
Path 1: points 5165 (of 59599) area 3.84218e+06 (required closing in 2 parts of the path)
Path 23: points 158 (of 159) area 2191.14 (required closing in 2 parts of the path)
Path 27: points 512 (of 513) area 8103.48 (required closing in 2 parts of the path)
Path 28: points 18 (of 19) area 5.40939 (required closing in 2 parts of the path)
Path 29: points 680 (of 681) area 58481.4 (required closing in 2 parts of the path)
Path 30: points 180 (of 181) area 1374.98 (required closing in 2 parts of the path)
Path 31: points 172 (of 173) area 1082.44 (required closing in 2 parts of the path)
Path 36: points 108 (of 109) area 538.654 (required closing in 2 parts of the path)
Path 37: points 212 (of 213) area 1205.91 (required closing in 2 parts of the path)
Path 39: points 130 (of 131) area 913.168 (required closing in 2 parts of the path)
Path 40: points 60 (of 61) area 225.112 (required closing in 2 parts of the path)

13
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Path 41: points 240 (of 241) area 2238.38 (required closing in 2 parts of the path)
Path 44: points 104 (of 105) area 800.669 (required closing in 2 parts of the path)
Path 45: points 1274 (of 1275) area 25276.9 (required closing in 2 parts of the path)
Path 82: points 60 (of 61) area 65.104 (required closing in 2 parts of the path)

Paths found valid (renumbered order): 15, including 1 5 10 13 31 37 40 44 47 51 56 62 91 93 159
Processing paths:
Interior path 5
Interior path 10
Interior path 13
Interior path 31
Interior path 37
Interior path 40
Interior path 44
Interior path 47
Interior path 51
Interior path 56
Interior path 62
Interior path 91
Interior path 93
Interior path 159
Exterior path 1

Extending exterior boundary developed in Amundsen_Sea_brep to parallel -64.0
Boundary OpenOcean (ID 4): 16
Boundary Coast (ID 3): 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Writing surface geoid representation to file: Amundsen_Sea.geo
/home/acandy/src/Shingle/test/Amundsen_Sea/Amundsen_Sea.geo

Mesh properties: /home/acandy/src/Shingle/test/Amundsen_Sea/Amundsen_Sea.msh
Number of nodes: 2630
Number of elements: 5282
Reading validation tests (1 in total)
Test 1: BrepDescription PASS
Test 2: NodeNumber PASS
Test 3: ElementNumber PASS
Test 4: SurfaceGeoidArea PASS

Result: Amundsen_Sea PASS (4)

3.2 Diagnostics

There are various ways to check what the BRML describes. A plot of contours identified can be shown quickly
with the plot option:

shingle test/Amundsen_Sea/Amundsen_Sea.brml -plot

3.3 Diamond GUI editor

The BRML descriptions are structured, human-readable files and can be read simply in a text editor.
To ensure the descriptions are structured following the BRML grammar, they can be edited in the Diamond

GUI. It is simply a matter of passing Diamond the schema file describing the grammar, together with the BRML
file. For example:

diamond -s schema/shingle_options.rng test/Antarctica_all/Antarctica_all.brml
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3.4 Command line options

Command line options for Shingle can be list by passing the help argument -h:

Usage for shingle
shingle [options] (filename)
-- Options ----------\

filename | Option tree file fully specifying the
| surface geoid representation and spatial discretisation

-t (testfolder) | Run all tests located in testfolder (defaults to the source test folder)
-l (logfile) | Log messages to file (optional filename, default shingle.log in project folder)
-c | Use a cache file, create and read

|________________________________________________________________________________
-stage stagename | Partial processing, up to given stage from: path brep mesh metric verify post
-pickup | Use existing generated output if exists and where possible
-plot | Plot contour before representation generation
-image | Generate image of mesh (forced)

| combine with Xvfb :5 -screen 0 2560x1440x8 to run in the background
-mesh | Mesh geometry (forced)
-update | Update verification test files

|________________________________________________________________________________
-h | Help
-v | Verbose
-vv | Very verbose (debugging)
-q | Quiet

\________________________________________________________________________________

3.5 Command line constraint specification

It is possible to develop simple spatial discretisation constraint descriptions on the command line. This is for
compatibility with earlier versions of the library. More information is available by providing the arguments
-legacy -h on the command line.
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Chapter 4

Background motivation

Numerical simulation models have become a vital tool for scientists studying geophysical processes. Mature
operational models inform continuously updated short-term public weather forecasts, whilst studies of
mantle dynamics and ice sheet evolution improve understanding of physical systems in relatively inaccessible
locations, where data is sparse.

Use of unstructured mesh spatial discretisations is growing in the fields of modelling geophysical systems,
where it is possible to conform accurately to complex, fractal-like surfaces and vary spatial resolution to
optimally capture the physical process, or multi-scale range of processes under study. The past few years
have seen a global unstructured ocean model [FESOM, Sidorenko et al., 2014] join structured studies in
internationally coordinated climate studies, such the Coupled Model Intercomparison Project [CMIP, Meehl
et al., 2007; Taylor et al., 2012] and the Coordinated Ocean-ice Reference Experiments [CORE Griffies et al.,
2014, and accompanying studies in the Ocean Modelling special issue]. More are in active development [e.g.
Ringler et al., 2013] and the number of unstructured models joining these efforts – that directly contribute to
reports compiled by the Intergovernmental Panel on Climate Change (IPCC) – likely to grow. Similarly, on
smaller scales, the geometric flexibility of unstructured discretisations are being applied to reduce the need for
nesting models, and in accurately applying forcings or coupling physics [e.g. Kimura et al., 2013] on complex
and possibly dynamic, deformable physical interfaces. At the cusp where these efforts meet, prospects for
introducing successively greater complexity in the representation of coastal seas in global ocean models are
reviewed in Holt et al. [2017].

The challenge (see figure 1.1) of constraining and fully describing an arbitrarily unstructured spatial
discretisation bounded by complex, fractal-like bounds that typically characterise geophysical domains, with
inhomogeneous and potentially anisotropic spatial resolution, is a significant one. Defining the domain geoid
bounds is no longer a simple case of applying a land mask to similarly regular gridded data. The generalised
constraints are now a heterogeneous set of functions [Candy, 2017], and as a consequence are more difficult to
describe. In general, domain discretisations are often under-described leaving it difficult to repeat simulations
exactly, which particularly for the unstructured case, can have a strong influence on model output. Not only
is the description and generation process a significant challenge, but achieving this in a way that maintains
a record of provenance such that simulations as a whole are reproducible, that scales and is efficient, and
consistent to source data – attributes required and expected in scientific modelling studies – make this a much
more difficult problem (summarised in table 7.1). Existing, standard structured-mesh tools cannot be used.

Grid generation for geophysical models in real domains is not only becoming a significantly more complex
and challenging problem to constrain and describe, but additionally in the computational processing required.
As models include a greater range of spatial scales, more computational effort is required to optimise the
discretisation before a simulation proceeds (e.g. the actively developed MPAS models, Ringler et al. [2013],
strongly optimise their hexagonal prism based mesh discretisation). An increasing number of geometric
degrees of freedom demand the meshing process is broken up over multiple parallel threads [as demonstrated
in Candy, 2017], just as simulation models have evolved to run in parallel.

These challenges are identified in Candy [2017] by the nine tenets of geophysical mesh generation, summarised
in table 7.1. This work takes the view that significant progress can be made towards these by approaching the
mesh generation problem in the same way as a numerical simulation model.

17
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Chapter 5

Overview of Shingle library and approach

Simulation domains in geophysical models are typically defined with reference to geographical features. A
tsunami simulation geoid surface domain is, for example, usually described by a length of coastline between
two points (commonly marked by longitude or latitude references) extended out to an orthodrome. In the case
of 2010 Chile earthquake centred about 35.9◦S 72.7◦W (see figure 11.2), the domain is concisely described:

“... bounded by the 0m depth coastline from 32 ◦S to 40 ◦S,
extended along parallels to the 77 ◦W meridian,
in a latitude-longitude WGS84 projection ...”

(∗)

As part of the generalisation of domain description, this new approach interacts directly with these
natural language based geographic references, structured by a formal grammar, to provide a general, model-
independent and accurate description of spatial discretisation for geophysical model domains. This forms part
of the Shingle [2011–2017] computational research software library, that accompanies this work, providing a
novel approach to describing and generating highly multi-scale boundary-conforming domain discretisations,
for seamless concurrent simulation.

