forked from rwth-i6/returnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MetaDataset.py
807 lines (695 loc) · 31 KB
/
MetaDataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
from __future__ import print_function
from Dataset import Dataset, DatasetSeq, init_dataset, convert_data_dims
from CachedDataset2 import CachedDataset2
from Util import NumbersDict, load_json
from Log import log
from random import Random
import numpy
class MetaDataset(CachedDataset2):
"""
This wraps around one or multiple datasets and might provide extra information.
Every dataset is expected to provide the the same sequences, where the sequence list
is given by a file.
"""
def __init__(self,
seq_list_file, seq_lens_file,
datasets,
data_map, data_dims,
data_dtypes=None,
window=1, **kwargs):
"""
:param str seq_list_file: filename. line-separated
:param str seq_lens_file: filename. json. dict[str,dict[str,int]], seq-tag -> data-key -> len
:param dict[str,dict[str]] datasets: dataset-key -> dataset-kwargs. including keyword 'class' and maybe 'files'
:param dict[str,(str,str)] data_map: self-data-key -> (dataset-key, dataset-data-key).
Should contain 'data' as key. Also defines the target-list, which is all except 'data'.
:param dict[str,(int,int)] data_dims: self-data-key -> data-dimension, len(shape) (1 ==> sparse repr).
:param dict[str,str] data_dtypes: self-data-key -> dtype. automatic if not specified
"""
assert window == 1 # not implemented
super(MetaDataset, self).__init__(**kwargs)
assert self.shuffle_frames_of_nseqs == 0 # not implemented. anyway only for non-recurrent nets
self.seq_list_original = open(seq_list_file).read().splitlines()
self.tag_idx = {tag: idx for (idx, tag) in enumerate(self.seq_list_original)}
self._num_seqs = len(self.seq_list_original)
self.data_map = data_map
self.dataset_keys = set([m[0] for m in self.data_map.values()]); ":type: set[str]"
self.data_keys = set(self.data_map.keys()); ":type: set[str]"
assert "data" in self.data_keys
self.target_list = sorted(self.data_keys - ["data"])
data_dims = convert_data_dims(data_dims)
self.data_dims = data_dims
assert "data" in data_dims
for key in self.target_list:
assert key in data_dims
self.num_inputs = data_dims["data"][0]
self.num_outputs = data_dims
self.data_dtypes = {data_key: _select_dtype(data_key, data_dims, data_dtypes) for data_key in self.data_keys}
if seq_lens_file:
seq_lens = load_json(filename=seq_lens_file)
assert isinstance(seq_lens, dict)
# dict[str,NumbersDict], seq-tag -> data-key -> len
self._seq_lens = {tag: NumbersDict(l) for (tag, l) in seq_lens.items()}
else:
self._seq_lens = None
if self._seq_lens:
self._num_timesteps = sum([self._seq_lens[s] for s in self.seq_list_original])
else:
