-
Notifications
You must be signed in to change notification settings - Fork 42
/
rembo.pct.py
246 lines (181 loc) · 8.48 KB
/
rembo.pct.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# %% [markdown]
# # High-dimensional Bayesian optimization
# This notebook demonstrates a simple method for optimizing a high-dimensional (100-D) problem, where standard BO methods have trouble.
# %%
import math
import gpflow
import numpy as np
import tensorflow as tf
import tensorflow_probability as tfp
np.random.seed(1793)
tf.random.set_seed(1793)
# %% [markdown]
# ## Describe the problem
#
# In this example, we augment the standard two-dimensional Michalewicz function with 98 dummy dimensions to obtain a 100-dimensional problem over the hypercube $[0, \pi]^{100}$.
#
# We compare three approaches to optimizing this problem. The first uses a standard GP model over all 100 dimensions, using expected improvement as our acquisition function. As standard Gaussian process models have trouble modeling high dimensional data, we do not expect this approach to perform well. Therefore, we compare this to two Random EMbedding Bayesian Optimization (REMBO; see <cite data-cite="wang2013bayesian"/>) approaches.
#
# Instead of training a GP model and optimizing an acquisition function on the high-dimensional space directly, REMBO constructs a low-dimensional search space, performing the modeling and acquisition on this space. In order to transfer to the high-dimensional space, REMBO uses a static random projection matrix $A \in \mathbb{R}^{D \times d}$ to project query points from the lower, $d$-dimensional space to the original higher, $D$-dimensional space.
#
# As the lower dimension $d$ is a choice, we compare $d = 2$ and $d = 5$. While $d = 2$ should be sufficient (as the problem is intrinsically two-dimensional), a higher dimension may improve the chance of a good random embedding being found, at the cost of making it more difficult to find good areas of the lower-dimensional search space.
#
# We run each method 5 times to ensure that the results are not due to luck.
# %%
from trieste.objectives.single_objectives import Michalewicz2
from trieste.space import Box
from trieste.models.gpflow import GaussianProcessRegression
# Set the dimension of the full problem
D = 100
num_initial_points = 2
num_steps = 48
num_seeds = 5
objective = Michalewicz2.objective
minimum = Michalewicz2.minimum
search_space = (
Box([0.0], [math.pi]) ** D
) # manually construct the high-dimensional search space
# We simply add dummy dimensions to create the new objective
def high_dim_objective(x):
tf.debugging.assert_shapes([(x, (..., D))])
return objective(x[..., :2])
def build_model(data, d):
# add a bit of noise, since there's a risk the variance could be zero for Michalewicz
variance = tf.math.reduce_variance(data.observations) + 1e-4
kernel = gpflow.kernels.Matern52(variance=variance, lengthscales=[0.2] * d)
prior_scale = tf.cast(1.0, dtype=tf.float64)
kernel.variance.prior = tfp.distributions.LogNormal(
tf.cast(-2.0, dtype=tf.float64), prior_scale
)
kernel.lengthscales.prior = tfp.distributions.LogNormal(
tf.math.log(kernel.lengthscales), prior_scale
)
gpr = gpflow.models.GPR(data.astuple(), kernel, noise_variance=1e-5)
gpflow.set_trainable(gpr.likelihood, False)
return GaussianProcessRegression(gpr, num_kernel_samples=100)
# %% [markdown]
# ## Run standard Bayesian optimization
# We run the process 5 times - note that this takes a while!
# %%
import trieste
final_datasets = [] # to store the results
observer = trieste.objectives.utils.mk_observer(high_dim_objective)
for _ in range(num_seeds):
# Sample initial points
initial_query_points = search_space.sample_sobol(num_initial_points)
initial_data = observer(initial_query_points)
# Build the model over the high-dimensional space
model = build_model(initial_data, d=D)
# Set up the optimizer and run the loop
bo = trieste.bayesian_optimizer.BayesianOptimizer(observer, search_space)
# Store the results
result = bo.optimize(num_steps, initial_data, model)
dataset = result.try_get_final_dataset()
final_datasets.append(dataset)
# %% [markdown]
# We now show how to implement REMBO, by providing a new observer that acts on a projection of the input data by wrapping the original objective.
