forked from johnsmithm/handwritten-tf-1.0
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lstm2d.py
executable file
·208 lines (171 loc) · 7.71 KB
/
lstm2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A small library of functions dealing with LSTMs applied to images.
Tensors in this library generally have the shape (num_images, height, width,
depth).
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import lstm1d
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import variable_scope
def _shape(tensor):
"""Get the shape of a tensor as an int list."""
return tensor.get_shape().as_list()
def images_to_sequence(tensor):
"""Convert a batch of images into a batch of sequences.
Args:
tensor: a (num_images, height, width, depth) tensor
Returns:
(width, num_images*height, depth) sequence tensor
"""
num_image_batches, height, width, depth = _shape(tensor)
transposed = array_ops.transpose(tensor, [2, 0, 1, 3])
return array_ops.reshape(transposed,
[width, num_image_batches * height, depth])
def sequence_to_images(tensor, num_image_batches):
"""Convert a batch of sequences into a batch of images.
Args:
tensor: (num_steps, num_batches, depth) sequence tensor
num_image_batches: the number of image batches
Returns:
(num_images, height, width, depth) tensor
"""
width, num_batches, depth = _shape(tensor)
height = num_batches // num_image_batches
reshaped = array_ops.reshape(tensor,
[width, num_image_batches, height, depth])
return array_ops.transpose(reshaped, [1, 2, 0, 3])
def horizontal_lstm(images, num_filters_out, scope=None):
"""Run an LSTM bidirectionally over all the rows of each image.
Args:
images: (num_images, height, width, depth) tensor
num_filters_out: output depth
scope: optional scope name
Returns:
(num_images, height, width, num_filters_out) tensor, where
num_steps is width and new num_batches is num_image_batches * height
"""
with variable_scope.variable_scope(scope, "HorizontalLstm", [images]):
batch_size, _, _, _ = _shape(images)
sequence = images_to_sequence(images)
with variable_scope.variable_scope("lr"):
hidden_sequence_lr = lstm1d.ndlstm_base(sequence, num_filters_out // 2)
with variable_scope.variable_scope("rl"):
hidden_sequence_rl = (lstm1d.ndlstm_base(
sequence, num_filters_out - num_filters_out // 2, reverse=1))
output_sequence = array_ops.concat([hidden_sequence_lr, hidden_sequence_rl],
2)
output = sequence_to_images(output_sequence, batch_size)
return output
def get_blocks(images, kernel_size=[1,1]):
"""Split images in blocks
Args:
images: (num_images, height, width, depth) tensor
kernel_size: A list of length 2 holding the [kernel_height, kernel_width] of
of the pooling. Can be an int if both values are the same.
Returns:
(num_images, height/kernel_height, width/kernel_width,
depth*kernel_height*kernel_width) tensor
"""
with variable_scope.variable_scope("image_blocks"):
batch_size, height, width, chanels = _shape(images)
if height%kernel_size[0] != 0:
offset = array_ops.zeros([batch_size, kernel_size[0]-(height%kernel_size[0]),
width,
chanels])
images = array_ops.concat([images, offset], 1)
batch_size, height, width, chanels = _shape(images)
if width%kernel_size[1] != 0:
offset = array_ops.zeros([batch_size,
height, kernel_size[1]-(width%kernel_size[1]),
chanels])
images = array_ops.concat([images, offset], 2)
batch_size, height, width, chanels = _shape(images)
h, w = int(height/kernel_size[0]), int(width/kernel_size[1])
features = kernel_size[1]*kernel_size[0]*chanels
lines = array_ops.split(images, h, axis=1)
line_blocks = []
for line in lines:
line = array_ops.transpose(line, [0, 2, 3, 1])
line = array_ops.reshape(line, [batch_size, w, features])
line_blocks.append(line)
return array_ops.stack(line_blocks, axis=1)
def separable_lstm(images, num_filters_out, kernel_size=None, nhidden=None, scope=None):
"""Run bidirectional LSTMs first horizontally then vertically.
Args:
images: (num_images, height, width, depth) tensor
num_filters_out: output layer depth
kernel_size: A list of length 2 holding the [kernel_height, kernel_width] of
of the pooling. Can be an int if both values are the same. Set to None for
not using blocks
nhidden: hidden layer depth
scope: optional scope name
Returns:
(num_images, height/kernel_height, width/kernel_width, num_filters_out) tensor
"""
with variable_scope.variable_scope(scope, "SeparableLstm", [images]):
if nhidden is None:
nhidden = num_filters_out
if kernel_size is not None:
images = get_blocks(images, kernel_size)
hidden = horizontal_lstm(images, nhidden)
with variable_scope.variable_scope("vertical"):
transposed = array_ops.transpose(hidden, [0, 2, 1, 3])
output_transposed = horizontal_lstm(transposed, num_filters_out)
output = array_ops.transpose(output_transposed, [0, 2, 1, 3])
return output
def reduce_to_sequence(images, num_filters_out, scope=None):
"""Reduce an image to a sequence by scanning an LSTM vertically.
Args:
images: (num_images, height, width, depth) tensor
num_filters_out: output layer depth
scope: optional scope name
Returns:
A (width, num_images, num_filters_out) sequence.
"""
with variable_scope.variable_scope(scope, "ReduceToSequence", [images]):
batch_size, height, width, depth = _shape(images)
transposed = array_ops.transpose(images, [1, 0, 2, 3])
reshaped = array_ops.reshape(transposed,
[height, batch_size * width, depth])
reduced = lstm1d.sequence_to_final(reshaped, num_filters_out)
output = array_ops.reshape(reduced, [batch_size, width, num_filters_out])
return output
def reduce_to_final(images, num_filters_out, nhidden=None, scope=None):
"""Reduce an image to a final state by running two LSTMs.
Args:
images: (num_images, height, width, depth) tensor
num_filters_out: output layer depth
nhidden: hidden layer depth (defaults to num_filters_out)
scope: optional scope name
Returns:
A (num_images, num_filters_out) batch.
"""
with variable_scope.variable_scope(scope, "ReduceToFinal", [images]):
nhidden = nhidden or num_filters_out
batch_size, height, width, depth = _shape(images)
transposed = array_ops.transpose(images, [1, 0, 2, 3])
reshaped = array_ops.reshape(transposed,
[height, batch_size * width, depth])
with variable_scope.variable_scope("reduce1"):
reduced = lstm1d.sequence_to_final(reshaped, nhidden)
transposed_hidden = array_ops.reshape(reduced,
[batch_size, width, nhidden])
hidden = array_ops.transpose(transposed_hidden, [1, 0, 2])
with variable_scope.variable_scope("reduce2"):
output = lstm1d.sequence_to_final(hidden, num_filters_out)
return output