The previous work Candy [2017] developed a consistent approach to domain discretisation, with a focus
on uniform processing and data sources, which further enabled the discretisation of domains not possible with
standard approaches. Additionally, it identified the complete set of heterogeneous constraints required to fully
describe a mesh generation problem for the discretisation of geophysical domains. This work now extends and
generalises this consistent approach introducing a natural language based formal grammar for a modeller to
describe and share the constraints. Under the formal grammar the description is ensured necessarily complete,
such that the problem is fully constrained and is therefore reproducible. This employs the novel hierarchical
problem descriptor framework Spud [Ham et al., 2009] which has been specifically designed to manage large
and diverse option trees for numerical models. The formal self-describing data file is a universal, shareable
description of the full constraints, written in a standard data format, presented in context through a natural
hierarchical structure, readable by established open source libraries.

The pathways of interaction with the library have grown (outlined in figure 5.1), such that it is accessible to
a wide range of users. Its modular library framework, with for example, geospatial operations, homeomorphic
projections, meshing algorithms and model format writers are the focus of distinct modular parts, and the use
of standard external libraries where possible, allows development to remain in small sections of the code
base, such that develops can stay within their specialisms. Additionally, the dictionary approach to managing
option parameters taken by Spud means new features can be added and exposed through interfaces, such as
the Diamond Graphical User Interface (GUI), without the need to pass new arguments through code functions,
and similarly require small changes and only in low-level code.

Output writers in the library prepare the solution discretisation for use in simulation codes, in cases
where the output Python objects cannot be used directly, encouraging the use of standard formats and also
supporting existing proprietary model-specific formats. These additionally support supplementing the spatial
discretisation (which itself includes a vector field describing mesh node coordinate locations) with additional
interpolated fields for simulation model initialisation and forcing (figure 5.1).

Through both the objects in the problem description file (figures 9.1 – 9.3) and those in the Python library
LibShingle (figure 11.1), Shingle provides a language to combine geographic components to build up boundary
representation, mesh spatial variation and identification – a high-level abstraction to the complex constraint
description problem – which is then processed by the library in deterministic (or as close to as possible) process
to accurately construct the specified mesh in a repeatable way.
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Figure 5.1: A schematic illustrating the generalised approach to flexible unstructured mesh specification and generation for
geophysical models. The hierarchy of automation (tenet 7) is highlighted, from a relatively simple high-level interaction:
Diamond GUI ↔ Shingle → Mesh, to complex low-level development communicating with the LibShingle library.
Nomenclature defined in chapter 6.

The validation tests of Candy [2017] have been significantly widened from the limited boundary represen-
tation tests to include expected discrete properties and metrics of the high fidelity description and resulting
domain discretisation. These expected characteristics are prescribed as part of the self-describing problem file,
such that other users can check the output is as intended. This self-contained description and validation is
then straight-forwardly processed by the library verification engine, making it easy to add new tests.

Through this approach, geophysical domain discretisation can be the relatively simple steps (top of
figure 5.1) of using the Diamond GUI to choose a dataset and specify bounds using natural language objects,
which is then run through the Shingle executable to produce a mesh. This is accessible and straightforward to
new users. More so with the suite of test cases that provide examples and easily ensure verification through a
built-in test engine.

More advanced use can be built up in stages through the GUI, with validation checks on expected mesh
properties easily added to ensure reliable reproduction throughout the iterative mesh prototyping process.
Beyond this the XML based description is easily interrogated and modified with standard tools. Lower-lever
still, the natural language based objects and discretisation constraints can be accessed directly through its
Python library interface. This has grown since its first iteration reported in Candy [2017], where it was used
to develop complex discretisations dependent on the mean position of Antarctic Circumpolar Current (ACC)
and domains to complex grounding line positions under the floating ice shelves of Antarctica. Python plugins
for QGIS [Quantum GIS Development Team, 2016] were developed using parts of the Shingle library code to
demonstrate integration with Geographic Information Systems (GIS) in Candy et al. [2014].

With mesh generation becoming a complex problem to describe and a computationally challenging process,
that we argue is best handled in an approach that mirrors the development of a numerical simulation model,
support and interaction with other frameworks such as GIS is best maintained with a standalone library and
a formal problem description specifically designed to constrain the general geophysical domain discretisation
problem.



Chapter 6

Generalised unstructured spatial
discretisation for geophysical models

6.1 Constraints for mesh generation in geophysical domains

The contrast in dominant dynamical processes that characterise geophysical systems, split in orthogonal
directions parallel and perpendicular to the local gravitational acceleration g, leads to a spatial decoupling
that restricts the parameter space of general spatial domains Ω ∈ R3. Meshes of geophysical domains can
be built differently in these distinct directions in order to well-support the associated dynamics, with mesh
characteristics on the geoid plane considered independently of those in the perpendicular direction of g. A
formal description of the heterogeneous set of constraint functions, homeomorphic mappings and topological
spaces, required to fully describe geophysical model domain spatial discretisations, is developed and detailed
in Candy [2017], of which a summary of the key outcome follows.

Constraints: The spatial domain discretisation for a computational geophysics simulation in a domain Ω ⊂ R3, requires
the constraint of

1. Geoid boundary representation Γg , of the geoid surface Ωg ⊂ R3, inclusive of the maximal extent of Ω
perpendicular to g. Under a homeomorphic projection ξ, this is considered as the chart Ω′ ⊂ R2, such that the
boundary Γ′ is described by

Γ′ : t ∈ R 7→ ζ(t) ∈ R2, (6.1)

an orientated vector path of the encompassing surface geoid bound defined in two-dimensional parameter space.

2. Geoid element edge-length resolution metric for dynamics aligned locally to a geoid, described by the functional

Mh : x ∈ Ω′ 7→ Mh(x)∈ R2×R2. (6.2)

3. Boundary and region identification, prescribed by

nΓ′ : t ∈ R 7→ nΓ′(t) ∈ Z, and (6.3)

nΩ′ : x ∈ Ω′ 7→ nΩ′(x) ∈ Z, respectively. (6.4)

4. Surface bounds, height maps defined on the surface geoid domain, described by the functions

f, g : x 7→ R ∀x ∈ Ω′. (6.5)

5. Vertical element edge-length resolution metric for dynamics in the direction of gravitational acceleration (e.g.
buoyancy driven), described by the functional

Mv : x ∈ Ω 7→ Mv(x) ∈ R. (6.6)
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(a)
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(b)

Figure 6.1: Breakout schematic of mesh generation for (a) general unstructured spatial discretisation and (b) typical
geophysical domains, referencing constraint 1 of section 6.1.

6.2 Decoupled mesh development

The spatial decoupling permits discretisation in two stages corresponding to directions parallel and perpen-
dicular to the local gravitational acceleration (refer to figure 9.1). Firstly, the ‘horizontal’ geoid surface domain
discretisation problem is solved under constraints 1 – 3 using the surface geoid boundary representation
Γ′ (6.1), geoid element edge-length metric Mh (6.2), with boundary and region identifications, nΓ′ (6.3) and
nΩ′ (6.4) respectively, such that

h : {Γ′,Mh, nΓ′ , nΩ′} 7→ Th, (6.7)

a tessellation of Ω′ ⊂ R2, with identification elements.
Secondly, if needed, this is followed by discretisation in a direction aligned with gravitational acceleration.

The constraints 4 and 5, describing the surface bounds f and g (6.5) and vertical edge-length metricMv (6.6),
together with the surface geoid discretisation Th (6.7), forms a discretisation problem that is solved through
the process

v : {Th, f, g,Mv} 7→ T , (6.8)

to give the full domain discretisation of Ω ⊂ R3, with identification elements.



Chapter 7

The nine tenets of geophysical mesh
generation

Accompanying the constraints, Candy [2017] identifies the nine attributes listed in table 7.1 as key to
geophysical mesh generation processes.

1. Accurate description and representation of arbitrary and complex boundaries such that they are
contour-following to a degree prescribed by the metric size field, with aligned faces so forcing data is
consistently applied (Γ′, f , g).

2. Spatial mesh resolution to minimise error; with efficient aggregation of contributing factors, ease of
prototyping and experimentation of metric functions and contributing fields, over the entire extent of the
bounded domain (Mh,Mv).

3. Accurate geometric specification of regions and boundary features; to provide for appropriate
interfacing of regions of differing physics, model coupling and parameterisation application (nΩ′ , nΓ′ ).

4. Self-consistent, such that all contributing source data undergoes the same pre-processing, ensuring self-
consistency is inherited.

5. Efficient drafting and prototyping tools, such that user time can be focused on high-level development of
the physics and initialisation of the modelled system.

6. Scalability, with operation on both small and large datasets, facilitating the easy manipulation and process
integration, independent of data size.

7. Hierarchy of automation, such that individual automated elements of the workflow can be brought down
to a lower-level for finer-scale adjustments.

8. Provenance to ensure the full workflow from initialisation to simulation and verification diagnostics are
reproducible.

