-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.py
559 lines (509 loc) · 20.4 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
# --------------------------------------------------------
# Swin Transformer
# Copyright (c) 2021 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ze Liu
# --------------------------------------------------------'
import os
import yaml
import re
from yacs.config import CfgNode as CN
from data.mtl_ds import get_tasks_config
import json
_C = CN()
# Base config files
_C.BASE = ['']
# -----------------------------------------------------------------------------
# Data settings
# -----------------------------------------------------------------------------
_C.DATA = CN()
# Batch size for a single GPU, could be overwritten by command line argument
_C.DATA.BATCH_SIZE = 128
# Path to dataset, could be overwritten by command line argument
_C.DATA.DATA_PATH = ''
# Dataset name
_C.DATA.DATASET = 'nyud'
# Input image size
_C.DATA.IMG_SIZE = 224
# _C.DATA.IMG_SIZE = (480, 640)
# _C.DATA.IMG_SIZE = (448, 448)
# Interpolation to resize image (random, bilinear, bicubic)
_C.DATA.INTERPOLATION = 'bicubic'
# Use zipped dataset instead of folder dataset
# could be overwritten by command line argument
_C.DATA.ZIP_MODE = False
# Cache Data in Memory, could be overwritten by command line argument
_C.DATA.CACHE_MODE = 'part'
# Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.
_C.DATA.PIN_MEMORY = True
# Number of data loading threads
_C.DATA.NUM_WORKERS = 4
# [SimMIM] Mask patch size for MaskGenerator
_C.DATA.MASK_PATCH_SIZE = 32
# [SimMIM] Mask ratio for MaskGenerator
_C.DATA.MASK_RATIO = 0.6
# -----------------------------------------------------------------------------
# Model settings
# -----------------------------------------------------------------------------
_C.MODEL = CN()
# Model type
_C.MODEL.TYPE = 'swin'
# Model name
_C.MODEL.NAME = 'swin_tiny_patch4_window7_224'
# Pretrained weight from checkpoint, could be imagenet22k pretrained weight
# could be overwritten by command line argument
_C.MODEL.PRETRAINED = ''
# Checkpoint to resume, could be overwritten by command line argument
_C.MODEL.RESUME = ''
# Number of classes, overwritten in data preparation
_C.MODEL.NUM_CLASSES = 1000
# Dropout rate
_C.MODEL.DROP_RATE = 0.0
# Drop path rate
_C.MODEL.DROP_PATH_RATE = 0.1
# Label Smoothing
_C.MODEL.LABEL_SMOOTHING = 0.1
# Swin Transformer parameters
_C.MODEL.SWIN = CN()
_C.MODEL.SWIN.PATCH_SIZE = 4
_C.MODEL.SWIN.IN_CHANS = 3
_C.MODEL.SWIN.EMBED_DIM = 96
_C.MODEL.SWIN.DEPTHS = [2, 2, 6, 2]
_C.MODEL.SWIN.NUM_HEADS = [3, 6, 12, 24]
_C.MODEL.SWIN.WINDOW_SIZE = 7
_C.MODEL.SWIN.MLP_RATIO = 4.
_C.MODEL.SWIN.QKV_BIAS = True
_C.MODEL.SWIN.QK_SCALE = None
_C.MODEL.SWIN.APE = False
_C.MODEL.SWIN.PATCH_NORM = True
_C.MODEL.SWIN.DECODER_DIM = 256
_C.MODEL.SWIN.DECODER_PATCH_RES = [7, 7, 14, 28]
# Swin Transformer V2 parameters
_C.MODEL.SWINV2 = CN()
_C.MODEL.SWINV2.PATCH_SIZE = 4
_C.MODEL.SWINV2.IN_CHANS = 3
_C.MODEL.SWINV2.EMBED_DIM = 96
_C.MODEL.SWINV2.DEPTHS = [2, 2, 6, 2]
_C.MODEL.SWINV2.NUM_HEADS = [3, 6, 12, 24]
_C.MODEL.SWINV2.WINDOW_SIZE = 7
_C.MODEL.SWINV2.MLP_RATIO = 4.