self._num_timesteps = None
# Will only init the needed datasets.
self.datasets = {key: init_dataset(datasets[key]) for key in self.dataset_keys}
def init_seq_order(self, epoch=None, seq_list=None):
need_reinit = self.epoch is None or self.epoch != epoch
super(MetaDataset, self).init_seq_order(epoch=epoch, seq_list=seq_list)
if not need_reinit:
return False
if seq_list:
seq_index = [self.tag_idx[tag] for tag in seq_list]
else:
if self._seq_lens:
get_seq_len = lambda s: self._seq_lens[self.seq_list_original[s]]["data"]
else:
get_seq_len = None
seq_index = self.get_seq_order_for_epoch(epoch, self.num_seqs, get_seq_len)
self.seq_list_ordered = [self.seq_list_original[s] for s in seq_index]
for dataset in self.datasets.values():
dataset.init_seq_order(epoch=epoch, seq_list=self.seq_list_ordered)
return True
def _load_seqs(self, start, end):
for dataset in self.datasets.values():
dataset.load_seqs(start, end)
for seq_idx in range(start, end):
self._check_dataset_seq(dataset, seq_idx)
super(MetaDataset, self)._load_seqs(start=start, end=end)
def _check_dataset_seq(self, dataset, seq_idx):
"""
:type dataset: Dataset
:type seq_idx: int
"""
dataset_seq_tag = dataset.get_tag(seq_idx)
self_seq_tag = self.get_tag(seq_idx)
assert dataset_seq_tag == self_seq_tag
def _get_data(self, seq_idx, data_key):
"""
:type seq_idx: int
:type data_key: str
:rtype: numpy.ndarray
"""
dataset_key, dataset_data_key = self.data_map[data_key]
dataset = self.datasets[dataset_key]; ":type: Dataset"
return dataset.get_data(seq_idx, dataset_data_key)
def _collect_single_seq(self, seq_idx):
"""
:type seq_idx: int
:rtype: DatasetSeq
"""
seq_tag = self.seq_list_ordered[seq_idx]
features = self._get_data(seq_idx, "data")
targets = {target: self._get_data(seq_idx, target) for target in self.target_list}
return DatasetSeq(seq_idx=seq_idx, seq_tag=seq_tag, features=features, targets=targets)
def get_seq_length(self, sorted_seq_idx):
if self._seq_lens:
return self._seq_lens[self.seq_list_ordered[sorted_seq_idx]]
return super(MetaDataset, self).get_seq_length(sorted_seq_idx)
def get_tag(self, sorted_seq_idx):
return self.seq_list_ordered[sorted_seq_idx]
def get_target_list(self):
return self.target_list
def get_data_dtype(self, key):
dtype = self.data_dtypes[key]
if self.added_data:
assert super(MetaDataset, self).get_data_dtype(key) == dtype
return dtype
class ClusteringDataset(CachedDataset2):
"""
This is a special case of MetaDataset,
with one main subdataset, and we add a cluster-idx for each seq.
We will read the cluster-map (seq-name -> cluster-idx) here directly.
"""
def __init__(self, dataset, cluster_map_file, n_clusters, single_cluster=False, **kwargs):
super(CachedDataset2, self).__init__(**kwargs)
self.dataset = init_dataset(dataset)
self.n_clusters = n_clusters
self.single_cluster = single_cluster
self.cluster_map = self._load_cluster_map(cluster_map_file)
self.cluster_idx_dtype = "int32"
self.num_inputs = self.dataset.num_inputs
self.num_outputs = self.dataset.num_outputs.copy()
self.num_outputs["cluster_idx"] = [n_clusters, 1] # will be a single int32
self.expected_load_seq_start = 0
def _load_cluster_map(self, filename):
ls = open(filename).read().splitlines()
assert "<coprus-key-map>" in ls[:3], "We expect the Sprint XML format."
# It has lines like: <map-item key="CHiME3/dt05_bth/M03_22GC010M_BTH.CH5/1" value="0"/>
import re
pattern = re.compile('<map-item key="(.*)" value="(.*)"/>')
cluster_map = {} # type: dict[str,int], seq-name -> cluster-idx
for l in ls:
if not l.startswith("<map-item"):
continue
seq_name, cluster_idx_s = pattern.match(l).groups()
cluster_idx = int(cluster_idx_s)
assert 0 <= cluster_idx < self.n_clusters
cluster_map[seq_name] = cluster_idx