9. Standardisation of interaction to enable interoperability between both tools and scientists.

Table 7.1: The nine tenets of geophysical mesh generation. Solutions to the spatial discretisation of geophysical model
domains need to address these nine attributes [from Candy, 2017].

23



24 Shingle Manual Chapter 7. The nine tenets of geophysical mesh generation



Chapter 8
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Figure 8.1: A schematic illustrating the approaches to unstructured mesh generation for geophysical models, highlighting
(a) the case in general and (b) the consistent approach introduced here, with data pathways coloured in grey and blue,
respectively [from Candy, 2017]. The connecting red sections represent spatial discretisation processes h (6.7) and v (6.8),
that are fully constrained by the heterogeneous set of parameters provided to the left, and result in the discretisation to
the right as an output. Here for example, h could be provided by an established Delaunay triangulation implementation
to generate the two-dimensional tessellation Th, and v an advancing front algorithm to extrude this tessellation Th out to a
three-dimensional mesh T .
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Chapter 9
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Figure 9.1: Overview layout of geophysical domain mesh constraint description highlighting extensible dynamic
components and correspondence to source data S, projection ξ and constraints 1 – 5.
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Figure 9.2: An example view of the Graphical User Interface Diamond inspecting the hierarchical tree of option parameters
that fully constrain the geophysical domain mesh problem. Each node is shown in context on the left, with their option
properties presented on the right, including raw data and the possibility to note comments. This is guided by the BRML
schema developed and supplied with Shingle, which additionally provides the fuller self-describing option descriptions
shown in the top right. Options down the tree highlighted in blue are mandatory and guide the user to defining a complete
set of constraints.
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<?xml version=’1.0’ encoding=’utf-8’?>
<boundary_representation>

<model_name>
<string_value lines="1">Chile_Talcahuano</string_value>

</model_name>
<global_parameters/>
<output>

<projection>
<string_value>LatLongWGS84</string_value>

</projection>
</output>
<dataset name="GEBCO2014">
<form name="Raster">
<source name="OPeNDAP" file_name="http://ecco2.jpl.nasa.gov/ opendap/hyrax/data2/data/bathymetry/GEBCO2014/
GEBCO_2014_2D.nc"/>↪→

</form>
<projection name="Native"/>
<region_selection name="Automatic"/>

</dataset>
<geoid_surface_representation name="SouthEastPacificOcean">

<identification>
<integer_value rank="0">9</integer_value>

</identification>
<brep_component name="SouthEastPacificOceanCoast">
<form name="Raster">
<source name="GEBCO2014"/>
<region>

<longitude>
<minimum>-77.0</minimum>
<maximum>-71.0</maximum>

</longitude>
<latitude>

<minimum>-40.0</minimum>
<maximum>-32.0</maximum>

</latitude>
</region>
<contourtype name="coastline0m"/>
<comment>Simple single bounding box centred about the epicentre 35.909S 72.733W.</comment>

</form>
<identification name="Coast"/>
<representation_type name="BSplines"/>

</brep_component>
<brep_component name="OpenMeridian">
<form name="ExtendToMeridian">
<longitude>

<real_value rank="0">-77.0</real_value>
</longitude>

</form>
<identification name="OpenOcean"/>
<representation_type name="BSplines"/>

</brep_component>
<boundary name="Coast">

<identification_number>
<integer_value rank="0">3</integer_value>

</identification_number>
</boundary>
<boundary name="OpenOcean">
<identification_number>
<integer_value rank="0">4</integer_value>

</identification_number>
</boundary>

</geoid_surface_representation>
<geoid_metric>
...

</geoid_metric>
<validation>
<test name="BrepDescription" file_name="data/Chile_Talcahuano.geo.bz2">
<compressed/></test>

<test name="NodeNumber"> ... </test>
</validation>

</boundary_representation>

Figure 9.3: Example domain discretisation description, in a self-describing BRML description file (with a few parts marked
... skipped). This is a human-readable translation of the simple description (∗) under the formal grammar of the schema
that defines the geophysical domain discretisation constraint space. This file is examined by the GUI in figure 9.2 and, on
straight-forward and automated processing by Shingle, produces the simulation-ready spatial discretisation of figure 11.2.
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9.1 Unstructured domain discretisation a model problem

The functional forms (6.1) – (6.6) of the unstructured meshing problem require a range of types of data, from
more standard two-dimensional raster maps, to tensors and orientated vector paths. It is a challenge to manage
this heterogeneous collection of parameters (tenets 5 and 8), such that they are handled consistently (tenet 4)
and for the level of complexity that can be encountered (tenets 6 and 7). This is in contrast with the structured
mesh case, which requires relatively simple data of the same format as its inputs: a two-dimensional Digital
Elevation Map (DEM) raster dataset supplying a two-dimensional raster mask, for example.

Mesh specification in the unstructured case, with flexibility to include conforming boundaries, is much
more like the initialisation of a numerical simulation model. This typically contains a heterogeneous set of
functions: those defined over R3 initialising or forcing full fields, together with boundary conditions defined
on surfaces in R2 and potentially line and point sources, or full field functions of reduced rank such as the
gravitational acceleration parameter, or value of a bulk eddy viscosity, for example. Mesh descriptions and
constraints are only going to become more complex as simulation models include a larger range of spatial
scales and physical processes. Moreover, like a simulation model, unstructured mesh generation includes
calculations that can be computationally demanding. The generation of conforming boundary representations
is no longer a simple binary operation identifying which elements lie in the simulation domain through mask
fields. Similarly, the construction of domain discretisations with variable element sizes contains many more
unknowns in the unstructured case than the corresponding local cell-division approaches typically used to
increase spatial resolution in the structured case.

In light of this, Shingle takes the approach that domain discretisation specification and generation is best
considered as a model problem. Formalised, the output mesh is the solution of a discretisation problem under
a heterogeneous parameter space of constraints.

9.2 Spud constraint space management

Much like numerical model input parameter specification, mesh generation is often overlooked, and a
secondary consideration to the dynamical core of a numerical model. Typically inputs are ad hoc, model-
specific, plain text files containing name lists that are expanded as a model develops. For only but simple
cases, this leads to model interfaces (and their associated pre- and post-processing tools) that are difficult to
maintain and simulation setups that are not easily shared and understood.

This problem of model input parameter specification is considered in Ham et al. [2009], together with the
proposed solution Spud. This provides a generalised, model-independent method of describing all constraints
to a model problem, that is dynamic, easily extensible with a hierarchical context for parameters. Formal
grammars guide user input, minimise errors and formalise parameter specification.

9.3 Constraint space description

The options available to describe a mesh discretisation are typically defined by model interfaces. These
tend to be ad hoc and unportable, tied directly to numerical simulation codes. Initialisation tools then
require their own implementation to interpret and write model options, which is prone to error and potential
inconsistencies.

Existing file formats have been used, and their syntax overloaded, to describe geophysical spatial
discretisations. Ice sheet domains are built up using a Constructive Solid Geometry (CSG) approach within
the COMSOL [COMSOL, 2014; Li et al., 2009] multi-physics modelling environment in Humbert et al. [2009].
The GeoCUBIT [Casarotti et al., 2008] branch of CUBIT developed for seismic inversion domains, and a plugin
for Gmsh [Geuzaine and Remacle, 2009] to enable the creation of domains bounded by paths from the Global
Self-consistent, Hierarchical, High-resolution Geography [GSHHG, Wessel and Smith, 1996]. Extensions to GIS
[e.g. Candy et al., 2014] enable a flexible development of geoid surface boundary representations. Extensibility
of these frameworks for the purposes of geophysical domain discretisation and model initialisation is limited,
with for example GIS frameworks being built up from working on two-dimensional raster fields. Similarly,
project files associated with GIS do not contain all of the information required to fully constrain a spatial
discretisation problem, and moreover, it is not possible to include the high-level natural language functional
descriptions proposed here. As Candy et al. [2014] demonstrates though, GIS methods can benefit geophysical
domain development, and their role is included in the schematic figure 5.1.

Use of Spud enables a description of model option parameter space to be considered separately. This is
constructed in a schema file, a machine readable specification of which options are expected, their type and
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context, and how they should be read: A formal grammar to be used to describe model constraints. The
constraints 1 – 5 that fully describe the geophysical domain discretisation problem have been structured into
a schema. A schematic of the included components and their relationship to required constraints is shown in
figure 9.1.

This is a single hierarchical and formal description of the constraint space, and more generally the options
available to the user in generating a mesh. As illustrated in figure 5.1, it is part of Shingle and is central to
how components of the approach interact with BRML files that describe a particular meshing problem. At the
simplest, highest level use of Shingle, this is transparent to the user. For more advanced use and development,
it provides a centralised and language-based description of the constraint space that all other parts of Shingle,
and the geophysical mesh generation process, depend.

