forked from fieldtrip/fieldtrip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ft_freqstatistics.m
228 lines (201 loc) · 8.95 KB
/
ft_freqstatistics.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
function [stat] = ft_freqstatistics(cfg, varargin)
% FT_FREQSTATISTICS computes significance probabilities and/or critical
% values of a parametric statistical test or a non-parametric permutation
% test.
%
% Use as
% [stat] = ft_freqstatistics(cfg, freq1, freq2, ...)
% where the input data is the result from FT_FREQANALYSIS, FT_FREQDESCRIPTIVES
% or from FT_FREQGRANDAVERAGE.
%
% The configuration can contain the following options for data selection
% cfg.channel = Nx1 cell-array with selection of channels (default = 'all'),
% see FT_CHANNELSELECTION for details
% cfg.latency = [begin end] in seconds or 'all' (default = 'all')
% cfg.frequency = [begin end], can be 'all' (default = 'all')
% cfg.avgoverchan = 'yes' or 'no' (default = 'no')
% cfg.avgovertime = 'yes' or 'no' (default = 'no')
% cfg.avgoverfreq = 'yes' or 'no' (default = 'no')
% cfg.parameter = string (default = 'powspctrm')
%
% If you specify cfg.correctm='cluster', then the following is required
% cfg.neighbours = neighbourhood structure, see FT_PREPARE_NEIGHBOURS
%
% Furthermore, the configuration should contain
% cfg.method = different methods for calculating the significance probability and/or critical value
% 'montecarlo' get Monte-Carlo estimates of the significance probabilities and/or critical values from the permutation distribution,
% 'analytic' get significance probabilities and/or critical values from the analytic reference distribution (typically, the sampling distribution under the null hypothesis),
% 'stats' use a parametric test from the MATLAB statistics toolbox,
% 'crossvalidate' use crossvalidation to compute predictive performance
%
% cfg.design = Nxnumobservations: design matrix (for examples/advice, please see the Fieldtrip wiki,
% especially cluster-permutation tutorial and the 'walkthrough' design-matrix section)
%
% The other cfg options depend on the method that you select. You
% should read the help of the respective subfunction FT_STATISTICS_XXX
% for the corresponding configuration options and for a detailed
% explanation of each method.
%
% To facilitate data-handling and distributed computing you can use
% cfg.inputfile = ...
% cfg.outputfile = ...
% If you specify one of these (or both) the input data will be read from a *.mat
% file on disk and/or the output data will be written to a *.mat file. These mat
% files should contain only a single variable, corresponding with the
% input/output structure.
%
% See also FT_FREQANALYSIS, FT_FREQDESCRIPTIVES, FT_FREQGRANDAVERAGE
% Copyright (C) 2005-2014, Robert Oostenveld & Jan-Mathijs Schoffelen
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar varargin
ft_preamble provenance varargin
ft_preamble trackconfig
ft_preamble randomseed
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'required', {'method', 'design'});
cfg = ft_checkconfig(cfg, 'renamed', {'approach', 'method'});
cfg = ft_checkconfig(cfg, 'forbidden', {'transform'});
cfg = ft_checkconfig(cfg, 'forbidden', {'trials'}); % this used to be present until 24 Dec 2014, but was deemed too confusing by Robert
% check if the input data is valid for this function
for i=1:length(varargin)
varargin{i} = ft_checkdata(varargin{i}, 'datatype', 'freq', 'feedback', 'no');
end
% set the defaults
cfg.parameter = ft_getopt(cfg, 'parameter'); % default is set below
cfg.correctm = ft_getopt(cfg, 'correctm');
cfg.channel = ft_getopt(cfg, 'channel', 'all');
cfg.latency = ft_getopt(cfg, 'latency', 'all');
cfg.frequency = ft_getopt(cfg, 'frequency', 'all');
cfg.avgoverchan = ft_getopt(cfg, 'avgoverchan', 'no');
cfg.avgovertime = ft_getopt(cfg, 'avgovertime', 'no');
cfg.avgoverfreq = ft_getopt(cfg, 'avgoverfreq', 'no');
if isempty(cfg.parameter)
if isfield(varargin{1}, 'powspctrm')
cfg.parameter = 'powspctrm';
end
end
% ensure that the data in all inputs has the same channels, time-axis, etc.