return cluster_map
def init_seq_order(self, epoch=None, seq_list=None):
self.dataset.init_seq_order(epoch=epoch, seq_list=seq_list)
return super(ClusteringDataset, self).init_seq_order(epoch=epoch, seq_list=seq_list)
def get_data_keys(self):
return self.dataset.get_data_keys() + ["cluster_idx"]
def get_data_dtype(self, key):
if key == "cluster_idx": return self.cluster_idx_dtype
return self.dataset.get_data_dtype(key)
@property
def num_seqs(self):
return self.dataset.num_seqs
def is_less_than_num_seqs(self, n):
return self.dataset.is_less_than_num_seqs(n)
def _load_seqs(self, start, end):
self.dataset.load_seqs(start, end)
super(ClusteringDataset, self)._load_seqs(start=start, end=end)
def get_tag(self, seq_idx):
return self.dataset.get_tag(seq_idx)
def _collect_single_seq(self, seq_idx):
seq_name = self.get_tag(seq_idx)
#print >> log.v5, "ClusteringDataset: _collect_single_seq: seq_name", seq_name
data = {key: self.dataset.get_data(seq_idx=seq_idx, key=key) for key in self.dataset.get_data_keys()}
data["cluster_idx"] = numpy.array([self.cluster_map[seq_name]], dtype=self.cluster_idx_dtype)
return DatasetSeq(seq_idx=seq_idx, features=data["data"], targets=data)
def _generate_batches(self, recurrent_net, batch_size, max_seqs=-1, seq_drop=0.0, max_seq_length=None, used_data_keys=None):
import sys
if max_seq_length is None: max_seq_length = sys.maxsize
if batch_size == 0: batch_size = sys.maxsize
assert batch_size > 0
if max_seqs == -1: max_seqs = float('inf')
assert max_seqs > 0
assert seq_drop <= 1.0
chunk_size = self.chunk_size
chunk_step = self.chunk_step
from EngineBatch import Batch
batch = Batch()
last_seq_idx = None
for seq_idx, t_start, t_end in self.iterate_seqs(chunk_size=chunk_size, chunk_step=chunk_step, used_data_keys=used_data_keys):
if self.single_cluster:
if last_seq_idx is not None and last_seq_idx != seq_idx:
last_seq_name = self.get_tag(last_seq_idx)
seq_name = self.get_tag(seq_idx)
if self.cluster_map[last_seq_name] != self.cluster_map[seq_name]:
print("ClusteringDataset::_generate_batches", last_seq_idx, "is not", seq_idx, file=log.v5)
yield batch
batch = Batch()
length = t_end - t_start
if max_seq_length < 0 and length['classes'] > -max_seq_length:
continue
elif max_seq_length > 0 and length.max_value() > max_seq_length:
continue
if length.max_value() > batch_size:
print("warning: sequence length (%i) larger than limit (%i)" % (length.max_value(), batch_size), file=log.v4)
if self.rnd_seq_drop.random() < seq_drop:
continue
dt, ds = batch.try_sequence_as_slice(length)
if ds > 1 and ((dt * ds).max_value() > batch_size or ds > max_seqs):
yield batch
batch = Batch()
print("batch add slice length", length, file=log.v5)
batch.add_sequence_as_slice(seq_idx=seq_idx, seq_start_frame=t_start, length=length)
last_seq_idx = seq_idx
if batch.get_all_slices_num_frames() > 0:
yield batch
class ConcatDataset(CachedDataset2):
"""
This concatenates multiple datasets. They are expected to provide the same data-keys and data-dimensions.
It will go through the datasets always in order.
"""
def __init__(self, datasets, **kwargs):
"""
:param list[dict[str]] datasets: list of kwargs for init_dataset
"""
super(ConcatDataset, self).__init__(**kwargs)
self.datasets = [init_dataset(d_kwargs) for d_kwargs in datasets]
assert self.datasets
self.num_inputs = self.datasets[0].num_inputs
self.num_outputs = self.datasets[0].num_outputs
self.labels = self.datasets[0].labels
for ds in self.datasets[1:]:
assert ds.num_inputs == self.num_inputs
assert ds.num_outputs == self.num_outputs
def init_seq_order(self, epoch=None, seq_list=None):
"""
:type epoch: int|None
:param list[str] | None seq_list: In case we want to set a predefined order.