9.4 Dynamic, hierarchical parameter description

Just like the case of a numerical model, there are a wide range of possible options in mesh generation, even
when restricted to geophysical problems. The BRML schema builds on the general schema language for
simulation models prepared in Ham et al. [2009], to give an option-complete language for the mesh generation
problem. This is exactly the type of purpose Spud is intended for and other current models in development are
adopting this approach to formally describe model constraint spaces, like for example the new TerraFERMA
model of Wilson et al. [2016].

This caters for options which may be specified multiple times, at potentially varying levels of option
hierarchy in multiple contexts. For example, as the block diagram of figure 9.1 highlights, a simulation
domain can contain multiple geoid surfaces Γ′, each with potentially multiple boundary representation
components (e.g. simple orientated polylines with identification). BRML is an XML language, and by nature
is hierarchical and extensible. With this structure, and guided by what the schema permits (itself representing
the constraints 1 – 5), it is easy to dynamically add, repeat, expand and remove options and groups of options
whilst in context.

As an example, use of the Spud framework immediately provides access to the Diamond GUI which
enables easy editing and drafting of new domain discretisations. This GUI uses the schema file (see figure 5.1)
to guide navigation of the option tree. Through this the GUI knows to expect at least one definition of a geoid
surface Γ′, for example, and a specification of a geoid metricMh (and requires these from the user). Additional
geoid surfaces or more feature-rich boundary representation components are easily added and built up at a
later stage, dynamically increasing the complexity of the mesh generation problem.

9.5 Option tree cross-references

Options are structured into a hierarchical tree within the BRML description. The grouping of constraints 1 – 5
and decoupling (section 6.2) are naturally structured in this way, as figure 9.1 highlights. This is much like
numerical simulation model options parameters, which motivated the development of Spud and adoption of
an underlying XML-based language.

In some cases there exist dependencies across the option tree, and these are achieved through attribute
names. For instance, the choice has been made to centralise source dataset definitions. These are named (e.g.
‘GEBCO2014’ in figures 9.2 and 9.3) and this name referred back to whenever the data is required. This is also
used to assign potentially multiple boundary representation component sections to the same named boundary
identification (e.g. the ‘Coast’ and ‘OpenOcean’ named identifications of figures 9.2 and 9.3).

This also allows component boundary representations sections to be used multiple times. This is required,
for example, when distinct physical regions meet at an interface (e.g. the open ocean meets an ice sheet) and
share a boundary. The component boundary representation section defining the interface can then be referred
to out of the order defined by the hierarchy, and from potentially separate parent geoid surface representation
Γ′ (where for instance Γ′o and Γ′i are setup to represent neighbouring geoid surface representations for the
ocean and ice, respectively).

9.6 Natural language descriptions

Domains for geophysical simulations are typically described with reference to bounding lines on orthodromes
such as meridians and parallels, together with global or segments of contours such as a 0m coastline, for
example. More generally, geographic features are identified with a similar combination. The Southern Ocean
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for example, is defined extending up from the Antarctic coast to the 60◦S parallel, and the Atlantic and Indian
Oceans divided at the 20◦E meridian.

This is the natural way to identify bounds for geophysical models. Setting up these geographic bounds and
including all features contained within in a format suitable for meshing algorithms can be a time consuming,
difficult to edit and repeat, ad hoc process. Shingle automates this and from a basis of natural language
definitions typically used in geophysical modelling studies.

The original consistent boundary representation generation approach described in Candy [2017] enabled
sections of contours to be selected and domains extended meridionally to parallels. This has been generalised
significantly to allow a wide range of arbitrary bounds described with natural language definitions. Moreover
these can be defined multiple times, and in context with hierarchy available within the BRML description.
In the example presented in figures 9.2 and 9.3 the boundary representation can be seen to include two
components: a section of the Chilean coastline and a second extending the domain out to a meridian at 7◦W,
mirroring those in the description (∗).

9.7 Arbitrary and discrete descriptions

More flexible functional descriptions can be made within the BRML written directly in Python. This again
in a relatively readable form, using primitives such as the positions ‘longitude’ and ‘latitude’, or Universal
Transverse Mercator (UTM) coordinates ‘x’ and ‘y’. This can be used to describe an arbitrary orthodrome, for
example.

In addition to this, the natural language basis can be supplemented with raw discrete data types such as
orientated polylines from the GSHHG database, mapping databases (e.g. the UK national Ordnance Survey
OpenData resource) or those developed directly in a GIS as Candy et al. [2014] demonstrates, bounding a
domain to the complex UK coastline together with the fine man-made structures of Portland Harbour. The high
fidelity boundary representation is not only built up from components constructed on-the-fly from functional
forms referencing geographic features, but also discretised forms containing an explicit description of domain
constraints, if needed (see figure 5.1). These are available through the central dataset section of the option
hierarchy (figure 9.1), and accessed from local or distributed resources.

9.8 Self-describing constraint options

The constraint space description developed in the BRML schema is self-describing, containing a verbose
description of each option. This information can presented alongside options in the GUI (see the top right
of figure 9.2, for example) or reported for any option errors occurring at run time, again from this centralised
constraint space descriptor resource, the schema. In this way the schema, and as a result the GUI, act as a
manual, directly supporting users as mesh options are made.

From the developer’s perspective, this Spud based approach means new features can be added with
minimal code changes. The XML based structure means codes focus on patterns of options. The schema
defines what expected and the code loops through the hierarchy following well-defined patterns, picking up
options from a corresponding in-memory dictionary tree.

For the user, mesh generation with real fractal-like boundaries can be as simple as selecting a coastline
segment by a bounding box and on the other side a bounding orthodrome, with choice of element edge-length
metric (see figure 11.2).

9.9 Provenance record

A complete description of the domain discretisation problem is a fundamental requirement if an accurate
record of provenance is to be made, and this is provided by the BRML file. These BRML files alone are
themselves easily parsable XML based problem description files, human-readable with structure. This is
focused on a textual natural language problem description and is lightweight as a result such that changes
are easily tracked with version control systems such as Git and SVN.

Together with the problem description, the BRML maintains details of authors responsible for their
creation, contact details, comments including timestamped notes on past changes made in development (seen
in figures 9.1 and 9.2). This is similar to the record kept within the global attribute metadata contained in
NetCDF headers, which is supplemented through operations performed on the data with tools such as the
Geospatial Data Abstraction Library [GDAL, 2016]. The ADCIRC hydrodynamic circulation model [Westerink
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et al., 2008] makes a record of this type of information in its NetCDF output, inherited from its initialisation
namelist files. Shingle records this information in output where possible, notably the high fidelity boundary
representation, supplementing it with a record of the library release version and unique repository abbreviated
commit hash. Unique identifiers of other libraries are also recorded, such as the version of the meshing tool
employed (e.g. Gmsh).
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Chapter 10

Source data management

Data contributing to discrete domain characterisations can be large in size, difficult to distribute efficiently
and computationally costly to process. The current version of the global bathymetry dataset GEBCO [2014]
containing only elevation is currently 1.9 GB in size, for example. Efforts are growing to provide a complete
provenance record of numerical model simulations, with direct instructions from research funders requiring a
research data management plan [NWO Data Management Protocol, 2014] and in general, accountability from
the public, it is important to detail data source origin and content accurately.

Options for the management of mesh generation source data range from:

1. Recast data into form suitable for distribution and share with BRML description.
2. Distribute processed datasets with BRML irrespective of size.
3. Begin from a standardised raw dataset, and conduct potentially computationally demanding processing

as needed.
4. Refer to remote repositories of source data, such that data is downloaded and processed on demand.

Often this data processing stage of the mesh generation process is not well-described, and difficult to
reproduce, with filtering, subsampling and agglomeration operations only loosely outlined.

Modern data descriptors support a record of provenance [such as the ‘history’ field embedded in NetCDF,
Rew et al.], so it would be possible to record the filtering, subsampling and other processing here or within the
BRML.

The purpose of the BRML description of constraints is to provide an accurate description of the meshing
problem. It is not the intent to reinvent new standards for data description. Along this line of design, with a
focus on provenance record and how data is handled, and noting the computational demands and connectivity
speeds that affect options 3 and 4 above will continue to improve in the future, the approach is made to depend
directly on raw, standard and potentially remote data sources.