_C.MODEL.SWINV2.QKV_BIAS = True
_C.MODEL.SWINV2.APE = False
_C.MODEL.SWINV2.PATCH_NORM = True
_C.MODEL.SWINV2.PRETRAINED_WINDOW_SIZES = [0, 0, 0, 0]
_C.MODEL.SWINV2.DECODER_PATCH_RES = [7, 7, 14, 28]
_C.MODEL.SWINV2.DECODER_DIM = 128
# Swin Transformer MoE parameters
_C.MODEL.SWIN_MOE = CN()
_C.MODEL.SWIN_MOE.PATCH_SIZE = 4
_C.MODEL.SWIN_MOE.IN_CHANS = 3
_C.MODEL.SWIN_MOE.EMBED_DIM = 96
_C.MODEL.SWIN_MOE.DEPTHS = [2, 2, 6, 2]
_C.MODEL.SWIN_MOE.NUM_HEADS = [3, 6, 12, 24]
_C.MODEL.SWIN_MOE.WINDOW_SIZE = 7
_C.MODEL.SWIN_MOE.MLP_RATIO = 4.
_C.MODEL.SWIN_MOE.QKV_BIAS = True
_C.MODEL.SWIN_MOE.QK_SCALE = None
_C.MODEL.SWIN_MOE.APE = False
_C.MODEL.SWIN_MOE.PATCH_NORM = True
_C.MODEL.SWIN_MOE.MLP_FC2_BIAS = True
_C.MODEL.SWIN_MOE.INIT_STD = 0.02
_C.MODEL.SWIN_MOE.PRETRAINED_WINDOW_SIZES = [0, 0, 0, 0]
_C.MODEL.SWIN_MOE.MOE_BLOCKS = [[-1], [-1], [-1], [-1]]
_C.MODEL.SWIN_MOE.NUM_LOCAL_EXPERTS = 1
_C.MODEL.SWIN_MOE.TOP_VALUE = 1
_C.MODEL.SWIN_MOE.CAPACITY_FACTOR = 1.25
_C.MODEL.SWIN_MOE.COSINE_ROUTER = False
_C.MODEL.SWIN_MOE.NORMALIZE_GATE = False
_C.MODEL.SWIN_MOE.USE_BPR = True
_C.MODEL.SWIN_MOE.IS_GSHARD_LOSS = False
_C.MODEL.SWIN_MOE.GATE_NOISE = 1.0
_C.MODEL.SWIN_MOE.COSINE_ROUTER_DIM = 256
_C.MODEL.SWIN_MOE.COSINE_ROUTER_INIT_T = 0.5
_C.MODEL.SWIN_MOE.MOE_DROP = 0.0
_C.MODEL.SWIN_MOE.AUX_LOSS_WEIGHT = 0.01
# Swin MLP parameters
_C.MODEL.SWIN_MLP = CN()
_C.MODEL.SWIN_MLP.PATCH_SIZE = 4
_C.MODEL.SWIN_MLP.IN_CHANS = 3
_C.MODEL.SWIN_MLP.EMBED_DIM = 96
_C.MODEL.SWIN_MLP.DEPTHS = [2, 2, 6, 2]
_C.MODEL.SWIN_MLP.NUM_HEADS = [3, 6, 12, 24]
_C.MODEL.SWIN_MLP.WINDOW_SIZE = 7
_C.MODEL.SWIN_MLP.MLP_RATIO = 4.