"""
need_reinit = self.epoch is None or self.epoch != epoch
super(ConcatDataset, self).init_seq_order(epoch=epoch, seq_list=seq_list)
self.dataset_seq_idx_offsets = [0]
if not need_reinit:
return False
if seq_list: # reference order
seq_lists = []
for dataset in self.datasets:
# This depends on the num_seqs of our childs.
seq_lists += seq_list[:dataset.num_seqs]
seq_list = seq_list[dataset.num_seqs:]
assert len(seq_list) == 0 # we have consumed all
else:
seq_lists = [None] * len(self.datasets)
if self.seq_ordering != "default":
# Not sure about these cases (random / sorted). Maybe a separate implementation makes more sense.
raise NotImplementedError("seq_ordering %s" % self.seq_ordering)
assert len(seq_lists) == len(self.datasets)
for dataset, sub_list in zip(self.datasets, seq_lists):
dataset.init_seq_order(epoch=epoch, seq_list=sub_list)
return True
def _get_dataset_for_seq_idx(self, seq_idx):
i = 0
while i < len(self.dataset_seq_idx_offsets):
if seq_idx + self.dataset_seq_idx_offsets[i] < 0:
return i - 1
i += 1
return i - 1
def _load_seqs(self, start, end):
sub_start = start
# We maybe need to call load_seqs on several of our datasets, thus we need this loop.
while True:
dataset_idx = self._get_dataset_for_seq_idx(sub_start)
dataset = self.datasets[dataset_idx]
dataset_seq_idx_start = sub_start + self.dataset_seq_idx_offsets[dataset_idx]
dataset_seq_idx_end = end + self.dataset_seq_idx_offsets[dataset_idx]
dataset.load_seqs(dataset_seq_idx_start, dataset_seq_idx_end)
if dataset.is_less_than_num_seqs(dataset_seq_idx_end):
# We are still inside this dataset and have loaded everything.
# Thus we can stop now.
break
# We have reached the end of the dataset.
if dataset_idx + 1 == len(self.datasets):
# We are at the last dataset.
break
# Continue with the next one.
self.dataset_seq_idx_offsets[dataset_idx + 1:dataset_idx + 2] = [
self.dataset_seq_idx_offsets[dataset_idx] - dataset.num_seqs]
sub_start = -self.dataset_seq_idx_offsets[dataset_idx + 1]
super(ConcatDataset, self)._load_seqs(start=start, end=end)
def _collect_single_seq(self, seq_idx):
dataset_idx = self._get_dataset_for_seq_idx(seq_idx)
dataset = self.datasets[dataset_idx]
dataset_seq_idx = seq_idx + self.dataset_seq_idx_offsets[dataset_idx]
seq_tag = dataset.get_tag(dataset_seq_idx)
features = dataset.get_input_data(dataset_seq_idx)
targets = {k: dataset.get_targets(k, dataset_seq_idx) for k in dataset.get_target_list()}
return DatasetSeq(seq_idx=seq_idx, seq_tag=seq_tag, features=features, targets=targets)
@property
def num_seqs(self):
return sum([ds.num_seqs for ds in self.datasets])
def get_target_list(self):
return self.datasets[0].get_target_list()
class CombinedDataset(CachedDataset2):
"""
This combines multiple different datasets, which provide different data-sources.
E.g. one can provide am-dataset with data:acoustic-features -> classes:characters (acoustic model train data),
and lm-dataset provides just data:characters (language model train data).
Note: The mapping has been inverted. We now expect (dataset-key, dataset-data-key) -> self-data-key
am-dataset:data -> am-data, am-dataset:classes -> am-classes, lm-dataset:data -> lm-data.
For each sequence idx, it will select one of the given datasets, fill in the data-keys of this dataset
and will return empty sequences for the remaining datasets.
The selection of the dataset will be random and equally distributed, over the sum of num-seqs.
"""
def __init__(self,
datasets,
data_map, data_dims,
data_dtypes=None,
window=1, **kwargs):
"""
:param dict[str,dict[str]] datasets: dataset-key -> dataset-kwargs. including keyword 'class' and maybe 'files'
:param dict[(str,str),str] data_map: (dataset-key, dataset-data-key) -> self-data-key.
Should contain 'data' as key. Also defines the target-list, which is all except 'data'.
:param dict[str,(int,int)] data_dims: self-data-key -> data-dimension, len(shape) (1 ==> sparse repr).