10.1 OPeNDAP integration

The problem of efficient access to large remotely hosted data sources is tackled by Cornillon et al. [2003] which
describes OPeNDAP (Open-source Project for a Network Data Access Protocol). The protocol has since been
adopted by many organisations who host servers providing OPeNDAP services. This includes a large amount
of environmental data in the Global Change Master Directory (GCMD) provided over OPeNDAP by NASA1.
Other data libraries such as the NOAA National Oceanographic Data Center2 and British Oceanographic Data
Centre3 are expanding the range of data delivered over OPeNDAP. Some OPeNDAP servers additionally
maintain a catalogue of other servers worldwide such as the THREADDS host at Deltares4. Specific numerical
simulation models too have their own dedicated servers to host output such as the ocean models HYCOM5

and ROMS6.
This has typically been applied to sharing geophysical model output data in combination with the [NetCDF

Rew et al.] and Climate and Forecast [CF, Gregory, 2003] metadata standards [Hankin et al., 2010], for

1http://gcmd.gsfc.nasa.gov
2http://data.nodc.noaa.gov/opendap
3http://dods.bodc.ac.uk
4http://opendap.deltares.nl
5http://tds.hycom.org
6http://megara.tamu.edu:8080, http://tds.marine.rutgers.edu

35

http://gcmd.gsfc.nasa.gov
http://data.nodc.noaa.gov/opendap
http://dods.bodc.ac.uk
http://opendap.deltares.nl
http://tds.hycom.org
http://megara.tamu.edu:8080
http://tds.marine.rutgers.edu


36 Shingle Manual Chapter 10. Source data management

intercomparisons and post-processing analysis. Here we apply OPeNDAP to model initialisation. In Shingle,
this OPeNDAP negotiation is achieved using the standard Python library pydap. In this way Shingle can
request fundamental operations are applied to distributed datasets before they are delivered for further
processing, picking out required fields and regions of interest to reduce the size of data communicated. A
description of further processing such as subsampling and filtering is then maintained in the BRML and
executed through standardised Python wrappers to established geospatial tools such as GDAL [2016]. A
reference in place for the GEBCO [2014] data source hosted on the NASA/JPL ECCO OPeNDAP server is
made in figure 9.3, where the region of interest (for cropping on the remote server) is automatically established
by its use further down in the tree.

Keeping the BRML focused on problem description, with references to source data, ensures it is lightweight
and portable. Iterative adjustments to the mesh generation are also then made with changes to descriptions
rather than data. Furthermore, these are then easily managed in version control systems.

This additionally ensures the verification test engine is lightweight and apart from a dependence on
standard software libraries, and a connection to OPeNDAP servers, is self-sufficient and can be easily be setup
and used independently.

Constraints built from distributed resources are encouraged, but to engage with existing mesh generation
workflows and as a pragmatic solution, source files can be cached or local files used directly (see figure 5.1).

10.2 Self-consistent boundary representation development

Shingle applies the self-consistent approach to mesh generation developed in Candy [2017]. Within the BRML
description this is emphasized through a central data source definition (seen in figures 9.1 – 9.3), rather than
external sources brought in directly at different levels in the hierarchy and correspondingly in the generation
process (figure 9.1). It is then easier to ensure datasets and their component fields undergo the same pre-
processing to generate high fidelity constraints that are consistent, and a solution spatial discretisation that is
self-consistent.

Data used to construct the spatial domain discretisation is commonly a DEM describing a surface through
perturbations from a reference geoid surface (e.g. to establish a geoid surface boundary representation), but is
not limited to this form, with for example Candy [2017] developing a mesh optimised to the mean track of the
ACC, based on currents in the Southern Ocean.



Chapter 11

Shingle library framework

(a)

1 from shingle import SpatialDiscretisation, Dataset, Boundary
2 # Set up constraints
3 R = SpatialDiscretisation(name=’NorthSea’)
4 R.SetProjection(’UTM’, -3, 52) # alternatively zone=’30U’
5 gebco = Dataset(type=’raster’, source=’opendap’, url=’...’, region=[-12,14,45,62])
6 coast = Boundary(’coast’, id=3)
7 S = R.AddSurface()
8 S.AddBoundaryComponent(source=gebco, contour=’ocean0m’, id=coast)
9 ...

10 M = R.Discretisation()
11 M.Save(’NorthSea.msh’)

1 # Modify boundary representation output projection
2 import pyproj
3 p = pyproj.Proj(’+proj=utm +zone=30U +ellps=WGS84 +datum=WGS84 +units=m")
4 R.SetProjection(p)
5 R.Save(’NorthSea_UTM30U.brml’)

1 # Simple parameter sweep example
2 from shingle import Load
3 R = Load(’Weddell_Sea.brml’)
4 S = R.GetSurface(’SouthernOcean’)
5 B = S.GetBoundaryComponent(’OpenParallel’)
6 for latitude in [float(x) for x in xrange(-75,-65,2)]:
7 B.ExtendToParallel(latitude)
8 B.Save(’Weddell_Sea_and_%.0f.brml’ % latitude)

Figure 11.1: Example interactions with the Shingle Python library LibShingle. (a) Using natural language constructs native
to Shingle, counterparts to BRML entries. (b) Together with objects native to external libraries. (c) Loading, extending and
saving descriptions from BRML.

11.1 Built on standard libraries

The library LibShingle is written in Python and uses standard libraries for operations where possible. It can
simply be used transparently through the Shingle executable to interpret the constraints specified in BRML
file descriptions. For lower level more advanced use building up constraints for more complex setups or in
prototyping natural language objects for automating the inclusion of new geographic features, interaction can
be made directly with the LibShingle library as figure 5.1 illustrates.

Mirroring the BRML constraint description (overviewed in figure 9.1), the library contains natural language
based objects that can be built up in code to construct components of a mesh generation problem, including
boundary representations and element edge length metrics. The mesh problem can then be solved under these
constructed constraints all within a Python context.

LibShingle uses the open source Python shapely library (refer to figure 5.1) to handle polyline imports
and manipulations. The Scientific.IO library is relied on to efficiently process raster NetCDF files. The
homeomorphic projections to the charts required in the mesh generation process [see Candy, 2017], such as ξ
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of (6.1) are interpreted and managed by the Proj.4 Python library pyproj. Geospatial operations can be made
by both high-level Shingle objects, or built up with GDAL operations through its Python osgeo interface.

Although the use of external libraries may require updates to Shingle in the future to maintain compat-
ibility, this is minimal compared to the benefits of using standardised implementations (tenet 9), that have
community effort to ensure ongoing support with operating systems and interaction with other software and
methods.

11.2 Low-level interaction through Python objects

In addition to the ongoing support from standard libraries in high-level use, Shingle has been written to
interact directly with external libraries. Objects such as pyproj projections, GDAL operations, surface and
polyline descriptions can be used interchangeably with LibShingle. An example bringing in a UTM projection
setup externally using the standard library pyproj is shown in figure 11.1(b). This supplements the high-level
text-based natural language definitions available in the BRML, and a route to adding new high-level boundary
representation BRML objects to LibShingle as needed.

11.3 Efficient parameter space exploration

In developing a new application study applying a numerical simulation model, it is common to iterate on a
spatial discretisation until it is optimum and fit for purpose. This involves small changes in the constraints,
exploring parameter space often through a loose bisecting binary search algorithm. This process can be
rigorously implemented and automated with LibShingle, where modifications are guided by the schema
describing the formal grammar of the constraint space through libspud. Figure 11.1(c) illustrates a simple
template to modifying and generating a range of BRML mesh descriptions. The solution mesh discretised
domains can be generated in the same way, and this could further be used to initiate numerical simulation
runs.

This algorithmic formulation of constraints is easily extended to enable complex operations that are difficult
to achieve with other approaches. For example, the loop of figure 11.1(c) is trivially extended to include a
search algorithm exploring a parameter space to converge a domain discretisation on a required total number
of nodes and hence degrees of freedom.

Being an XML based language, the BRML descriptions can also be simply interrogated and modified
directly with standard XML libraries. This interaction is highlighted separately in figure 5.1.

11.4 Example applications of the library

The library has been used to develop spatial discretisations of:

– The global oceans.

– The Southern Ocean, directed by the mean position of the Antarctic Circumpolar Current (ACC).

– Ice and ocean domains of Antarctica, accurately meeting at common interfaces.

– Ice shelf ocean cavities, coupled to ice sheets (including Pine Island Glacier, Filchner-Ronne and the
whole Antarctic region).

– Paleo ocean domains from reconstructed DEMs.

– North Sea coastal seas.

– Greenland and Antarctic ice sheets.