# %%
def make_REMBO_observer_and_search_space(
full_dim, low_dim, objective, search_space
):
assert isinstance(search_space, Box)
A = tf.random.normal(
[full_dim, low_dim], dtype=gpflow.default_float()
) # sample projection matrix
new_search_space = Box(
[-math.sqrt(low_dim)] * low_dim, [math.sqrt(low_dim)] * low_dim
) # recommendation from REMBO paper
def new_objective(y):
tf.debugging.assert_shapes([(y, (..., low_dim))])
rescaled_search_space = Box(
[-1.0] * full_dim, [1.0] * full_dim
) # REMBO assumes the original space has bounds [-1, 1]^full_dim
scaling = (search_space.upper - search_space.lower) / (
rescaled_search_space.upper - rescaled_search_space.lower
)
x = tf.clip_by_value(
tf.matmul(y, A, transpose_b=True),
clip_value_min=-1,
clip_value_max=1,
) # project into the new box
x_rescaled = (
x - rescaled_search_space.lower
) * scaling + search_space.lower # rescale to match the original search space
return objective(x_rescaled)
observer = trieste.objectives.utils.mk_observer(new_objective)
return observer, new_search_space
# %% [markdown]
# Using the new observer, the process remains the same as before, except that now we must choose $d$ and build a model for that dimension. We run the same experiment for $d=2$ and $d=5$.
# %%
d = 2
rembo_2_final_datasets = []
for _ in range(num_seeds):
rembo_observer, rembo_search_space = make_REMBO_observer_and_search_space(
D, d, high_dim_objective, search_space
)
initial_query_points = rembo_search_space.sample_sobol(num_initial_points)
initial_data = rembo_observer(initial_query_points)
model = build_model(initial_data, d=d)
bo = trieste.bayesian_optimizer.BayesianOptimizer(
rembo_observer, rembo_search_space
)
result = bo.optimize(num_steps, initial_data, model)
dataset = result.try_get_final_dataset()
rembo_2_final_datasets.append(dataset)
# %% [markdown]
# We repeat the above but with d=5 - this might help find more suitable projections.
# %%
d = 5
rembo_5_final_datasets = []
for _ in range(num_seeds):
rembo_observer, rembo_search_space = make_REMBO_observer_and_search_space(
D, d, high_dim_objective, search_space
)
initial_query_points = rembo_search_space.sample_sobol(num_initial_points)
initial_data = rembo_observer(initial_query_points)
model = build_model(initial_data, d=d)
bo = trieste.bayesian_optimizer.BayesianOptimizer(
rembo_observer, rembo_search_space
)
result = bo.optimize(num_steps, initial_data, model)
dataset = result.try_get_final_dataset()
rembo_5_final_datasets.append(dataset)
# %% [markdown]
# We produce a regret plot below for each method.
# %%
import matplotlib.pyplot as plt
_, ax = plt.subplots(1, 3)
for i in range(num_seeds):
observations = final_datasets[i].observations.numpy()
suboptimality = observations - minimum.numpy()
ax[0].plot(np.minimum.accumulate(suboptimality))
ax[0].axvline(x=num_initial_points - 0.5, color="tab:blue")
ax[0].set_yscale("log")
ax[0].set_ylabel("Regret")
ax[0].set_ylim(0.001, 100)
ax[0].set_xlabel("# evaluations")
ax[0].set_title("Full-D BO")
rembo_observations = rembo_2_final_datasets[i].observations.numpy()
suboptimality = rembo_observations - minimum.numpy()
ax[1].plot(np.minimum.accumulate(suboptimality))
ax[1].axvline(x=num_initial_points - 0.5, color="tab:blue")
ax[1].set_yscale("log")
ax[1].set_ylim(0.001, 100)
ax[1].set_yticks([])
ax[1].set_xlabel("# evaluations")
ax[1].set_title("REMBO: d=2")
rembo_5_observations = rembo_5_final_datasets[i].observations.numpy()
suboptimality = rembo_5_observations - minimum.numpy()
ax[2].plot(np.minimum.accumulate(suboptimality))
ax[2].axvline(x=num_initial_points - 0.5, color="tab:blue")
ax[2].set_yscale("log")
ax[2].set_ylim(0.001, 100)
ax[2].set_yticks([])
ax[2].set_xlabel("# evaluations")
ax[2].set_title("REMBO: d=5")
# %% [markdown]
# We see that REMBO with $d=2$ generally performs the best, whereas both the full-dimensional approach and $d=5$ struggle more.
# %% [markdown]
# ## LICENSE
#
# [Apache License 2.0](https://github.com/secondmind-labs/trieste/blob/develop/LICENSE)