:param dict[str,str] data_dtypes: self-data-key -> dtype. automatic if not specified
"""
assert window == 1 # not implemented
super(CombinedDataset, self).__init__(**kwargs)
assert self.shuffle_frames_of_nseqs == 0 # not implemented. anyway only for non-recurrent nets
self.rnd = Random(self.epoch)
# self.data_map = data_map
self.dataset_keys = set(datasets.keys()); ":type: set[str]"
self.dataset_idxs = dict(enumerate(sorted(self.dataset_keys))) # idx -> dataset-key
self.data_keys = set(data_map.values()); ":type: set[str]"
assert "data" in self.data_keys
self.target_list = sorted(self.data_keys - {"data"})
# Build target lookup table
target_lookup_table = {}
for dataset_key in self.dataset_keys:
target_lookup_table[dataset_key] = {datamap_maps: datamap_keys[1] for datamap_keys,datamap_maps in data_map.iteritems() if datamap_keys[0]==dataset_key}
for key in self.data_keys:
target_lookup_table[dataset_key].setdefault(key,None)
self.target_lookup_table = target_lookup_table
data_dims = convert_data_dims(data_dims)
self.data_dims = data_dims
assert "data" in data_dims
for key in self.target_list:
assert key in data_dims
self.num_inputs = data_dims["data"][0]
self.num_outputs = data_dims
self.data_dtypes = {data_key: _select_dtype(data_key, data_dims, data_dtypes) for data_key in self.data_keys}
# Will only init the needed datasets.
self.datasets = {key: init_dataset(datasets[key]) for key in self.dataset_keys}
try:
self._num_seqs = sum([self.datasets[k].num_seqs for k in sorted(self.datasets.keys())])
self.know_num_seqs_beforehand = True
# print "Dont need to set estimations for num_seqs. Currently is {s}".format(s=[ds.num_seqs for ds in self.datasets.values()])
except Exception:
self._estimated_num_seqs = sum([self.datasets[k].estimated_num_seqs for k in sorted(self.datasets.keys())])
self.estimated_num_seq_per_subset = [self.datasets[k].estimated_num_seqs for k in sorted(self.datasets.keys())]
# TODO this estimate seems broken on a small test corpus; needs further testing
# print "Need to set estimations for num_seqs. Currently is {s}".format(s=[ds.estimated_num_seqs for ds in self.datasets.values()])
self.know_num_seqs_beforehand = False
def _canonical_seqs_dataset_idxs(self):
"""
:returns: list of dataset-idx, via self.dataset_idxs, so that we cover the sum of num-seqs
:rtype: list[int]
"""
l = []
for i in range(len(self.datasets)):
dataset = self.datasets[self.dataset_idxs[i]]
l += [i] * dataset.num_seqs
return l
def _dataset_seq_idxs(self, seqs_dataset_idx):
"""
:returns: list of (dataset-idx, dataset-seq-idx)
:rtype: list[(int,int)]
"""
l = []
seq_idx_counter = [0] * len(self.datasets) # dataset-idx -> dataset-seq-idx
for dataset_idx in seqs_dataset_idx:
seq_idx = seq_idx_counter[dataset_idx]
seq_idx_counter[dataset_idx] += 1
l += [(dataset_idx, seq_idx)]
return l
def init_seq_order(self, epoch=None, seq_list=None):
assert seq_list is None, "seq_list not supported for %s" % self.__class__
need_reinit = self.epoch is None or self.epoch != epoch
super(CombinedDataset, self).init_seq_order(epoch=epoch, seq_list=seq_list)
if not need_reinit:
return False
if self.know_num_seqs_beforehand:
# We just select for which seq-idx we will use which dataset.
# The ordering of the seqs in the datasets will not be set here
# (do that in the config for the specific dataset).
seqs_dataset_idx = self._canonical_seqs_dataset_idxs()
if self.seq_ordering in ("default", "random"): # default is random. this is different from base class!