Please see section 1.4 for further details.
The library is additionally used to automatically review tests and collate images of output for a further

verification. Example use can be found in the source files.
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Figure 11.2: Example simulation domain for modelling ocean wave propagation and tsunami inundation in the 2010 Chile
M8.8 earthquake, centred at 35.9◦S 72.7◦W, approximately 100km north of Talcahuano. This domain is relatively simply
described by (∗) in chapter 1 with constraints formally defined by the BRML of figure 9.3 (with some further description
and corresponding formal BRML to constrain spatial resolution). Generation is a simple matter of translating the former
into the latter under the formal grammar, with both being human-readable descriptions. Shingle automatically handles
the details of defining a high fidelity boundary representation Γ′ in (b) from the GEBCO [2014] DEM (a) and, notably here,
includes island features to give a geoid surface representation with non-zero genus [following the approach of Candy,
2017], and further to automatically produce a simulation-ready meshed spatial discretisation Th in (c).

11.5 Jupyter notebooks

Use of Shingle as a library is easily explored using a Jupyter notebook (http://jupyter.org) and several
are provided in the source code as examples in doc/jupyter.

cd doc/jupyter
jupyter notebook

For further details on installing Jupyter, please refer to its documentation at:
http://jupyter.readthedocs.io/en/latest/install.html.

http://jupyter.org
http://jupyter.readthedocs.io/en/latest/install.html
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Chapter 12

Model, method and data interaction and
interoperability

Shingle has been built with modules for high-level interactions, with established tools used in mesh generation.
These are highlighted in figure 5.1, with a core link to the Gmsh library of meshing algorithms. Where possible
interaction is achieved through standardised Python APIs, such as the Triangle Library Python Bindings [2014]
for the Triangle [Shewchuk, 2002] library of Delaunay mesh algorithms. High fidelity boundary representation
can be output in Gmsh format using a specific format writer developed within a collection of writer modules
prepared within Shingle.

Similarly, fields supporting a meshed domain (e.g. initial full-field temperature state) can be output as
unstructured VTK files, using a format writer extending standard VTK libraries. Data is written and stored
efficiently in an XML based data format containing blocks of binary data compressed using the zlib library.

12.1 Model format writers

Models with non-standard data formats are supported through specific format writers. This modular approach
enables new format writers (and readers) to be added as needed. As examples, Shingle includes modules
to prepare initialisation files for the ADCIRC hydrodynamic circulation model and H2Ocean shallow water
equation model.

As well as writing mesh solutions, the output writers are used for validation purposes and in the
general purpose efficient prototyping (tenet 5). Output can be prepared for viewing alongside source data
in geospatially valid context provided by GIS frameworks, with for example the resulting mesh and discrete
bounds overlaid over DEMs directly within GIS [see Candy et al., 2014]. This is useful for a visual evaluation of
conformity, to see how well geographic features are represented. For large discretisations, visualisations tools
designed specifically for efficiently handling large unstructured datasets can be employed, such as Paraview1,
which is directly supported by Shingle using VTK.

Interaction at different levels is important to ensure a hierarchy of automation tenet 7. Particularly
challenging meshing problems can, for example, easily be offloaded to more capable dedicated resources.

For quick visual inspection purposes, Shingle can automatically output an image of the geoid surface mesh
discretisation.

12.2 Input readers

Parallel to the writer modules, Shingle includes readers. These are used to interact with meshing libraries
where needed, loading in output mesh discretisations produced by Gmsh on-the-fly, for example. Additionally
this can be used to support a wider range of data sources and initialisation. Standard data in NetCDF and
shapefile form can be read. Readers here can import more complex heterogeneous data, including GIS projects
with multiple layers containing a wide range of data types, for example.

1http://www.paraview.org
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12.3 Embedding in model codes

As a Python library unifying boundary representation constraint and solution, LibShingle makes it possible to
incorporate complex domain discretisation of real geophysical domains in overarching model control scripts,
which is where development of new cutting-edge models is headed [see for example, Pelupessy et al., 2016;
Rathgeber et al., 2015]. In this way the model supplements the problem constraints sent to LibShingle (see
figure 13.3), dependent on numerical discretisations employed in the simulation model, and the BRML would
be truly independent of specific models, a pure description of the boundary representation, resolution and
identification. Moreover, interaction through the library enables models to handle the output discretisation
directly as the Python objects constructed by Shingle, rather than an intermediate file object.

As Pelupessy et al. [2016] demonstrates, complex multi-model Earth system models can be created and
coupled, and interactively monitored, on potentially a heterogeneous array of computational resources, all
coordinated from a central a Python interface. LibShingle brings domain discretisation in real geometries to
these type of extensible Earth system modelling frameworks.



Chapter 13

Verification and discretisation validation

A suite of verification tests are provided together with Shingle, along with the automated test engine detailed
in section 13.2. A selection of geophysical domain discretisations described in BRML that form part of the test
examples are shown in figures 1.1, 11.2, 13.1 and 13.2. Each test is evaluated using validation tests built into
Shingle and their BRML descriptions, as outlined in section 13.1. The test engine can be used to verify a new
install, and flexibly to support iterative mesh drafting and prototyping (tenet 5).

13.1 Self-validation

Depth (m)
-6000 -4500 -3000 -1500 0 1500 3000

(b)(a) (c)
Element edge-length resolution metric (m)150,00010,000

Figure 13.1: Simulation domain focused on the Caribbean Sea basin. (a) GEBCO [2014] DEM. (b) Surface geoid element
edge-length resolution metric Mh developed as a function of (a). (c) Surface geoid boundary representation Γ′ in blue,
overlaid with multi-scale spatial discretisation Th.

Validation of the mesh generation process is achieved in four ways. Firstly, with reference to the formal
grammar of the constraint space, a degree of self-validation can take place on-the-fly as mesh options are
built up. Following rules described in the schema, only some options are available and certain combinations
permitted. Unlike with namelist descriptions, or ad hoc collections of data, the user does not need to wait
until running Shingle before receiving feedback on option validity. Available options are limited dynamically
following the constraints and option selections. Moreover, with information from the schema on the mesh
generation problem, it is possible to identify which options are required for the problem to be complete. The
creation of a new BRML file immediately requires a name, type and options to be completed for at least one
geoid surface representation and a geoid metric. The GUI highlights which required options remain to be
completed (see figure 9.2). This is particularly useful to users new to mesh generation.

Secondly, the required ‘type’ option classifies the mesh and checks at runtime it is suitable for the intended
simulation. A ‘shallow water’ model requires only a surface geoid discretisation Th for example, whilst a
full three-dimensional mesh is needed in other simulation types. This is a sanity check to ensure the mesh
generation problem is fully constrained for the intended purpose, beyond the fundamental constraints 1 – 5.

Thirdly, a parsing stage following application of a meshing algorithm eliminates commonly found issues in
output mesh descriptions, ensuring structural integrity. For example, additional lone, unconnected boundary
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(e)(d)
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accurate, boundary-conforming, automated robust generation of self-consistent spatial discretisation across scales

Figure 13.2: A selection of further example geophysical domain discretisations straight-forwardly described in BRML
and automatically constructed using Shingle. (a) Th of the Pine Island Glacier ice shelf ocean cavity from ice-bedrock
grounding line extended out to the 105◦W meridian. (b) The Amundsen Sea region in West Antarctica extended out to
the 64◦S parallel. (c) The Southern Ocean Antarctic continent landmasses, from ice grounding line to 50◦S parallel, built
from a high fidelity boundary representation containing 348 automatically identified islands. (d) The full T of the global
oceans, with a radial scaling of 300 to exaggerate the vertical extent of the discretised shell and land regions shaded green.
(e) Zoomed in regions focusing on the complex Canadian Arctic Archipelago west of Greenland around Ellesmere and
Baffin island. (a)–(c) are generated from the GEBCO [2014] DEM and presented under a orthographic projection centred
on 90◦S, and (d)–(e) from RTopo [Timmermann et al., 2010] and viewed in a Cartesian frame. These contain a multi-scale
of spatial resolutions, with element edge-lengths parallel to the geoid in these examples, specified throughMh, ranging
from 2km to 500km. Vertical layers in (d), specified through Mv , vary from 2m to 500m, under differing regimes in a
generalised hybrid coordinate system described further in Candy [2017], and leads to a mesh containing 8,778,728 elements
and 35,114,912 spatial degrees of freedom under its discontinuous Galerkin finite element discretisation. Along with other
examples presented in figure 1.1(c)-(g), these are part of the test suite accompanying the library.

elements are removed in this step to ensure the discretised output mesh is as expected. Meshing algorithms do
not usually possess information on underlying numerical discretisations, and it is also possible elements are
generated that ‘tied’ to boundary conditions, with no independent free unknowns. This type of problem in the
spatial discretisation is often difficult to identify, only being picked up at runtime, or through careful visual
inspection. This parsing is an opportunity to identify and process these at this stage. Numerical simulation
codes are sometimes accompanied with standalone mesh checking tools to support initialisation stages (e.g.
the MechChecker.F90 utility for the ADCIRC model), and visual interfaces can be used for manual inspection
and editing, such as the Show Me tool provided alongside Triangle [Shewchuk, 2002] and the GUI of Gmsh
[Geuzaine and Remacle, 2009]. This is part of the mesh generation process and, if possible, better handled
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Figure 13.3: Framework for generalised spatial domain discretisation for geophysical model simulations. A formal
spatial domain constraint description (a model-independent grouping of high-level directives describing key geospatial
boundaries and features, required spatial resolution and source datasets) for a specific study (e.g. the geography to include
in a CMIP intercomparison study) is joined with specific constraints from a simulation model, depending on its internal
numerical discretisations and field representations (e.g. following Gridspec [Balaji et al., 2007], or a UFL description [Alnæs
et al., 2014]). These constraints are used by the interpreter Shingle to produce, in a robust, automated, repeatable process, a
model-specific mesh spatial discretisation. Moreover, the latter description is further used to specify numerical simulation
output representation (as CMIP uses Gridspec).

automatically following tenet 7, as proposed.