_C.MODEL.SWIN_MLP.APE = False
_C.MODEL.SWIN_MLP.PATCH_NORM = True
# [SimMIM] Norm target during training
_C.MODEL.SIMMIM = CN()
_C.MODEL.SIMMIM.NORM_TARGET = CN()
_C.MODEL.SIMMIM.NORM_TARGET.ENABLE = False
_C.MODEL.SIMMIM.NORM_TARGET.PATCH_SIZE = 47
# Multi task deocders
_C.MODEL.DECODER_HEAD = CN()
_C.MODEL.DECODER_HEAD['semseg'] = 'hrnet'
_C.MODEL.DECODER_HEAD['normals'] = 'hrnet'
_C.MODEL.DECODER_HEAD['sal'] = 'hrnet'
_C.MODEL.DECODER_HEAD['human_parts'] = 'hrnet'
_C.MODEL.DECODER_HEAD['edge'] = 'hrnet'
_C.MODEL.DECODER_HEAD['depth'] = 'hrnet'
_C.MODEL.DECODER_CHANNELS = [18, 36, 72, 144]
_C.MODEL.SEGFORMER_CHANNELS = 256
# -----------------------------------------------------------------------------
# Training settings
# -----------------------------------------------------------------------------
_C.TRAIN = CN()
_C.TRAIN.START_EPOCH = 0
_C.TRAIN.EPOCHS = 300
_C.TRAIN.WARMUP_EPOCHS = 20
_C.TRAIN.WEIGHT_DECAY = 0.05
_C.TRAIN.BASE_LR = 5e-4
# _C.TRAIN.BASE_LR = 5e-5
_C.TRAIN.WARMUP_LR = 5e-7
_C.TRAIN.MIN_LR = 5e-6
# Clip gradient norm
_C.TRAIN.CLIP_GRAD = 5.0
# Auto resume from latest checkpoint
_C.TRAIN.AUTO_RESUME = False
# Gradient accumulation steps
# could be overwritten by command line argument
_C.TRAIN.ACCUMULATION_STEPS = 1
# Whether to use gradient checkpointing to save memory
# could be overwritten by command line argument
_C.TRAIN.USE_CHECKPOINT = False
# LR scheduler
_C.TRAIN.LR_SCHEDULER = CN()
_C.TRAIN.LR_SCHEDULER.NAME = 'cosine'
# Epoch interval to decay LR, used in StepLRScheduler
_C.TRAIN.LR_SCHEDULER.DECAY_EPOCHS = 30
# LR decay rate, used in StepLRScheduler
_C.TRAIN.LR_SCHEDULER.DECAY_RATE = 0.1
# warmup_prefix used in CosineLRScheduler
_C.TRAIN.LR_SCHEDULER.WARMUP_PREFIX = True
# [SimMIM] Gamma / Multi steps value, used in MultiStepLRScheduler
_C.TRAIN.LR_SCHEDULER.GAMMA = 0.1
_C.TRAIN.LR_SCHEDULER.MULTISTEPS = []
_C.TRAIN.SKIP_DECODER_CKPT = False
# MTLoRA Related
_C.TRAIN.FREEZE_PATCH_EMBED = False
_C.TRAIN.FREEZE_LAYER_NORM = False
_C.TRAIN.FREEZE_RELATIVE_POSITION_BIAS = False
_C.TRAIN.FREEZE_DOWNSAMPLE_REDUCTION = False
# Optimizer
_C.TRAIN.OPTIMIZER = CN()
_C.TRAIN.OPTIMIZER.NAME = 'adamw'
# Optimizer Epsilon
_C.TRAIN.OPTIMIZER.EPS = 1e-8
# Optimizer Betas
_C.TRAIN.OPTIMIZER.BETAS = (0.9, 0.999)
# SGD momentum
_C.TRAIN.OPTIMIZER.MOMENTUM = 0.9
# [SimMIM] Layer decay for fine-tuning
_C.TRAIN.LAYER_DECAY = 1.0
# MoE
_C.TRAIN.MOE = CN()
# Only save model on master device
_C.TRAIN.MOE.SAVE_MASTER = False
# -----------------------------------------------------------------------------
# Augmentation settings
# -----------------------------------------------------------------------------
_C.AUG = CN()
# Color jitter factor
_C.AUG.COLOR_JITTER = 0.4
# Use AutoAugment policy. "v0" or "original"
_C.AUG.AUTO_AUGMENT = 'rand-m9-mstd0.5-inc1'
# Random erase prob
_C.AUG.REPROB = 0.25
# Random erase mode
_C.AUG.REMODE = 'pixel'
# Random erase count
_C.AUG.RECOUNT = 1
# Mixup alpha, mixup enabled if > 0
_C.AUG.MIXUP = 0.8
# Cutmix alpha, cutmix enabled if > 0
_C.AUG.CUTMIX = 1.0