self.rnd.shuffle(seqs_dataset_idx)
elif self.seq_ordering == "in-order":
pass # keep as-is
elif self.seq_ordering == "reversed":
seqs_dataset_idx = reversed(seqs_dataset_idx)
else:
raise Exception("seq_ordering %s not supported" % self.seq_ordering)
self.dataset_seq_idxs = self._dataset_seq_idxs(seqs_dataset_idx)
assert self.num_seqs == len(self.dataset_seq_idxs)
else:
self.dataset_seq_idxs = [] #We will fill this as we go
self.used_num_seqs_per_subset = [0] * len(self.datasets)
for dataset in self.datasets.values():
dataset.init_seq_order(epoch=epoch)
return True
def _expand_dataset_sec_idxs(self, num_values):
"""
:param num_values: int Add num_values entries to the dataset-segment-idx mapping table
:return:
"""
for i in range(num_values):
if self.seq_ordering in ("default", "random"): # default is random. this is different from base class!
while True:
# Build Probabillity table
expected_remaining_seqs = [estimated - used for estimated, used in zip(self.estimated_num_seq_per_subset, self.used_num_seqs_per_subset)]
total_remaining = float(sum(expected_remaining_seqs))
if total_remaining < 0.1: # We expect no more data, but try anyway
nonempty_datasets = []
for j,k in enumerate(sorted(self.datasets.keys())):
if self.datasets[k].is_less_than_num_seqs(self.used_num_seqs_per_subset[j]):
nonempty_datasets.append(j)
if nonempty_datasets == []:
return False # No more data to add
dataset_idx = numpy.random.choice(nonempty_datasets)
self.estimated_num_seq_per_subset[dataset_idx]+=1
break
else: # We sample from all sets which should contain more data
prob_table = [remaining / total_remaining for remaining in expected_remaining_seqs]
dataset_idx = numpy.random.choice(len(self.datasets),p=prob_table)
if self.datasets[self.dataset_idxs[dataset_idx]].is_less_than_num_seqs(self.used_num_seqs_per_subset[dataset_idx]):
break # Found good Data
else:
self.estimated_num_seq_per_subset[dataset_idx] = self.used_num_seqs_per_subset[dataset_idx]
elif self.seq_ordering == "in-order":
dataset_idx = 0
while dataset_idx < len(self.datasets):
if self.datasets[self.dataset_idxs[dataset_idx]].is_less_than_num_seqs(self.used_num_seqs_per_subset[dataset_idx]):
break
dataset_idx += 1
else:
return False # No dataset has remaining data
elif self.seq_ordering == "reversed":
dataset_idx = len(self.datasets) -1
while dataset_idx >= 0:
if self.datasets[self.dataset_idxs[dataset_idx]].is_less_than_num_seqs(self.used_num_seqs_per_subset[dataset_idx]):
break
dataset_idx -= 1
else:
return False # No dataset has remaining data
else:
raise Exception("seq_ordering %s not supported" % self.seq_ordering)
# We now have a valid dataset index to take the next segment from
self.dataset_seq_idxs.append((dataset_idx,self.used_num_seqs_per_subset[dataset_idx]))
self.used_num_seqs_per_subset[dataset_idx] += 1
return True
def _load_seqs(self, start, end):
# If the segment order is not yet known, fix the next few segments
if not self.know_num_seqs_beforehand and end > len(self.dataset_seq_idxs):
self._expand_dataset_sec_idxs(end-len(self.dataset_seq_idxs))
requested_seqs = self.dataset_seq_idxs[start:end]
for i in range(len(self.datasets)):
dataset = self.datasets[self.dataset_idxs[i]]
sub_requested_seqs = [s[1] for s in requested_seqs if s[0]==i]
if sub_requested_seqs == []:
continue
sub_start, sub_end = min(sub_requested_seqs), max(sub_requested_seqs)
dataset.load_seqs(sub_start, sub_end+1)
super(CombinedDataset, self)._load_seqs(start=start, end=end)
def _check_dataset_seq(self, dataset, seq_idx): # TODO this check makes no sense here
"""
:type dataset: Dataset
:type seq_idx: int
"""
dataset_seq_tag = dataset.get_tag(seq_idx)
self_seq_tag = self.get_tag(seq_idx)
assert dataset_seq_tag == self_seq_tag
def _get_data(self, dataset_key, dataset_seq_idx, data_key):
"""
:type dataset_seq_idx: int
:type dataset_key: str
:type data_key: str
:rtype: numpy.ndarray
"""
dataset_data_key = self.target_lookup_table[dataset_key][data_key]
dataset = self.datasets[dataset_key]; ":type: Dataset"