Lastly, the fourth approach to validation is through explicitly defined expected boundary representation
and discretised mesh characteristics. Like the initial consistent approach of Candy [2017], the intermediate
high fidelity boundary representation is compared at a raw level. Being a deterministic process, deviations
are only expected as a result of depending on Shingle library version and behaviour, source data and potential
OPeNDAP response, machine precision and the originating BRML description. At this stage of the meshing
process, this has been supplemented with a test on the area within the bounds of the high fidelity geoid
boundary representation Γ′.

On the discretised output, the tests include simple lower and upper bounds on output geoid mesh node
and element numbers, the number of boundary elements, and element circumspheres to check adherence to
metric constraints. The degree of representation is examined comparing the high fidelity geoid boundary
representation surface area to its corresponding discretised form. Boundary complexity is measured through
the overall Minkowski fractal dimension.

This provides a means for users to easily specify what should be expected in the discretised output, to
ensure the accuracy required in tenets 1 – 3. Testing built in to the mesh generation process, further automates
the process. It is also important to ensure tenet 8: provenance, that the solution mesh is the same (within
prescribed tolerances) as that that has been generated in the past, and potentially by others on different
systems.

A self-validating description provides tenet 9: a standardisation of interaction with the descriptions
themselves. Users can immediately begin building on and improving the work shared by others, having
been able to check the descriptions give a solution expected by the creator. This eliminates ad hoc or purely
qualitative measures of conformity and reinforces the provenance record of the mesh generation process.

This is important when these then form key components of critical studies, such as the coupled climate and
Earth system models run for internationally coordinated model intercomparisons, such as CMIP and CORE
[Griffies et al., 2014; Meehl et al., 2007; Taylor et al., 2012], that form the basis of reports compiled by the IPCC.

Models containing unstructured meshes with conforming boundaries are now starting to be used in such
large-scale international research efforts [e.g. FESOM, Sidorenko et al., 2014]. This approach provides the full
provenance, reproducibility and complete constraining descriptions of the significantly more complex spatial
discretisations supported by these models.
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13.2 Continuous verification

To ensure Shingle as a whole continues to behave as expected for all users and on all systems, it contains
a verification test engine. This processes a suite of key meshing problems, which are then automatically
evaluated following the validation tests defined in their BRML description. Since the BRML descriptions are
self-validating, the addition of new tests to the suite is simply a matter of adding the problem description file
to a test folder of the source code. Testing is often a secondary consideration to new feature implementation,
so it is important the extension of testing suite is as simple as possible.

This can simply be run at the time of a new installation, following the upgrade of required libraries or the
operating system, or routinely as part of a commit-hook buildbot with dedicated resources to continuously
verify new code pushed to a Shingle development code repository [see, for example, Farrell et al., 2011]. Being
built on standard libraries, it could further form part of an automated wider system framework validation, for
the above climate intercomparison projects, for example, reproducing the entire process from initialisation
to post-processing, on demand. Alternatively, the engine can be used to drive an efficient drafting and
prototyping workflow (tenet 5) with updates to mesh generation problems automatically processed and tested,
to support an iterative domain discretisation process.

The Shingle project is continuously verified on local systems and additionally online, where new code
pushed to https://github.com/shingleproject/Shingle is automatically tested on Travis (https:
//travis-ci.com) with reports available on https://travis-ci.org/adamcandy/Shingle. An
indication of the status of this continuous verification build is additionally presented on the project and Github
pages.

https://github.com/shingleproject/Shingle
https://travis-ci.com
https://travis-ci.com
https://travis-ci.org/adamcandy/Shingle
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Summary

This library is a high-level abstraction to mesh generation for domains containing complex, fractal-like
coastlines that characterise those in numerical simulations of geophysical dynamics, together with a compact,
shareable and necessarily complete description of the domain discretisation.

The approach is designed to be accessible to a wide range of users and applications. This begins at a simple
standalone GUI-driven one way workflow, where users are guided through the option parameters required
to constrain the domain discretisation problem. Options are presented in context through the hierarchical
tree structure with documentation automatically provided alongside. Moreover, the use of a human readable
XML format and introduction of high-level natural language based geographical objects give BRML problem
constraint descriptions that closely follow those presented in literature and shared by scientists. The example
built up from the description (∗), to BRML in figures 9.2 and 9.3, followed by the construction of the high
fidelity boundary representation and resulting spatial discretisation shown in figure 11.2, highlights how
the problem of generating a domain bounded by a complex coastline defined by a depth contour and three
orthodromes, common in tsunami modelling studies, is trivially constructed and solved using Shingle.

This is easily built on and extended to larger and more complex problems. High-level objects automate
processing of multiple, potentially complex geospatial features. BRML descriptions are easily shared and
XML sections cut and pasted to combine descriptions and build up complexity. New high-level objects
and processing can be prototyped directly in Python to later join the core LibShingle operations library.
Corresponding natural language based objects are available through the Python API, meaning domain
discretisation can be achieved directly and purely in native Python code, for complex setups, direct integration
with numerical simulation codes, or interactive sessions or Jupyter notebooks1. Both the BRML file descriptor
and modular LibShingle are extensible.

Extending the tsunami example shown in figure 11.2, this robust and automated approach could form
part of a real time warning system using unstructured spatial discretisation, with a domain created on-the-fly,
centred around the earthquake epicentre, in a direct response to measurement by GPS seismic monitors.

Recognising the domain discretisation process is becoming more challenging and more difficult to
document completely, such that others can reproduce, has been central to steering this approach. Progress
is focused on the nine tenets of geophysical mesh generation summarised in table 7.1. One result of this is
that Shingle treats the mesh generation as a model problem. Strategies from numerical simulation model
development have been adopted and modified to formalise the description of the heterogeneous geophysical
mesh generation constraints, such that they provide an accurate and complete description (tenets 1 – 3) in a
standardised language-based XML form (tenet 9). This compact text-based description easily affords a record
of changes in the development of a domain discretisation (tenet 8) and through the BRML grammar ensures it
is always a complete description and therefore reproducible. The model-based approach manages the range
types of parameters (which have diversified with the use of flexible unstructured discretisations) and supports
users in their preparation, to allow for efficient drafting and prototyping (tenet 5). With options managed in a
structured hierarchical tree, complex discretisations can be built up logically (tenet 7) and scaled up (tenet 6).

The creation of the BRML file boundary representation description is not intended to reinvent standards.
It is not a new data descriptor, for orientated vector paths or two-dimensional raster data, for example. There
exist standards already that tackle these challenges well. It is rather a new problem descriptor, like those for
Fluidity [Piggott et al., 2008] and the TerraFERMA model of Wilson et al. [2016], for fully describing the mesh
generation problem specifically for geophysical model domains, following the approach that this requires
solving the same types of challenges involved in numerical model setup, that makes significant progress in

1http://jupyter.org

47

http://jupyter.org


48 Shingle Manual Chapter 14. Summary

meeting the tenets of table 7.1.
The consistent approach of Candy [2017] is adopted, with an emphasis on producing a self-consistent

high fidelity description and resulting output domain discretisation. Consistency is additionally encouraged
through a centralised definition of the source data and processing in the BRML description (see figures 9.1 –
9.3). Use of decentralised, distributed datasets, efficiently accessed using OPeNDAP, ensures the discretisation
uses exactly the same source data on every processing instance.

Verification and discretisation validation is achieved at multiple points throughout the process. The formal
grammar of the BRML, imposed by the schema, enforces valid inputs and provides initial option checking.
This framework and interaction with the schema using the libspud library additionally enables new self-
validating user interfaces to be written. With expected mesh validation measures included in the BRML
descriptions, discretisations are automatically validated and continuous verification of the library is easily
obtained.