tmpcfg = keepfields(cfg, {'frequency', 'avgoverfreq', 'latency', 'avgovertime', 'channel', 'avgoverchan', 'parameter', 'showcallinfo', 'select', 'nanmean'});
[varargin{:}] = ft_selectdata(tmpcfg, varargin{:});
% restore the provenance information
[cfg, varargin{:}] = rollback_provenance(cfg, varargin{:});
if strcmp(cfg.correctm, 'cluster') && length(varargin{1}.label)>1
% neighbours are required for clustering with multiple channels
tmpcfg = keepfields(cfg, {'neighbours', 'neighbourdist', 'channel', 'elec', 'grad', 'opto', 'showcallinfo'});
cfg.neighbours = ft_prepare_neighbours(tmpcfg);
end
dimord = getdimord(varargin{1}, cfg.parameter);
dimtok = tokenize(dimord, '_');
dimsiz = getdimsiz(varargin{1}, cfg.parameter, numel(dimtok));
rptdim = find( strcmp(dimtok, 'subj') | strcmp(dimtok, 'rpt') | strcmp(dimtok, 'rpttap'));
datdim = find(~strcmp(dimtok, 'subj') & ~strcmp(dimtok, 'rpt') & ~strcmp(dimtok, 'rpttap'));
datsiz = dimsiz(datdim);
% pass these fields to the low-level functions, they should be removed further down
cfg.dimord = sprintf('%s_', dimtok{datdim});
cfg.dimord = cfg.dimord(1:end-1); % remove trailing _
cfg.dim = dimsiz(datdim);
if isempty(rptdim)
% repetitions are across multiple inputs
dat = nan(prod(dimsiz), length(varargin));
for i=1:length(varargin)
tmp = varargin{i}.(cfg.parameter);
dat(:,i) = tmp(:);
end
else
% repetitions are within inputs
dat = cell(size(varargin));
for i=1:length(varargin)
tmp = varargin{i}.(cfg.parameter);
if rptdim~=1
% move the repetitions to the first dimension
tmp = permute(tmp, [rptdim datdim]);
end
dat{i} = reshape(tmp, size(tmp,1), []);
end
dat = cat(1, dat{:}); % repetitions along 1st dimension
dat = dat'; % repetitions along 2nd dimension
end
if size(cfg.design,2)~=size(dat,2)
cfg.design = transpose(cfg.design);
end
design = cfg.design;
% fetch function handle to the intermediate-level statistics function
statmethod = ft_getuserfun(cfg.method, 'statistics');
if isempty(statmethod)
ft_error('could not find the corresponding function for cfg.method="%s"\n', cfg.method);
else
fprintf('using "%s" for the statistical testing\n', func2str(statmethod));
end
% check that the design completely describes the data
if size(dat,2) ~= size(cfg.design,2)
ft_error('the length of the design matrix (%d) does not match the number of observations in the data (%d)', size(cfg.design,2), size(dat,2));
end
% determine the number of output arguments
try
% the nargout function in MATLAB 6.5 and older does not work on function handles
num = nargout(statmethod);
catch
num = 1;
end
% perform the statistical test
if num>1
[stat, cfg] = statmethod(cfg, dat, design);
cfg = rollback_provenance(cfg); % ensure that changes to the cfg are passed back to the right level
else
[stat] = statmethod(cfg, dat, design);
end
if ~isstruct(stat)
% only the probability was returned as a single matrix, reformat into a structure
stat = struct('prob', stat);
end
% the statistical output contains multiple elements, e.g. F-value, beta-weights and probability
fn = fieldnames(stat);
for i=1:length(fn)
if numel(stat.(fn{i}))==prod(datsiz)
% reformat into the same dimensions as the input data
stat.(fn{i}) = reshape(stat.(fn{i}), [datsiz 1]);
end
end
% describe the dimensions of the output data
stat.dimord = cfg.dimord;
% copy the descripive fields into the output
stat = copyfields(varargin{1}, stat, {'freq', 'time', 'label', 'elec', 'grad', 'opto'});
% these were only present to inform the low-level functions
cfg = removefields(cfg, {'dim', 'dimord'});
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble randomseed
ft_postamble trackconfig
ft_postamble previous varargin
ft_postamble provenance stat
ft_postamble history stat
ft_postamble savevar stat