if dataset_data_key is not None:
return dataset.get_data(dataset_seq_idx, dataset_data_key)
else:
return numpy.array([])
def _collect_single_seq(self, seq_idx):
"""
:type seq_idx: int
:rtype: DatasetSeq
"""
if not self.is_less_than_num_seqs(seq_idx):
return None
dataset_idx, dataset_seq_idx = self.dataset_seq_idxs[seq_idx]
dataset_key = self.dataset_idxs[dataset_idx]
dataset = self.datasets[dataset_key]
seq_tag = dataset.get_tag(dataset_seq_idx)
features = self._get_data(dataset_key, dataset_seq_idx, "data")
targets = {target: self._get_data(dataset_key, dataset_seq_idx, target) for target in self.target_list}
return DatasetSeq(seq_idx=seq_idx, seq_tag=seq_tag, features=features, targets=targets)
def is_less_than_num_seqs(self, n):
if self.know_num_seqs_beforehand:
return n<self._num_seqs
else:
if n<len(self.dataset_seq_idxs):
return True
else:
return self._expand_dataset_sec_idxs(n-len(self.dataset_seq_idxs)+1)
def get_target_list(self):
return self.target_list
def get_data_dtype(self, key):
dtype = self.data_dtypes[key]
if self.added_data:
assert super(CombinedDataset, self).get_data_dtype(key) == dtype
return dtype
def get_data_dim(self, key):
assert key in self.data_dims
return self.data_dims[key][0]
class ChunkShuffleDataset(CachedDataset2):
"""
This goes through a dataset, caches some recent chunks
"""
def __init__(self, dataset,
chunk_shuffle_cache=1000,
batch_gen_batch_size=5000, batch_gen_max_seqs=1,
batch_gen_recurrent_net=True,
**kwargs):
"""
:param dict[str] dataset: kwargs for init_dataset
"""
super(ChunkShuffleDataset, self).__init__(**kwargs)
self.dataset = init_dataset(dataset)
assert self.dataset
self.dataset_last_load_seq_end = None
self.chunk_shuffle_cache = chunk_shuffle_cache
self.batch_gen = None
self.batch_gen_batch_size = batch_gen_batch_size
self.batch_gen_max_seqs = batch_gen_max_seqs
self.batch_gen_recurrent_net = batch_gen_recurrent_net
self.num_inputs = self.dataset.num_inputs
self.num_outputs = self.dataset.num_outputs
self.labels = self.dataset.labels
self.rng = Random(0)
self.load_seqs_end = None
def init_seq_order(self, epoch=None, seq_list=None):
"""
:type epoch: int|None
:param list[str] | None seq_list: In case we want to set a predefined order.
"""
need_reinit = self.epoch is None or self.epoch != epoch
super(ChunkShuffleDataset, self).init_seq_order(epoch=epoch, seq_list=seq_list)
self.load_seqs_end = 0
self.dataset_last_load_seq_end = 0
self.rng.seed(epoch or 1)
if not need_reinit:
return False
if seq_list:
raise NotImplementedError("predefined order seq_list")
if self.seq_ordering != "default":
raise NotImplementedError("seq_ordering %s" % self.seq_ordering)
self.dataset.init_seq_order(epoch=epoch)
self.batch_gen = self.dataset.generate_batches(recurrent_net=self.batch_gen_recurrent_net,
batch_size=self.batch_gen_batch_size,
max_seqs=self.batch_gen_max_seqs)
return True
def _add_data(self, data, original_tag):
"""
:type data: dict[str,numpy.ndarray]
:type original_tag: str
"""
features = data["data"]
if not self.added_data:
seq_idx = 0
assert self.expected_load_seq_start == 0
else:
seq_idx = self.added_data[-1].seq_idx + 1
tag = "%s.%i" % (original_tag, seq_idx)
seq = DatasetSeq(seq_idx=seq_idx, features=features, targets=data, seq_tag=tag)
self._num_timesteps_accumulated += seq.num_frames
self.added_data += [seq]
def _shuffle(self):
start_seq_idx = self.added_data[0].seq_idx
end_seq_idx = self.added_data[-1].seq_idx
assert start_seq_idx < self.load_seqs_end < end_seq_idx
start_idx = 0
if start_seq_idx < self.load_seqs_end:
start_idx = self.load_seqs_end - start_seq_idx
assert self.added_data[start_idx].seq_idx == self.load_seqs_end
start_seq_idx = self.load_seqs_end
sublist = self.added_data[start_idx:]
self.rng.shuffle(sublist)
for i, seq in enumerate(sublist):
seq.seq_idx = i + start_seq_idx
assert sublist[-1].seq_idx == end_seq_idx
self.added_data[start_idx:] = sublist
def _add_more(self):
"""
Adds each chunk/batch seq as a single DatasetSeq.