With the dependable, robustly verified library LibShingle for high-level abstractions for geophysical mesh
generation, it is easily applied to develop interactions with other frameworks and models, such as GIS, as
described in Candy et al. [2014]. Critically, with the standalone LibShingle library, these are easier to maintain
and better insulated to API changes in other codes.

It does not immediately solve the mesh generation constraint problem in general, since numerical
simulation models use a wide range of mesh types and numerical discretisations. It has however, been
designed with this in mind, with low-level structures that are extensible, to accommodate additional mesh
types for example, and high-level constructs that are applicable to all geophysical models. Arguably the
‘holy grail’ of domain initialisation for geophysical models, characterised by the constraints 1 – 5 following
the development figure 9.1, is a grouping of high-level directives describing bounds (including key geospatial
features to capture), required spatial resolution and source datasets that can be interpreted by any model,
each dealing with the discretisation depending on the field representations within the model (figure 13.3).
Shingle provides an extensible platform to achieve this, focusing on general, natural language based, model-
independent descriptions of domain descriptions, that can be shared and used for different models. LibShingle
additionally provides a means to interpret these descriptions such that this part of the process can be included
in numerical simulation code, with the BRML constraints supplemented by those imposed by the simulation
model, such as specific numerical discretisation choice (e.g. to use hexagonal over triangular prism elements),
or ensuring a minimum degree of representation in maintained between bounds (e.g. within narrow river
channel networks).
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Code availability, distribution and
licensing

The Shingle computational research software library, developed as part of this study, is available at https://
github.com/shingleproject/Shingle, with further details presented at https://www.shingleproject.
org. This includes a suite of example domain discretisation BRML descriptions and the verification test engine
presented in chapter 13.

All components of the Shingle package which have been under continued development since 2011 are free
software, being released under the GNU Lesser General Public License version 3.0. Full details of the license,
including the compatible copyright notices of third party routines included in the package, are included in
COPYING in the source distribution.
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Chapter 17

Verification test suite spatial discretisation
solutions

The verification test engine can automatically generate an image of each test. Where provided, this follows
the view orientation described in the option path /output/orientation. These are useful for quick visual
inspection, in addition to the formal verification metrics examined as part of each test.

These images are collected by a Python code which links directly to the Shingle library to read each of the
test BRML files to locate the output mesh images. This additionally reads the spatial discretisation problem
name and comments.

This itself is an example application of the Shingle library to interrogate spatial discretisation problem
descriptions.

The example outputs and their descriptions are presented below.
Note the mesh images for all active tests can be generated by:

make testimage

in the route source folder, or using the Shingle executable:

shingle -t path_to_test_folder -image

53
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Figure 17.1: Amundsen Sea. Image of output spatial discretisation automatically generated by the Shingle verification
test engine. This test problem BRML description contains the following comment: Use the RTopo dataset, 50S version
(RTopo105b 50S.nc), selecting the region [-130.0:-85.0,-85.0:-60.0] for the Amundsen Sea, extended up to the 64S parallel.
Ice shelf ocean cavities are included.
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Figure 17.2: Amundsen Sea fine. Image of output spatial discretisation automatically generated by the Shingle verification
test engine. This test problem BRML description contains the following comment: Use the RTopo dataset, 50S version
(RTopo105b 50S.nc), selecting the region [-130.0:-85.0,-85.0:-60.0] for the Amundsen Sea, extended up to the 64S parallel.
Ice shelf ocean cavities are included.
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Figure 17.3: Antarctica all. Image of output spatial discretisation automatically generated by the Shingle verification test
engine. This test problem BRML description contains the following comment: Use the RTopo dataset (RTopo105b.nc),
considering all land masses up to a latitude of 60S, extended up to the 50S parallel. Ice shelf ocean cavities are included.
Spatial representation is specified along the open ocean boundary to ensure it is well-represented.
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Figure 17.4: Antarctica main landicemass. Image of output spatial discretisation automatically generated by the Shingle
verification test engine. This test problem BRML description contains the following comment: Use the RTopo dataset
(RTopo105b.nc), considering all land masses up to a latitude of 60S, extended up to the 60S parallel. Only the main largest
landmass is included. Ice shelf ocean cavities are excluded. Spatial representation is specified along the open ocean
boundary to ensure it is well-represented.
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Figure 17.5: Antarctica main landicemass 30s. Image of output spatial discretisation automatically generated by the Shingle
verification test engine. This test problem BRML description contains the following comment: Use the RTopo dataset
(RTopo105b.nc), considering all land masses up to a latitude of 60S, extended up to the 30S parallel. Only the main largest
landmass is included. Ice shelf ocean cavities are excluded. Spatial representation is specified along the open ocean
boundary to ensure it is well-represented.
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Figure 17.6: Antarctica main landicemass global. Image of output spatial discretisation automatically generated by the
Shingle verification test engine. This test problem BRML description contains the following comment: Use the RTopo
dataset (RTopo105b.nc), considering all land masses up to a latitude of 60S, within a global domain. Only the main largest
landmass is included. Ice shelf ocean cavities are excluded. Spatial representation is specified along the open ocean
boundary to ensure it is well-represented. Minimum edge-length increased to 100km from 10km, minimum proximity to
400km from 40km, to reduce time for discretisation in verification test.
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Figure 17.7: Antarctica main landmass. Image of output spatial discretisation automatically generated by the Shingle
verification test engine. This test problem BRML description contains the following comment: Use the RTopo dataset
(RTopo105b.nc), considering all land masses up to a latitude of 60S, extended up to the 60S parallel. Only the main
largest landmass is included. Ice shelf ocean cavities are included. Spatial representation is specified along the open
ocean boundary to ensure it is well-represented.
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Figure 17.8: Caribbean. Image of output spatial discretisation automatically generated by the Shingle verification test
engine. This test problem BRML description contains the following comment: Domain of the Caribbean Sea ocean basin,
extended out to the 40W meridian.

Figure 17.9: Caribbean main coastline. Image of output spatial discretisation automatically generated by the Shingle
verification test engine. This test problem BRML description contains the following comment: Domain of the Caribbean
Sea ocean basin, extended out to the 40W meridian. Developed from GEBCO. Contains only the main largest coastline.
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Figure 17.10: Chile Pacific wide. Image of output spatial discretisation automatically generated by the Shingle verification
test engine. This test problem BRML description contains the following comment: South East Pacific ocean up to the
Chilean coastline. Developed from GEBCO, on the subset region 128W to 70W, 40S to 20N. In a latitude-longitude WGS84
projection.
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Figure 17.11: Chile Pacific wider. Image of output spatial discretisation automatically generated by the Shingle verification
test engine. This test problem BRML description contains the following comment: South East Pacific ocean up to the
Chilean coastline. Developed from GEBCO, on the subset region 128W to 70W, 40S to 20N. In a latitude-longitude WGS84
projection.
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Figure 17.12: Chile Talcahuano. Image of output spatial discretisation automatically generated by the Shingle verification
test engine. This test problem BRML description contains the following comment: Example simulation domain for
modelling ocean wave propagation and tsunami inundation in the 2010 Chile M8.8 earthquake, centred at 35.9S 72.7W,
approximately 100km north of Talcahuano. This is bounded by the 0m depth coastline from 32S to 40S, extended along
parallels to the 77W meridian, in a latitude-longitude WGS84 projection.
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Figure 17.13: Filchner-Ronne. Image of output spatial discretisation automatically generated by the Shingle verification
test engine. This test problem BRML description contains the following comment: Use the RTopo dataset, 50S version
(RTopo105b 50S.nc), selecting the Filchner-Ronne ice sheet ocean cavity region extended up to the 65S parallel. Ice shelf
ocean cavities are included.
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Figure 17.14: Filchner-Ronne back. Image of output spatial discretisation automatically generated by the Shingle
verification test engine. This test problem BRML description contains the following comment: Use the RTopo dataset,
50S version (RTopo105b 50S.nc), selecting the very back of the Filchner-Ronne ice sheet ocean cavity bounded by part of
the grounding line, extended up to the 83S parallel. Ice shelf ocean cavities are included.
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Figure 17.15: Pine Island Glacier. Image of output spatial discretisation automatically generated by the Shingle verification
test engine. This test problem BRML description contains the following comment: Use the RTopo dataset, 50S version
(RTopo105b 50S.nc), selecting the region [-103:-99.0,-75.5:-73.9] for the Pine Island Glacier ice shelf ocean cavity, extended
out to the 105W meridian. Ice shelf ocean cavities are included.
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Figure 17.16: Shingle text. Image of output spatial discretisation automatically generated by the Shingle verification test
engine. This test problem BRML description contains the following comment: A monochromatic raster image with the
word ‘Shingle’ and five small islands developed as a mask.
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