# Cutmix min/max ratio, overrides alpha and enables cutmix if set
_C.AUG.CUTMIX_MINMAX = None
# Probability of performing mixup or cutmix when either/both is enabled
_C.AUG.MIXUP_PROB = 1.0
# Probability of switching to cutmix when both mixup and cutmix enabled
_C.AUG.MIXUP_SWITCH_PROB = 0.5
# How to apply mixup/cutmix params. Per "batch", "pair", or "elem"
_C.AUG.MIXUP_MODE = 'batch'
# -----------------------------------------------------------------------------
# Testing settings
# -----------------------------------------------------------------------------
_C.TEST = CN()
# Whether to use center crop when testing
_C.TEST.CROP = True
# Whether to use SequentialSampler as validation sampler
_C.TEST.SEQUENTIAL = False
_C.TEST.SHUFFLE = False
# -----------------------------------------------------------------------------
# Misc
# -----------------------------------------------------------------------------
# [SimMIM] Whether to enable pytorch amp, overwritten by command line argument
_C.ENABLE_AMP = False
# Enable Pytorch automatic mixed precision (amp).
_C.AMP_ENABLE = True
# [Deprecated] Mixed precision opt level of apex, if O0, no apex amp is used ('O0', 'O1', 'O2')
_C.AMP_OPT_LEVEL = ''
# Path to output folder, overwritten by command line argument
_C.OUTPUT = ''
# Tag of experiment, overwritten by command line argument
_C.TAG = 'default'
# Frequency to save checkpoint
_C.SAVE_FREQ = 1
# Frequency to logging info
_C.PRINT_FREQ = 10
# Fixed random seed
_C.SEED = 0
# Perform evaluation only, overwritten by command line argument
_C.EVAL_MODE = False
# Test throughput only, overwritten by command line argument
_C.THROUGHPUT_MODE = False
# local rank for DistributedDataParallel, given by command line argument
_C.LOCAL_RANK = 0
# for acceleration
_C.FUSED_WINDOW_PROCESS = False
_C.FUSED_LAYERNORM = False
_C.SKIP_INITIAL_EVAL = False
_C.MODEL.DECODER_DOWNSAMPLER = True
_C.MODEL.PER_TASK_DOWNSAMPLER = True
_C.MODEL.UPDATE_RELATIVE_POSITION = False
_C.MODEL.MTLORA = CN()
_C.MODEL.MTLORA.ENABLED = False
_C.MODEL.MTLORA.BIAS = 'none' # none, all, lora_only
_C.MODEL.MTLORA.R = [8, 8, 8, 8]
_C.MODEL.MTLORA.SHARED_SCALE = [2.0, 2.0, 2.0, 2.0]
_C.MODEL.MTLORA.TASK_SCALE = [2.0, 2.0, 2.0, 2.0]
_C.MODEL.MTLORA.DROPOUT = [0.05, 0.05, 0.05, 0.05]
_C.MODEL.MTLORA.TRAINABLE_SCALE_SHARED = False
_C.MODEL.MTLORA.TRAINABLE_SCALE_PER_TASK = False
_C.MODEL.MTLORA.INTERMEDIATE_SPECIALIZATION = False
_C.MODEL.MTLORA.FREEZE_PRETRAINED = True
_C.MODEL.MTLORA.SPLIT_QKV = False
_C.MODEL.MTLORA.R_PER_TASK = CN(new_allowed=True)
_C.MODEL.MTLORA.SCALE_PER_TASK = CN(new_allowed=True)
_C.MODEL.MTLORA.SHARED_MODE = 'matrix' # 'matrix', 'addition', lora_only
_C.MODEL.MTLORA.QKV_ENABLED = True
_C.MODEL.MTLORA.PROJ_ENABLED = True
_C.MODEL.MTLORA.FC1_ENABLED = True
_C.MODEL.MTLORA.FC2_ENABLED = True
_C.MODEL.MTLORA.DOWNSAMPLER_ENABLED = False
def _update_config_from_file(config, cfg_file):
config.defrost()
with open(cfg_file, 'r') as f:
yaml_cfg = yaml.load(f, Loader=yaml.FullLoader)
for cfg in yaml_cfg.setdefault('BASE', ['']):
if cfg:
_update_config_from_file(