See EngineUtil.assign_dev_data() for comparison.
:returns whether we added some more
"""
if not self.batch_gen.has_more(): return False
batches = self.batch_gen.peek_next_n(1)
for batch in batches:
assert batch.seqs
if batch.end_seq > self.dataset_last_load_seq_end:
self.dataset.load_seqs(batch.start_seq, batch.end_seq)
self.dataset_last_load_seq_end = batch.end_seq
used_data_keys = self.get_data_keys()
for seq in batch.seqs:
res_data = {}
for k in used_data_keys:
data = self.dataset.get_data(seq.seq_idx, k)
if data is not None:
res_data[k] = data[seq.seq_start_frame[k]:seq.seq_end_frame[k]]
original_tag = self.dataset.get_tag(seq.seq_idx)
self._add_data(data=res_data, original_tag=original_tag)
self.batch_gen.advance(len(batches))
return True
def _add_more_until(self, end, shuffle=False):
if self.added_data and end <= self.added_data[-1].seq_idx: return True
while self._add_more():
assert self.added_data
if end <= self.added_data[-1].seq_idx:
if shuffle:
self._shuffle()
return True
# We have reached the end.
if not self.added_data:
self._num_seqs = 0
print("warning: empty dataset", file=log.v3)
else:
self._num_seqs = self.added_data[-1].seq_idx + 1
self.reached_final_seq = True
return False
def is_less_than_num_seqs(self, seq_idx):
"""
:type seq_idx: int
:rtype: bool
:returns whether seq_idx < num_seqs. In case num_seqs is not known in advance, it will wait
until it knows that n is behind the end or that we have the seq.
"""
if self._num_seqs is not None: return seq_idx < self._num_seqs
if seq_idx < self.expected_load_seq_start: return True
if self.added_data and seq_idx <= self.added_data[-1].seq_idx: return True
return self._add_more_until(seq_idx)
def _load_seqs(self, start, end):
"""
:param int start: inclusive seq idx start
:param int end: exclusive seq idx end
"""
# We expect that start increase monotonic on each call
# for not-yet-loaded data.
# This will already be called with _load_seqs_superset indices.
assert start >= self.expected_load_seq_start
if start > self.expected_load_seq_start:
# Cleanup old data.
self._cleanup_old_seqs(start)
self.expected_load_seq_start = start
self.load_seqs_end = end
self._add_more_until(end + self.chunk_shuffle_cache, shuffle=True)
def _collect_single_seq(self, seq_idx):
"""
:type seq_idx: int
:rtype: DatasetSeq
"""
assert False, "should not be called"
def get_target_list(self):
return self.dataset.get_target_list()
def _simple_to_bool(v):
if v == 0: v = False
if v == 1: v = True
assert isinstance(v, bool)
return v
def _select_dtype(key, data_dims, data_dtypes):
if data_dtypes and key in data_dtypes:
v = data_dtypes[key]
assert isinstance(v, str) # e.g. "int32" or "float32"
return v
assert key in data_dims
if data_dims[key][1] == 1: # sparse
return "int32" # standard for 1-of-k
else:
return "float32" # standard otherwise