config, os.path.join(os.path.dirname(cfg_file), cfg)
)
print('=> merge config from {}'.format(cfg_file))
config.merge_from_file(cfg_file)
config.freeze()
def update_config(config, args):
_update_config_from_file(config, args.cfg)
config.defrost()
if args.opts:
config.merge_from_list(args.opts)
def _check_args(name):
if hasattr(args, name) and eval(f'args.{name}'):
return True
return False
# merge from specific arguments
if _check_args('batch_size'):
config.DATA.BATCH_SIZE = args.batch_size
if _check_args('ckpt_freq'):
config.SAVE_FREQ = args.ckpt_freq
if _check_args('eval_freq'):
config.EVAL_FREQ = args.eval_freq
else:
config.EVAL_FREQ = 1
if _check_args('skip_initial_validation'):
config.SKIP_INITIAL_EVAL = True
if _check_args('eval_training_freq'):
config.EVAL_TRAINING = args.eval_training_freq
else:
config.EVAL_TRAINING = None
if _check_args('epochs'):
config.TRAIN.EPOCHS = args.epochs
if _check_args('mti'):
config.MODEL.MTI = args.mti
if _check_args('decoder_map'):
with open(args.decoder_map, 'r') as f:
task_dec_map = json.load(f)
for task, head in task_dec_map.items():
config.MODEL.DECODER_HEAD[task] = head
if _check_args('skip_decoder'):
config.TRAIN.SKIP_DECODER_CKPT = args.skip_decoder
if _check_args('data_path'):
config.DATA.DATA_PATH = args.data_path
db_name = "NYUD"
if _check_args('nyud'):
config.DATA.NYUD = args.nyud
config.DATA.DATA_PATH = args.nyud
db_name = "NYUD"
elif _check_args('pascal'):
config.DATA.PASCAL = args.pascal
config.DATA.DATA_PATH = args.pascal
db_name = "PASCALContext"
config.DATA.DBNAME = db_name
if _check_args('tasks'):
config.TASKS = re.compile(r'\s*,\s*').split(args.tasks)
assert 'shared' not in config.TASKS, 'shared is a reserved task name'
config.MTL = True
tsk_config, _ = get_tasks_config(
db_name, config.TASKS, config.DATA.IMG_SIZE)
tsk_config = dict(tsk_config)
config.TASKS_CONFIG = CN(tsk_config)
config.TASKS_CONFIG.ALL_TASKS.NUM_OUTPUT = CN(
dict(config.TASKS_CONFIG.ALL_TASKS.NUM_OUTPUT))
config.TASKS_CONFIG.ALL_TASKS.FLAGVALS = CN(
dict(config.TASKS_CONFIG.ALL_TASKS.FLAGVALS))
config.TASKS_CONFIG.ALL_TASKS.INFER_FLAGVALS = CN(
dict(config.TASKS_CONFIG.ALL_TASKS.INFER_FLAGVALS))
config.MODEL.NUM_CLASSES = 0
if _check_args('zip'):
config.DATA.ZIP_MODE = True
if _check_args('cache_mode'):
config.DATA.CACHE_MODE = args.cache_mode
if _check_args('pretrained'):
config.MODEL.PRETRAINED = args.pretrained
if _check_args('resume'):
config.MODEL.RESUME = args.resume
if _check_args('resume_backbone'):
config.MODEL.RESUME_BACKBONE = args.resume_backbone
else:
config.MODEL.RESUME_BACKBONE = False
if _check_args('freeze_backbone'):
config.MODEL.FREEZE_BACKBONE = args.freeze_backbone
else:
config.MODEL.FREEZE_BACKBONE = False
if _check_args('save_sample'):
config.MODEL.SAVE_SAMPLE = args.save_sample
else:
config.MODEL.SAVE_SAMPLE = False
if _check_args('accumulation_steps'):
config.TRAIN.ACCUMULATION_STEPS = args.accumulation_steps
if _check_args('use_checkpoint'):
config.TRAIN.USE_CHECKPOINT = True
if _check_args('amp_opt_level'):
print("[warning] Apex amp has been deprecated, please use pytorch amp instead!")
if args.amp_opt_level == 'O0':
config.AMP_ENABLE = False
if _check_args('disable_amp'):
config.AMP_ENABLE = False
if _check_args('output'):
config.OUTPUT = args.output
if _check_args('tag'):
config.TAG = args.tag
if _check_args('eval'):
config.EVAL_MODE = True
if _check_args('throughput'):
config.THROUGHPUT_MODE = True
# [SimMIM]
if _check_args('enable_amp'):
config.ENABLE_AMP = args.enable_amp
# for acceleration
if _check_args('fused_window_process'):
config.FUSED_WINDOW_PROCESS = True
if _check_args('fused_layernorm'):
config.FUSED_LAYERNORM = True
# Overwrite optimizer if not None, currently we use it for [fused_adam, fused_lamb]
if _check_args('optim'):
config.TRAIN.OPTIMIZER.NAME = args.optim
if _check_args('name'):
config.MODEL.NAME = args.name
# set local rank for distributed training
config.LOCAL_RANK = args.local_rank
# output folder
config.OUTPUT = os.path.join(config.OUTPUT, config.MODEL.NAME, config.TAG)
# Normalize MTLoRA config
if config.MODEL.MTLORA.ENABLED:
if not isinstance(config.MODEL.MTLORA.R, list):
config.MODEL.MTLORA.R = [
config.MODEL.MTLORA.R] * len(config.MODEL.SWIN.DEPTHS)
elif len(config.MODEL.MTLORA.R) == 1:
config.MODEL.MTLORA.R = config.MODEL.MTLORA.R * \
len(config.MODEL.SWIN.DEPTHS)
else:
assert len(config.MODEL.MTLORA.R) == len(
config.MODEL.SWIN.DEPTHS), "MTLoRA ranks length should be the same as the number of layers"
if not isinstance(config.MODEL.MTLORA.SHARED_SCALE, list):
config.MODEL.MTLORA.SHARED_SCALE = [
config.MODEL.MTLORA.SHARED_SCALE] * len(config.MODEL.SWIN.DEPTHS)
elif len(config.MODEL.MTLORA.SHARED_SCALE) == 1:
config.MODEL.MTLORA.SHARED_SCALE = config.MODEL.MTLORA.SHARED_SCALE * \
len(config.MODEL.SWIN.DEPTHS)
else:
assert len(config.MODEL.MTLORA.SHARED_SCALE) == len(
config.MODEL.SWIN.DEPTHS), "MTLoRA shared scale length should be the same as the number of layers"
if not isinstance(config.MODEL.MTLORA.TASK_SCALE, list):
config.MODEL.MTLORA.TASK_SCALE = [
config.MODEL.MTLORA.TASK_SCALE] * len(config.MODEL.SWIN.DEPTHS)
elif len(config.MODEL.MTLORA.TASK_SCALE) == 1:
config.MODEL.MTLORA.TASK_SCALE = config.MODEL.MTLORA.TASK_SCALE * \
len(config.MODEL.SWIN.DEPTHS)
else:
assert len(config.MODEL.MTLORA.TASK_SCALE) == len(
config.MODEL.SWIN.DEPTHS), "MTLoRA task scale length should be the same as the number of layers"
if not isinstance(config.MODEL.MTLORA.DROPOUT, list):
config.MODEL.MTLORA.DROPOUT = [
config.MODEL.MTLORA.DROPOUT] * len(config.MODEL.SWIN.DEPTHS)
elif len(config.MODEL.MTLORA.DROPOUT) == 1:
config.MODEL.MTLORA.DROPOUT = config.MODEL.MTLORA.DROPOUT * \
len(config.MODEL.SWIN.DEPTHS)
else:
assert len(config.MODEL.MTLORA.DROPOUT) == len(
config.MODEL.SWIN.DEPTHS), "MTLoRA dropout length should be the same as the number of layers"
if len(config.MODEL.MTLORA.R_PER_TASK) == 0:
for task in config.TASKS:
config.MODEL.MTLORA.R_PER_TASK[task] = config.MODEL.MTLORA.R[:]
config.MODEL.MTLORA.R_PER_TASK['shared'] = config.MODEL.MTLORA.R[:]
else:
for task in config.TASKS + ['shared']:
if not isinstance(config.MODEL.MTLORA.R_PER_TASK[task], list):
config.MODEL.MTLORA.R_PER_TASK[task] = [
config.MODEL.MTLORA.R_PER_TASK[task]] * len(config.MODEL.SWIN.DEPTHS)
elif len(config.MODEL.MTLORA.R_PER_TASK[task]) == 1:
config.MODEL.MTLORA.R_PER_TASK[task] = config.MODEL.MTLORA.R_PER_TASK[task] * \
len(config.MODEL.SWIN.DEPTHS)
else:
assert len(config.MODEL.MTLORA.R_PER_TASK[task]) == len(
config.MODEL.SWIN.DEPTHS), "MTLoRA ranks length should be the same as the number of layers"
if len(config.MODEL.MTLORA.SCALE_PER_TASK) == 0:
for task in config.TASKS:
config.MODEL.MTLORA.SCALE_PER_TASK[task] = config.MODEL.MTLORA.SHARED_SCALE[:]
else:
for task in config.TASKS:
if not isinstance(config.MODEL.MTLORA.SCALE_PER_TASK[task], list):
config.MODEL.MTLORA.SCALE_PER_TASK[task] = [
config.MODEL.MTLORA.SCALE_PER_TASK[task]] * len(config.MODEL.SWIN.DEPTHS)
elif len(config.MODEL.MTLORA.SCALE_PER_TASK[task]) == 1:
config.MODEL.MTLORA.SCALE_PER_TASK[task] = config.MODEL.MTLORA.SCALE_PER_TASK[task] * \
len(config.MODEL.SWIN.DEPTHS)
else:
assert len(config.MODEL.MTLORA.SCALE_PER_TASK[task]) == len(
config.MODEL.SWIN.DEPTHS), "MTLoRA task scale length should be the same as the number of layers"
config.MODEL.MTLORA.R_PER_TASK_LIST = []
config.MODEL.MTLORA.SCALE_PER_TASK_LIST = []
for i in range(len(config.MODEL.SWIN.DEPTHS)):
layer_task_r = {
'shared': config.MODEL.MTLORA.R[i] if 'shared' not in config.MODEL.MTLORA.R_PER_TASK else config.MODEL.MTLORA.R_PER_TASK['shared'][i]
}
layer_task_scale = {
}
for task in config.TASKS:
layer_task_r[task] = config.MODEL.MTLORA.R_PER_TASK[task][i]
layer_task_scale[task] = config.MODEL.MTLORA.SCALE_PER_TASK[task][i]
config.MODEL.MTLORA.R_PER_TASK_LIST.append(layer_task_r)
config.MODEL.MTLORA.SCALE_PER_TASK_LIST.append(layer_task_scale)
config.freeze()
def get_config(args):
"""Get a yacs CfgNode object with default values."""
# Return a clone so that the defaults will not be altered
# This is for the "local variable" use pattern
config = _C.clone()
update_config(config, args)
return config